high performance sensor interfaces: efficient system architectures and calibration techniques marc...

55
High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

Upload: katherine-burns

Post on 13-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces: Efficient system architectures and

calibration techniques

Marc Pastre – 2011

Page 2: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 2

Outline

• Sensor interfaces– System architectures

• Open-loop vs. Closed-loop• Continuous-time vs. Sampled

– Frontends• Voltage-, current-, charge-mode

• Case studies– Hall sensor

– MEMS-based accelerometer

• Digital calibration– Successive approximations

– M/2+M Sub-binary DACs for successive approximations

• Conclusion

Page 3: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 3

Open-loop vs. Closed-loop

• Straightforward implementation

• Analog output

• Sensitive to sensor non-linearity

• Directly compatible with a loop

• Digital or analog output

• Insensitive to sensor non-linearity

• Sensitive to actuator non-linearity

• Feedback loop stability

• Bandwidth

Sensor FE BE Sens

Act FE Filter

feedback

Page 4: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 4

Continuous-time vs. Sampled systems

• Continuous-time:– Straightforward– Low power consumption– High bandwidth– Not really compatible with continuous-time calibration

• Sampled systems directly compatible with:– Closed-loop modulators– Switched capacitor circuits– Digital calibration

Page 5: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 5

Voltage-, current-, charge-mode

• Voltage-mode:– Hi-Z Instrumentation amplifier, Op-Amp (+ input)– Low-Z Op-Amp circuit, switched capacitor

• Current-mode:– Transimpedance amplifier

(based on common-source transistor, Op-Amp, …)– Switched capacitor circuit used as integrator– Virtual ground @ input

• Charge-mode:– Transimpedance integrator

(based on common-source transistor, Op-Amp, …)– Switched capacitor

Page 6: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 6

Case studies

• Hall sensor microsystem:– Open-loop– Voltage-mode– Sampled– Continuous-time sensitivity calibration

• MEMS-based accelerometer:– Closed-loop– Voltage-/Charge-mode– Sampled – Sensor included in a loop

Page 7: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 7

Hall sensor microsystem

• Continuous-time sensitivity calibration• Reference field generated by integrated coil• Combined modulation scheme mixes up reference and

external signal• Parallel demodulation schemes allow continuous

background sensitivity calibration• Compensation of any cause of drift (temperature,

mechanical stresses, ageing)

Page 8: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 8

Sensitivity drift of Hall sensors

• Drift due to– Temperature– Mechanical stresses– Ageing

• Typical temperature drift– 500 ppm/°C uncalibrated – 300 ppm/°C with 1st order correction

• Typical ageing drift– 20’000 ppm (2 %)

SI/SI0

1.05

1.00T [°C]

30 100-40

Page 9: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 9

System architecture

Page 10: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 10

Spinning current modulation

• 2 modulation phases• Modulated signal, constant offset• Offset-free signal extracted by demodulation

A

Ibias

Bext

Vext Voff

Vext Voff

Voff

Switchbox

Page 11: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 11

Combined modulation

• 4 modulation phases• Modulated signal & reference, constant offset• Modulation frequency of 1 MHz

ASwitch

box

Ibias

Bref

Voff

Iref

Bext

+(Vext + Vref) + Voff

(Vext Vref) Voff

(Vext Vref) Voff

(Vext Vref) Voff

Page 12: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 12

Demodulation schemes

• 3 different demodulation schemes• Offset-free signal & reference demodulation, using

synchronous switched-capacitor circuits

Modulation

+(Vext + Vref) + Voff

4Vext 4Vref 4Voff

Phase Spin. Coil Amplifier output

Demodulation

Sig. Ref. Off.

+

-

+

-

+

-

-

+

+

+

+

+

-(Vext + Vref) + Voff

+(Vext - Vref) + Voff

-(Vext - Vref) + Voff

+

+

-

-

+

-

+

-

1

2

3

4

Page 13: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 13

Reference signal demodulation

• 2 limitations for precise reference signal extraction:– Low reference signal level

• VHall;ref = (SI;Hall Ibias) (EI;coil Iref) = 40 V

• VHall;ref 0.1% = 40 nV

• Input-referred noise = 20 nV/Hz @ 1 MHz

– External signal aliasing• Vext;max = 100 Vref

• High-pass parasitic transfer function

• Solution: Reference signal filtering

Page 14: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 14

Reference signal filtering

• Filtering combined with reference signal demodulation and analog-to-digital conversion

• Second-order low-pass filtering• Demodulator pole @ 1 kHz

– Feedback path in the switched-capacitor demodulator

• Delta-sigma pole @ 0.1 Hz– Long integration period

Page 15: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 15

Filtering transfer function

Page 16: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 16

External signal aliasing

• Variation of the external signal between the reference demodulation phases alias

• Derivative effect high-pass transfer function• Zero @ 100 kHz

[(Vext;1 Vref) Voff]

[(Vext;2 Vref) Voff]

[(Vext;3 Vref) Voff]

[(Vext;4 Vref) Voff] = 4Vref [(Vext;1 Vext;2) (Vext;3 Vext;4)]

Parasitic term

Page 17: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 17

Effect of filtering on alias

• Minimum attenuation of 120 dB

Page 18: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 18

Effects of filtering

• On noise– Bandwidth limited to less than 1 Hz– White noise integrated in limited bandwidth– Total input-referred RMS noise < VHall;ref 0.1% = 40 nV

• On aliased external component– Minimum attenuation of 120 dB– Vext;max = 100 Vref attenuated to

100 Vref / 106 = Vref 0.01%

• Extraction of Vref 0.1% possible sensitivity calibration with 1’000 ppm accuracy

Page 19: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 19

Sensitivity drift compensation

• Sensitivity compensated by sensor bias current adjustment

• VHall = (SI;Hall Ibias) B

Page 20: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 20

Offset compensation

• Compensation current injection into preamplifier• Demodulator can be optimized (low-pass filter)

Page 21: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 21

Circuit micrograph

• 11.5 mm2 in AMS 0.8 m CXQ• Hall sensors & coils integrated

Page 22: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 22

Measurement results

• Compared to state of the art:– High bandwidth– Low gain drift (6-10 times better)

Supply voltage

Sensitivity

Full scale

Bandwidth

Non-linearity

Gain drift

5 V

35 V/T

50 mT

500 kHz

< 0.1 %

< 50 ppm/C

Page 23: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 23

MEMS-based accelerometer

• Closed-loop system• 5th order loop: Sensor (2nd order) + Filter (3rd order)• Low-precision front-end (7 bits)• Internally non-linear ADC• Digital filter (3rd order)• Versatile and reconfigurable system, yet featuring high

performances

Page 24: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 24

System architecture

Sensor

7-bitADC

GN

D+

HV

-HV

Pre-amplifier

Demodulators(CDS) BufferHigh voltage

3rd orderdigital filter

HV switchcontrol

HV & Analog front end ASIC

Digitaloutput

bitstream

A/Dconversion

Page 25: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 25

Frontend

• 11.5 mm2 in AMS 0.8 m CXQ• Hall sensors & coils integrated

fresetVpre

GN

D+

HV

-HV

reset sense actuation

t [s]

V

0.25 0.5 1

Hi-Z

+HV

-HV

GND

+HV

-HV

GND

+HV

-HV

GND

( )( ) 2

( ) ( )t

midt b

C xV x HV HV

C x C x

Page 26: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 26

Time-interleaved CDS

Vin

Csum

freset;1

fsense fsub

fsense+ fadd

fsub

Cin

fadd

t

fsense

+sense actuation

freset;1

reset -sense actuationreset

fadd

fsub

freset;2

Vin

Csum

freset;2

fsense fsub

fsense+ fadd

fsub

Cin

fadd

fsub

Vout

fadd

Page 27: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 27

Internally non-linear ADC

Resistors &ComparatorsA thermometric

decodingnon-lineardecoding

64 bits 6 bits 16 bits

Page 28: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 28

Circuit micrograph

Page 29: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 29

Measurement results

• Compared to state of the art:– High bandwidth– Low noise

f [Hz]

Nor

mal

ized

out

put n

oise

[dBF

S/√H

z]

100

101

102

103

104

105

-160

-140

-120

-100

-80

-60

-40

-20

f [Hz]

Nor

mal

ized

out

put [

dBFS

/√H

z]

100

101

102

103

104

105

-160

-140

-120

-100

-80

-60

-40

-20

Without signal 8g @ 222Hz

Page 30: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 30

Measurement results

Supply voltage

Sampling frequency

loop order

Full scale

Bandwidth

Dynamic range (300 Hz)

3.3V / 9V

1 MHz

2 + 3 = 5

11.7 g

300 Hz

19 bits

SNR (300 Hz) 16 bits

Input noise 1.7 g/Hz

Page 31: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 31

Digital calibration

• Digital compensation of analog circuits• Successive approximations:

– Algorithm– Working condition

• Sub-binary DACs for successive approximations:– Resolution– Radix– Tolerance to component mismatch– Architectures– Design

Page 32: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 32

Digital compensation

• High-precision calibration of low-precision circuits• Alternative to intrinsically precise circuits

(matching & high area)

Analog systemInput Output

Digital calibrationalgorithm

DAC

CompensationDetection

Page 33: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 33

Compensation methodology

• Detection configuration– Continuous: normal operation configuration– Interrupted: special configuration

• Detection node(s)– Imperfection sensing– Usually voltage-mode

• Compensation node(s)– Imperfection correction– Current-mode

Page 34: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 34

Offset cancellation in OAs

• Closed-loop: calibration during operation possible• Open-loop: higher detection level

V -VO Vout = AVO

Closed-loop Open-loop

Page 35: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 35

Offset compensation in OAs

• Compensation by current injection• Unilateral/bilateral• Compensation current sources: M/2+M DACs

Page 36: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 36

Choice of compensation node(s)

• Compensation current corrects imperfection only• Current injected by a small current mirror, taking into

account:– Channel length modulation– Saturation voltage

• Connection of the current mirror does not affect the compensation node characteristics:– Impedance– Parasitic capacitance– System parameters linked to parasitics

Page 37: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 37

Offset distribution before compensation

• Gaussian distribution• Depends on component matching

Voffset

[mV]

% o

f sam

ples

-10 -5 0 5 100

5

10

15

Page 38: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 38

Offset reduction

• Offset can be reduced by:– Matching Increase area– Digital calibration

• Digital calibration circuits can be made very small• In deep sub-micron technologies:

– Design analog circuits with reasonable performance– Enhance critical parameters by digital calibration

• Mixed-signal solution is optimal in terms of global circuit area

Page 39: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 39

Offset distribution after digital compensation

• Uniform distribution (in a 1 LSB interval)• Residual offset depends on DAC resolution

Voffset

[V]

% o

f sam

ples

-80 -70 -60 -50 -40 -30 -20 -10 0 100

2

4

6

8

10

Page 40: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 40

Successive approximations

• The algorithm decides on the basis of comparisons• A comparator senses the sign of the imperfection

• Working condition: (i [2, n])

1

11

i

jji bbb

reset all di = 0for i = n downto 1

set di = 1if Cout > 0

reset di = 0end if

end for

Page 41: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 41

Offset compensation: Target

• Z0: Correction value that perfectly cancels the offset

• A < Z0: Resulting offset negative

• A > Z0: Resulting offset positive

Digital input code (D)

Ana

log

outp

utva

lue

(A)

0 2 4 6 8 10 12 14 160

2

4

6

8

10

12

14

positive offset

negative offset

Z0

VO

Ctrl &SAR

AZ

DAC

Page 42: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 42

Offset compensation: Algorithm execution

• From MSB to LSB• Bit kept if compensation value insufficient

Algorithm step

DAC

outp

utva

lue

0 1 2 3 4 50

2

4

6

8

10

12

14

reset all di = 0for i = n downto 1

set di = 1if Cout > 0

reset di = 0end if

end for

Page 43: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 43

DAC Resolution

• Full scale chosen to cover whole uncompensated offset range

• Resolution corresponds to residual offset achieved after compensation

max;;

max;;

dcompensateoffset

teduncompensaoffset

V

V

LSB

FullScaleResolution

Page 44: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 44

DACs for successive approximations

• Imperfections in DACs for compensation– Missing codes are problematic– Redundancies are acceptable

Ideal Missing code Redundancies

Binary radix Sub-binary radix

Page 45: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 45

Sub-binary radix DACs

• Code redundancies are voluntarily introduced to:– Account for variations of component values– Avoid missing codes

• Arbitrarily high resolutions can be achieved without exponential increase of area

• For successive approximations:– Precision is not important– Resolution is the objective

• Sub-binary DACs are ideal in conjunction with successive approximations– Very low area

Page 46: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 46

Digital input code (D)

Ana

log

outp

utva

lue

(A)

0 2 4 6 8 10 12 14 160

2

4

6

8

10

12

14

Sub-binary DACs: Radix

Digital input code (D)

Ana

log

outp

utva

lue

(A)

0 2 4 6 8 10 12 14 160

2

4

6

8

10

12

14

Radix = 1.5 Radix = 1.75

Page 47: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 47

Radix: Tolerance to component mismatch

• Radix-2 tolerates no mismatch!• 100 % mismatch thermometric DAC (radix-1)

d

R

0.0 0.2 0.4 0.6 0.8 1.01.0

1.2

1.4

1.6

1.8

2.0

component mismatch

Radix

Page 48: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 48

Implementation: Current-mode R/2R converters

• Req;i = 2R ( i)

• Current divided equally in each branch (ii = bi)

• Component imperfection current imbalance missing code (or redundancy)

1

11

i

jji bbb

Ibias

2R

R

2R

R

2R

R

2R 2R

Req;i

iibi

Iout

d1d2d3

Page 49: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 49

R/2+R converters

• x > 2 ; Req;i < xR ; ii > bi

• Current division voluntarily unbalanced– Radix < 2 (sub-binary)– Code redundancies

1

11

i

jji bbb

Ibias

xR

R

xR

R

xR

R

xR xTR

Req;i

iibi

Iout

d1d2d3d4

Page 50: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 50

R/2+R converters: Pseudo-MOS implementation

• Resistors can advantageously be replaced by transistors to implement the current division

• Unit-size device with fixed W/L implements R• Unit-size devices are put in series (2R) or in parallel (R/2)• Unit-size transistors are kept very small

• Condition: VG identical for all transistors

2RR R/2W/L

W/L

W/L

W/L W/L

Page 51: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 51

M/3M converters

• Radix 1.77 ; maximum mismatch 13 %

• VG = VDD allows driving di directly with logic

Ibias

Iout

VG

d5 d5 d3 d3 d2 d2 d1 d1d4 d4

Page 52: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 52

M/2.5M converters

• Radix 1.86 ; maximum mismatch 7.3 %

• VG = VDD allows driving di directly with logic

Ibias

Iout

VG

d5 d5 d3 d3 d2 d2 d1 d1d4 d4

Page 53: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 53

Current collectors & Output stage

• Current mirrors simple to implement V is not problematic

Ibias

Iout

VG

d5 d5 d3 d3 d2 d2 d1 d1d4 d4

Iout V

Page 54: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 54

Conclusion

• Closed-loop systems are less sensitive to imperfections• Calibration can be included transparently in sampled

systems• It is advantageous to include sensors in loops• Switched capacitor circuits enable flexible and

reconfigurable systems• Calibration is necessary in deep sub-micron technologies

to reach high performances• Improve analog performance with digital calibration:

– Design analog circuits with reasonable performance– Enhance critical parameters by digital calibration– Mixed-signal solution optimal in terms of global circuit area

Page 55: High performance sensor interfaces: Efficient system architectures and calibration techniques Marc Pastre – 2011

High performance sensor interfaces, Marc Pastre 2011 55

References

• M. Pastre, M. Kayal, H. Blanchard, “A Hall Sensor Analog Front End for Current Measurement with Continuous Gain Calibration”, IEEE Sensors Journal, Special Edition on Intelligent Sensors, Vol. 7, Number 5, pp. 860-867, May 2007

• M. Pastre, M. Kayal, H. Schmid, A. Huber, P. Zwahlen, A.-M. Nguyen, Y. Dong, “A 300Hz 19b DR capacitive accelerometer based on a versatile front end in a 5th order ΔΣ loop”, IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 288-291, September 2009

• M. Pastre, M. Kayal, “Methodology for the Digital Calibration of Analog Circuits and Systems – with Case Studies”, Springer, The International Series in Engineering and Computer Science, Vol. 870, ISBN 1-4020-4252-3, 2006

• M. Pastre, M. Kayal, “Methodology for the Digital Calibration of Analog Circuits and Systems Using Sub-binary Radix DACs”, IEEE Mixed Design of Integrated Circuits and Systems Conference (MIXDES), June 2009

• M. Pastre, M. Kayal, “High-precision DAC based on a self calibrated sub-binary radix converter”, IEEE International Symposium on Circuits and Systems (ISCAS), Vol. 1, pp. 341 344, May 2004

• C. C. Enz, G. C. Temes, “Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization”, Proceedings of the IEEE, Vol. 84, pp. 1584-1614, November 1996