guts youth leadership corps

Download GUTS Youth Leadership Corps

Post on 31-Jan-2016

34 views

Category:

Documents

0 download

Embed Size (px)

DESCRIPTION

GUTS Youth Leadership Corps. Things you need to know. Emphasis in GUTS Clubs. Programming Concepts using Starlogo TNG Complex Adaptive Systems Development of Research Skills Data Acquisition Data Analysis Data Interpretation Presentation Skills. Expectations of GUTS Mentors. - PowerPoint PPT Presentation

TRANSCRIPT

  • GUTS Youth Leadership CorpsThings you need to know

  • Emphasis in GUTS ClubsProgramming Concepts using Starlogo TNGComplex Adaptive SystemsDevelopment of Research SkillsData AcquisitionData AnalysisData InterpretationPresentation Skills

  • Expectations of GUTS MentorsKnowledge ExpectationsStarlogo TNGComplex Adaptive SystemsData AcquisitionData AnalysisClub ExpectationsHelp the teachersHelp the facilitatorsTeach some curriculumTeach some activitiesCoach students with programmingCoach students with projects

  • Starlogo TNG Quiz

    Take the quizSee what you remember!

  • Starlogo TNGBuild Tasmanian DevilsReview Programming ConceptsSetupProceduresVariablesConditional StatementsInputOutput

  • Complex Adaptive Systems ReviewMade up of agents in an environment

    The agents Have characteristics size, color, ageFollow simple rules - agingThere is randomness associated with their behavior

    Two types of interactions occurAgent/Agent interactions collisions, hatchingAgent/Environment interactions agents movement, agents change the environment or environment changes the agents

  • Complex Adaptive Systems Review The system isLeaderless - no agent is coordinating the actions of other agentsSelf-organizing simple rules result in the organization of the agents or the environment as the result of agents following simple rules without external control or a leader.Emergent patterns - Patterns that form even though the agents were not told to make a pattern.

  • Complex Adaptive Systems TemplateCASTNEW ASSESSMENT TOOL

  • CAS CAST

  • Tasmanian Devils CAST ActivityFill in the CAST for the Tasmanian Devil Model

  • Tasmanian Devils CAST

  • Data AcquisitionData collection is the systematic recording of information while changing Variables (a quantity that may assume any given value or set of values).Collect the output (i.e. number of healthy agents, number of infected agents, time) while changing the variables (number of devils, number initially infected) of the model

  • Data AcquisitionWhy do we gather data?To answer questionsTo develop understandingTo validate experiments

  • Data AcquisitionHow do we gather data using StarlogoTNG?Collect the data by handCreate a line graph in Starlogo TNG and extract the data to ExcelCreate a bar graph in Starlogo TNG and extract the data to ExcelCreate a table in Stalogo TNG and extract the data to Excel

  • Data AcquisitionHow Much Data?Variable Sweeping experimental considerations:Number of variablesRange of variablesWhat changes things?

  • Thought ExperimentIf you have two variables of interest in your modelYou decide that each variable needs to be examined at the low, medium and high end of its rangesHow many DIFFERENT TYPES of experiments do you need to perform

  • Data AcquisitionHow Much Data?

  • Thought Experiment ContinuedWhat if you needed to evaluated each parameter at 5 different values?Does that mean you need to run your model only that number of times?NO Scatter in your data

  • Data AcquisitionHow Much Data?Number of Runs at the same parameter values experimental considerations:Scatter in dataHow many data points do you need to determine if your average will be enough?Minimum 5 runs

  • Data AcquisitionHow Much Data?

  • Data AnalysisWhat should we do with the data?Display usually graph it to make it easier to see trendsAnalysis use math skills to uncover patterns and trends in data sets Interpretation - involves possible explanation those patterns and trends.

  • Data AnalysisDisplaying DataTwo common ways to display dataTablesGraphsReasons to Graphically Display DataMakes your data visibleHelps find obvious patterns Does the data makes sense?Are your assumptions correct? Did you collect enough data?

  • Data Analysis: Displaying Data Types of PlotsAll plots from http://www.statcan.caPie Charts music preference

    Pets purchased at pet storeBar Charts preferred snacks

  • Data Analysis: Displaying Data Types of PlotsAll plots from http://www.statcan.caXY Graphs cell phone use http://www.statcan.caScatter Plotshttp://en.wikipedia.org/wiki/Scatterplot

  • Data AnalysisDisplaying DataExerciseUse Tasmanian Devils Model to extract data into ExcelPlot Data in Excel

  • Data AnalysisStatisticsStatistics help youSummarize dataDescribe dataAnalyze dataHard to describe the difference Between the two data setsNow it is easy to summarize, describe and analyze the data.The blue and the pink data have the Same AVERAGE value (mean) but theblue data is NOISIER (greaterstandard deviation). Therefore

    Chart2

    13.87511.812512.516.12393170898.876068291119.16882405575.8311759443

    14.58.562512.516.12393170898.876068291119.16882405575.8311759443

    13.68757.12512.516.12393170898.876068291119.16882405575.8311759443

    10.6259.437512.516.12393170898.876068291119.16882405575.8311759443

    13.87510.312512.516.12393170898.876068291119.16882405575.8311759443

    13.37515.062512.516.12393170898.876068291119.16882405575.8311759443

    10.8756.37512.516.12393170898.876068291119.16882405575.8311759443

    9.687512.187512.516.12393170898.876068291119.16882405575.8311759443

    12.062511.87512.516.12393170898.876068291119.16882405575.8311759443

    13.7512.2512.516.12393170898.876068291119.16882405575.8311759443

    12.1258.7512.516.12393170898.876068291119.16882405575.8311759443

    13.6251312.516.12393170898.876068291119.16882405575.8311759443

    9.562510.562512.516.12393170898.876068291119.16882405575.8311759443

    9.62510.687512.516.12393170898.876068291119.16882405575.8311759443

    12.937515.812512.516.12393170898.876068291119.16882405575.8311759443

    12.437512.812512.516.12393170898.876068291119.16882405575.8311759443

    9.43751312.516.12393170898.876068291119.16882405575.8311759443

    12.812513.37512.516.12393170898.876068291119.16882405575.8311759443

    11.12516.512.516.12393170898.876068291119.16882405575.8311759443

    1316.512.516.12393170898.876068291119.16882405575.8311759443

    10.687510.187512.516.12393170898.876068291119.16882405575.8311759443

    10.37514.687512.516.12393170898.876068291119.16882405575.8311759443

    9.5112.687512.516.12393170898.876068291119.16882405575.8311759443

    12.31259.437512.516.12393170898.876068291119.16882405575.8311759443

    11.37517.562512.516.12393170898.876068291119.16882405575.8311759443

    10.812512.2512.516.12393170898.876068291119.16882405575.8311759443

    137.62512.516.12393170898.876068291119.16882405575.8311759443

    12.12510.062512.516.12393170898.876068291119.16882405575.8311759443

    10.93759.62512.516.12393170898.876068291119.16882405575.8311759443

    11.12517.87512.516.12393170898.876068291119.16882405575.8311759443

    14.81258.512.516.12393170898.876068291119.16882405575.8311759443

    11.62512.2512.516.12393170898.876068291119.16882405575.8311759443

    12.81258.687512.516.12393170898.876068291119.16882405575.8311759443

    12.87511.312512.516.12393170898.876068291119.16882405575.8311759443

    9.757.87512.516.12393170898.876068291119.16882405575.8311759443

    15.62512.937512.516.12393170898.876068291119.16882405575.8311759443

    10.57.37512.516.12393170898.876068291119.16882405575.8311759443

    12.437513.512.516.12393170898.876068291119.16882405575.8311759443

    12.7516.37512.516.12393170898.876068291119.16882405575.8311759443

    9.687511.937512.516.12393170898.876068291119.16882405575.8311759443

    14.518.7512.516.12393170898.876068291119.16882405575.8311759443

    10.687511.937512.516.12393170898.876068291119.16882405575.8311759443

    14.5625712.516.12393170898.876068291119.16882405575.8311759443

    14.257.437512.516.12393170898.876068291119.16882405575.8311759443

    11.812516.187512.516.12393170898.876068291119.16882405575.8311759443

    9.68759.62512.516.12393170898.876068291119.16882405575.8311759443

    13.37511.187512.516.12393170898.876068291119.16882405575.8311759443

    11.06257.87512.516.12393170898.876068291119.16882405575.8311759443

    14.56.37512.516.12393170898.876068291119.16882405575.8311759443

    14.56256.7512.516.12393170898.876068291119.16882405575.8311759443

    10.81258.812512.516.12393170898.876068291119.16882405575.8311759443

    1010.437512.516.12393170898.876068291119.16882405575.8311759443

    14.187514.062512.516.12393170898.876068291119.16882405575.8311759443

    12.18756.512.516.12393170898.876068291119.16882405575.8311759443

    15.516.12512.516.12393170898.876068291119.16882405575.8311759443

    9.937510.812512.516.12393170898.876068291119.16882405575.8311759443

    15.62516.87512.516.12393170898.876068291119.16882405575.8311759443

    Noisy

    Noisier

    Mean (both)

    Noisy + 2SD

    Noisy - 2SD

    Noisier + 2SD

    Noisier - 2SD

    Sheet1

    Rand (0,10)noisynoisierM-2d noisyM-2sd NoisyM-2sd NoisierM+2sd Noisieranother line

    112.522218913.87511.81258.876068291116.12393170895.831175944319.16882405571615.12

    212.523213714.58.56258.876068291116.12393170895.831175944319.16882405571610.96

    312.521911413.68757.1258.876068291116.12393170895.831175944319.1688240557169.12

    412.517015110.6259.43758.876068291116.12393170895.831175944319.16882405571612.08

    512.522216513.87510.31258.876068291116.12393170895.831175944319.16882405571613.2

    612.521424113.37515.06258.876068291116.12393170895.831175944319.16882405571619.28

    712.517410210.8756.3758.876068291116.12393170895.831175944319.1688240557168.16

    812.51551959.687512.18758.876068291116.12393170895.831175944319.16882405571615.6

    912.519319012.062511.8758.876068291116.12393170895.831175944319.16882405571615.2