graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท graph โ€ข graph is a pair...

20
Graph โ€ข graph is a pair (, ) of two sets where โ€“ = set of elements called vertices (singl. vertex) โ€“ = set of pairs of vertices (elements of ) called edges โ€ข Example: = (, ) where = * 1, 2, 3, 4 + = * *1, 2+, *1, 3+, *2, 3+, *3, 4+ + โ€ข Notation: โ€“ we write = (, ) for a graph with vertex set and edge set โ€“ () is the vertex set of , and () is the edge set of 1 2 3 4 drawing of

Upload: others

Post on 21-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Graph

โ€ข graph is a pair (๐‘‰, ๐ธ) of two sets where

โ€“ ๐‘‰ = set of elements called vertices (singl. vertex)

โ€“ ๐ธ = set of pairs of vertices (elements of ๐‘‰) called edges

โ€ข Example: ๐บ = (๐‘‰, ๐ธ) where

๐‘‰ = * 1, 2, 3, 4 + ๐ธ = * *1, 2+, *1, 3+, *2, 3+, *3, 4+ +

โ€ข Notation: โ€“ we write ๐บ = (๐‘‰, ๐ธ) for a graph with vertex set ๐‘‰ and edge set ๐ธ

โ€“ ๐‘‰(๐บ) is the vertex set of ๐บ, and ๐ธ(๐บ) is the edge set of ๐บ

1

2

3 4

drawing of ๐บ

Page 2: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

1 2 3 4

1 1 1

2 1 1

3 1 1 1

4 1

1 2 3 4

1 1 1

2 1

3 1 1

4

1 2 3 4

1 1 3

2 1 2

3 3 2 4

4 4

1 2 3 4

1 1 1

2 1 1 1

3 1 1 1 1

4 0 1

Types of graphs

โ€ข Undirected graph

๐ธ(๐บ) = set of unordered pairs

โ€ข Pseudograph (allows loops)

loop = edge between vertex and itself

1

2

3 4

โ€ข Directed graph

๐ธ(๐บ) = set of ordered pairs

โ€ข Multigraph

๐ธ(๐บ) is a multiset

(IRREFLEXIVE) RELATION SYMMETRIC & IRREFLEXIVE

SYMMETRIC ?

1

2

3 4

1

2

3 4

1

2

3 4

๐ธ = *(1,2), (2,3), (1,3), (3,1), (3,4)+

๐ธ = **1,2+, *1,3+, *1,3+, *1,3+, 2,3 , 2,3 , *3,4+, *3,4+, *3,4+, *3,4++

๐ธ = **1,2+, *1,3+, *2,3+, *3,4++

๐ธ = **1,2+, *1,3+, *2,2+, *2,3+, *3,3+, *3,4++

Page 3: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

โ€ข simple graph (undirected, no loops, no parallel edges)

for edge *๐‘ข, ๐‘ฃ+๐ธ(๐บ) we say:

โ€“ ๐‘ข and ๐‘ฃ are adjacent

โ€“ ๐‘ข and ๐‘ฃ are neighbours

โ€“ ๐‘ข and ๐‘ฃ are endpoints of *๐‘ข, ๐‘ฃ+

โ€“ we write ๐‘ข๐‘ฃ๐ธ ๐บ for simplicity

โ€ข N(๐‘ฃ) = set of neighbours of ๐‘ฃ in G

โ€ข deg (๐‘ฃ) = degree of v is the number of its neighbours, ie. |N(๐‘ฃ)|

1

2

3

More graph terminology

1

2

3 4 N(1) = *2,3+ N(2) = *1,3+ N(3) = *1,2,4+ N(4) = *3+

1 is adjacent to 2 and 3

deg (3) = 3 deg 4 = 1 deg (1) = deg (2) = 2

1

2

3 = โ‰ 

๐บ1 = (๐‘‰1, ๐ธ1) is isomorphic to ๐บ2 = (๐‘‰2, ๐ธ2) if there exists a bijective mapping ๐‘“: ๐‘‰1 โ†’ ๐‘‰2 such that ๐‘ข๐‘ฃ๐ธ(๐บ1) if and only if ๐‘“ ๐‘ข ๐‘“(๐‘ฃ)๐ธ(๐บ2)

โ‰… ๐‘“(1) = 2 ๐‘“(2) = 3 ๐‘“(3) = 1

1

2

3

1

2

3

Page 4: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

1

Isomorphism

2 3

4 5 6

4

5

6

1

2

3

4

6

5

1

3

2

(3,3,3,3,3,3) (3,3,3,3,3,3) (3,3,3,3,3,3)

(3,3,3,3,2,2,2,2) (3,3,3,3,2,2,2,2)

3 3 3

3 3 3

โ‰…

if ๐‘“ is an isomorphism

deg (๐‘ข) = deg (๐‘“(๐‘ข))

โ‰… โ‰…

degree sequence

i.e., isomorphic graphs have same degree sequences only necessary not sufficient!!!

Page 5: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Isomorphism How many pairwise non-isomorphic graphs on ๐‘› vertices are there?

the complement of ๐บ = (๐‘‰, ๐ธ) is the graph ๐บ = (๐‘‰, ๐ธ ) where

๐ธ = ๐‘ข, ๐‘ฃ *๐‘ข, ๐‘ฃ+๐ธ+

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

2

1

3

4

5

๐บ

2

1

3

4

5

๐บ

๐ธ(๐บ) = **1,2+, *2,3+, *3,4+, *4,5++

๐ธ(๐บ ) = **1,3+, *1,4+, *1,5+, *2,4+, *2,5+, *3,5++

all graphs (labeled)

non-isomorphic graphs (without labels)

Page 6: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Isomorphism

How many pairwise non-isomorphic graphs on ๐‘› vertices are there?

โ‰… self-complementary graph

Page 7: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Isomorphism

โ€ข Are there self complementary graphs on 5 vertices ?

โ€ข ... 6 vertices ?

No, because in a self-complementary graph ๐บ = (๐‘‰, ๐ธ)

|๐ธ| = |๐ธ | and ๐ธ + ๐ธ =|๐‘‰|2

but 62= 15 is odd

โ€ข ... 7 vertices ?

โ€ข ... 8 vertices ?

2

1

3

4

5

2

1

3

4

5

4

1

5

8 7

6

2

3 1 โ†’ 4, 2 โ†’ 6, 3 โ†’ 1, 4 โ†’ 7 5 โ†’ 2, 6 โ†’ 8, 7 โ†’ 3, 8 โ†’ 5

No, since 72= 21

1 โ†’ 1, 2 โ†’ 4, 3 โ†’ 2 4 โ†’ 5, 5 โ†’ 3

1 โ†’ 2, 2 โ†’ 5, 3 โ†’ 3 4 โ†’ 1, 5 โ†’ 4

Yes, there are 10

Yes, 2

Page 8: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Handshake lemma

Lemma. Let ๐บ = (๐‘‰, ๐ธ) be a graph with ๐‘š edges.

deg ๐‘ฃ = 2๐‘š

๐‘ฃโˆˆ๐‘‰

Proof. Every edge *๐‘ข, ๐‘ฃ+ connects 2 vertices and contributes to exactly 1 to deg (๐‘ข) and exactly 1 to deg (๐‘ฃ). In other words, in deg (๐‘ฃ)๐‘ฃโˆˆ๐‘‰ every edge is counted twice.

How many edges has a graph with degree sequence:

- (3,3,3,3,3,3) ?

- (3,3,3,3,3) ?

- (0,1,2,3) ?

Corollary. In any graph, the number of vertices of odd degree is even.

Corollary 2. Every graph with at least 2 vertices has 2 vertices of the same degree.

4

5

6

1

2

3

1

2

3 4

deg (1) = 2 deg (2) = 2 deg (3) = 3 deg 4 = 1

๐‘š = 4

Page 9: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Handshake lemma

Is it possible for a self-complementary graph with 100 vertices to have exactly one vertex of degree 50 ?

Answer. No N(๐‘ข)

50

๐‘‰(๐บ)\N(๐‘ข)

49

N๐บ (๐‘ข)

49

๐‘“ isomorphism between ๐บ and ๐บ

๐‘ฃ is a unique vertex of degree 49 in ๐บ

the degree seq. of ๐บ and ๐บ (โ€ฆ ,โ€ฆ ,โ€ฆ , 50,49, โ€ฆ ,โ€ฆ ,โ€ฆ )

๐‘ฃ

โˆƒ๐‘ฃ, ๐‘“(๐‘ฃ) = ๐‘ข

we conclude ๐‘“(๐‘ข) = ๐‘ฃ

๐‘ข

๐บ

๐‘ข

๐บ

definition of isomorphism definition of complement

๐‘ข๐‘ฃ โˆˆ ๐ธ(๐บ) ๐‘“(๐‘ข)๐‘“(๐‘ฃ) โˆˆ ๐ธ(๐บ ) but ๐‘“(๐‘ข)๐‘“(๐‘ฃ) = ๐‘ฃ๐‘ข โˆˆ ๐ธ(๐บ ) ๐‘ข๐‘ฃ โˆˆ ๐ธ(๐บ)

Page 10: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Subgraphs

Let ๐บ = (๐‘‰, ๐ธ) be a graph

โ€ข a subgraph of ๐บ is a graph ๐บโ€ฒ = (๐‘‰โ€ฒ, ๐ธโ€ฒ) where ๐‘‰โ€ฒ ๐‘‰ and ๐ธโ€ฒ ๐ธ

โ€ข an induced subgraph (a subgraph induced on ๐ด ๐‘‰) is a graph

๐บ,๐ด- = (๐ด, ๐ธ๐ด) where ๐ธ๐ด = ๐ธ โˆฉ ๐ด ร— ๐ด

1

2

3 4

1

2

3 4

2

3 4

subgraph induced subgraph on ๐ด = *2,3,4+

Page 11: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Walks, Paths and Cycles

Let ๐บ = (๐‘‰, ๐ธ) be a graph

โ€ข a walk (of length ๐‘˜) in ๐บ is a sequence

๐‘ฃ1, ๐‘’1, ๐‘ฃ2, ๐‘’2,โ€ฆ , ๐‘ฃ๐‘˜โˆ’1, ๐‘’๐‘˜โˆ’1, ๐‘ฃ๐‘˜

where ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘˜ โˆˆ ๐‘‰ and ๐‘’๐‘– = *๐‘ฃ๐‘– , ๐‘ฃ๐‘–+1+ โˆˆ ๐ธ for all ๐‘– โˆˆ *1. . ๐‘˜ โˆ’ 1+

โ€ข a path in ๐บ is a walk where ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘˜ are distinct (does not go through the same vertex twice)

โ€ข a closed walk in ๐บ is a walk with ๐‘ฃ1 = ๐‘ฃ๐‘˜ (starts and ends in the same vertex)

โ€ข a cycle in ๐บ is a closed walk where ๐‘˜ 3 and ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘˜โˆ’1 are distinct

1

2

3 4

1,{1,2},2,{2,1},1,{1,3},3 is a walk (not path)

1,{1,2},2,{2,3},3,{3,1},1 is a cycle

Page 12: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Special graphs

โ€ข ๐‘ƒ๐‘› path on ๐‘› vertices

โ€ข ๐ถ๐‘› cycle on ๐‘› vertices

โ€ข ๐พ๐‘› complete graph on ๐‘› vertices

โ€ข ๐ต๐‘› hypercube of dimension ๐‘›

๐‘‰ ๐ต๐‘› = 0,1๐‘›

(๐‘Ž1, โ€ฆ , ๐‘Ž๐‘›) adjacent to ๐‘1, โ€ฆ , ๐‘๐‘› if ๐‘Ž๐‘–โ€™s and ๐‘๐‘–โ€™s differ in exactly once

(0,1,0,0) adjacent to (0,1,0,1) not adjacent to (0,1,1,1)

๐‘Ž๐‘– โˆ’ ๐‘๐‘– = 1

๐‘›

๐‘–=1

2

1

3

4

5

2 1 3 4 5 ๐‘ƒ5

๐ถ5

2

1

3

4

5

๐พ5

๐ต3

000

100 010

001

110 111

011 101

Page 13: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Connectivity

โ€ข a graph ๐บ is connected if for any two vertices ๐‘ข, ๐‘ฃ of ๐บ there exists a path (walk) in ๐บ starting in ๐‘ข and ending in ๐‘ฃ

โ€ข a connected component of ๐บ is a maximal connected subgraph of ๐บ

1

2

3 4

1

2

3 4

connected not connected = disconnected

no path from 1 to 4

connected components 1,{1,3},3,{3,4},4 path from 1 to 4 1

3 4

Page 14: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Connectivity

โ€ข Show that the complement of a disconnected graph is connected !

โ€ข What is the maximum number of edges in a disconnected graph ?

โ€ข What is the minimum number of edges in a connected graph ?

๐‘ข ๐‘ฃ

๐‘ข

๐‘ฃ

๐บ ๐บ

๐‘˜2

๐‘› โˆ’ ๐‘˜2

max๐‘˜

๐‘˜2+๐‘› โˆ’ ๐‘˜2=๐‘› โˆ’ 12

maximum when ๐‘˜ = 1

2 1 3 4 5

path ๐‘ƒ๐‘› on ๐‘› vertices has ๐‘› โˆ’ 1 edges

cannot be less, why ? keep removing edges so long as you keep the graph connected a (spanning) tree which has ๐‘› โˆ’ 1 edges

๐‘ข

๐‘ค ๐บ

๐‘ค

Page 15: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Distance, Diameter and Radius

โ€ข length of a walk (path) is the number of edges

โ€ข distance ๐‘‘(๐‘ข, ๐‘ฃ) from a vertex ๐‘ข to a vertex ๐‘ฃ is the length of a shortest path in ๐บ between ๐‘ข and ๐‘ฃ

โ€ข if no path exists define ๐‘‘ ๐‘ข, ๐‘ฃ = โˆž

recall walk (path) is a sequence of vertices and edges ๐‘ฃ1, ๐‘’1, ๐‘ฃ2, ๐‘’2,โ€ฆ , ๐‘ฃ๐‘˜โˆ’1, ๐‘’๐‘˜โˆ’1, ๐‘ฃ๐‘˜

if edges are clear from context we write ๐‘ฃ1, ๐‘ฃ2, โ€ฆ , ๐‘ฃ๐‘˜

1

2

3 4

๐‘‘(1,2) = 1 ๐‘‘(1,4) = 2

๐‘‘(๐‘ข, ๐‘ฃ) 1 2 3 4

1 0 1 1 2

2 1 0 1 2

3 1 1 0 1

4 2 2 1 0

matrix of distances in ๐บ distance matrix

Page 16: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Distance, Diameter and Radius

โ€ข eccentricity of a vertex ๐‘ข is the largest distance between ๐‘ข and any other vertex of ๐บ; we write ๐‘’๐‘๐‘ ๐‘ข = max

๐‘ฃ๐‘‘(๐‘ข, ๐‘ฃ)

โ€ข diameter of ๐บ is the largest distance between two vertices ๐‘‘๐‘–๐‘Ž๐‘š ๐บ = max

๐‘ข,๐‘ฃ๐‘‘ ๐‘ข, ๐‘ฃ = max

๐‘ฃ๐‘’๐‘๐‘(๐‘ฃ)

โ€ข radius of ๐บ is the minimum eccentricity of a vertex of ๐บ ๐‘Ÿ๐‘Ž๐‘‘ ๐บ = min

๐‘ฃ๐‘’๐‘๐‘(๐‘ฃ)

Find radius and diameter of graphs ๐‘ƒ๐‘›, ๐ถ๐‘›, ๐พ๐‘›, ๐ต๐‘› Prove that ๐‘Ÿ๐‘Ž๐‘‘(๐บ) โ‰ค ๐‘‘๐‘–๐‘Ž๐‘š(๐บ) โ‰ค 2 โˆ™ ๐‘Ÿ๐‘Ž๐‘‘(๐บ)

1

2

3 4

๐‘’๐‘๐‘(1) = 2 ๐‘’๐‘๐‘(2) = 2 ๐‘’๐‘๐‘(3) = 1 ๐‘’๐‘๐‘(4) = 2

๐‘Ÿ๐‘Ž๐‘‘(๐บ) = 1 (as witnessed by 3

called a centre)

๐‘‘๐‘–๐‘Ž๐‘š(๐บ) = 2 (as witnessed by 1,4

called a diametrical pair)

Page 17: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Independent set and Clique

โ€ข clique = set of pairwise adjacent vertices

โ€ข independent set = set of pairwise non-adjacent vertices

โ€ข clique number ๐œ”(๐บ) = size of largest clique in ๐บ

โ€ข independence number ๐›ผ(๐บ) = size of largest indepen-dent set in ๐บ

Find ๐›ผ(๐‘ƒ๐‘›), ๐›ผ(๐ถ๐‘›), ๐›ผ ๐พ๐‘› , ๐›ผ(๐ต๐‘›) ๐œ”(๐‘ƒ๐‘›), ๐œ”(๐ถ๐‘›), ๐œ”(๐พ๐‘›), ๐œ”(๐ต๐‘›)

1

2

3 4 ๐›ผ ๐บ = 2 ๐œ” ๐บ = 3

*1,2,3+ is a clique

*1,4+ is an independent set

2 1 3 4 5

๐‘ƒ5

Page 18: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Bipartite graph

โ€ข a graph is bipartite if its vertex set ๐‘‰ can be partitioned into two independent sets ๐‘‰1, ๐‘‰2; i.e., ๐‘‰1 โˆช ๐‘‰2 = ๐‘‰

1

2

3 4

1

2

3 4

1 2

3 4

bipartite not bipartite

๐‘‰2 ๐‘‰1 1

2

3 4

1 โˆˆ ๐‘‰1

3 โˆˆ ๐‘‰2 but now ๐‘‰2 is not an independent set because *2,3+ โˆˆ ๐ธ(๐บ)

2 โˆˆ ๐‘‰2

Page 19: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Bipartite graph

โ€ข a graph is bipartite if its vertex set ๐‘‰ can be partitioned into two independent sets ๐‘‰1, ๐‘‰2; i.e., ๐‘‰1 โˆช ๐‘‰2 = ๐‘‰

๐พ1,2

๐พ3,3

๐พ4,4 ๐พ๐‘›,๐‘š = complete bipartite graph

๐‘‰ ๐พ๐‘›,๐‘š = *๐‘Ž1โ€ฆ๐‘Ž๐‘› , ๐‘1โ€ฆ๐‘๐‘š+ ๐ธ ๐พ๐‘›,๐‘š = ๐‘Ž๐‘–๐‘๐‘— ๐‘– โˆˆ 1. . ๐‘› , ๐‘— โˆˆ 1. .๐‘š +

Which of these graphs are bipartite:

๐‘ƒ๐‘›, ๐ถ๐‘›, ๐พ๐‘›, ๐ต๐‘› ? ๐พ2,2

Page 20: Graph - cs.toronto.edustacho/public/combinatorics-2011-10-31-and-1โ€ฆย ยท Graph โ€ข graph is a pair (๐‘‰,๐ธ) of two sets where โ€“๐‘‰= set of elements called vertices (singl. vertex)

Bipartite graph Theorem. A graph is bipartite it has no cycle of odd length.

Proof. Let ๐บ = (๐‘‰, ๐ธ). We may assume that ๐บ is connected.

โ€œโ€ any cycle in a bipartite graph is of even length

โ€œโ€ Assume G has no odd-length cycle. Fix a vertex ๐‘ข and put it in ๐‘‰1. Then repeat as long as possible:

- take any vertex in ๐‘‰1 and put its neighbours in ๐‘‰2, or

- take any vertex in ๐‘‰2 and put its neighbours in ๐‘‰1.

Afterwards ๐‘‰1 โˆช ๐‘‰2 = ๐‘‰ because ๐บ is connected.

If one of ๐‘‰1 or ๐‘‰2 is not an independent set, then we find in ๐บ an odd-length closed walk cycle, impossible. So, ๐บ is bipartite (as certified by the partition ๐‘‰1 โˆช ๐‘‰2 = ๐‘‰)

2

1

3 4

5

๐‘˜

2

1

3

2

1

3

4

5

2

1

3 4

5 6

2

3

4

1

๐‘ข

?

๐‘˜ odd