gradient spoiling - stanford university · 2014. 10. 14. · gradient-spoiler question • what if...

37
B.Hargreaves - RAD 229 Gradient Spoiling • Average balanced SSFP magnetization • Reduce sensitivity to off-resonance FFE, FISP, GRASS, GRE, FAST, Field Echo 219

Upload: others

Post on 25-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • B.Hargreaves - RAD 229

    Gradient Spoiling

    • Average balanced SSFP magnetization• Reduce sensitivity to off-resonance

    FFE, FISP, GRASS, GRE, FAST, Field Echo

    219

  • B.Hargreaves - RAD 229

    Gradient-Spoiled Sequence (GRE, FFE, Fisp, GRASS)

    RF

    Gz

    Gy

    Gx

    Signal

    TR

    220

  • B.Hargreaves - RAD 229

    Gradient Spoiling

    RF

    Gz

    TR

    Signal is NOT eliminated at the end of TR!221

  • B.Hargreaves - RAD 229

    Gradient Spoiling

    Precession across a voxel dominated by spoiler:

    • Each spin has a different precession

    • Average of balanced SSFP

    RF

    Gz

    Signal

    TR

    222

  • B.Hargreaves - RAD 229

    Mag

    nitu

    de

    x

    ySpin Distribution

    Signal vs Balanced SSFP

    Gradient Spoiled Signal

    • Lower signal than balanced SSFP

    • Flat signal vs. frequency profile

    • No dark band artifacts!

    Frequency

    223

  • B.Hargreaves - RAD 229

    Gradient Spoiled vs Balanced SSFP

    (Courtesy of Krishna Nayak, USC Electrical Engineering)

    Gradient-Spoiled Balanced SSFP

    224

  • B.Hargreaves - RAD 229

    Reversed Gradient Spoiling

    RF

    Gz

    TR

    Spoiler Gradient

    Same as gradient-spoiling, but

    • Precession before imaging

    (SSFP Signal at t=TR)

    • Some T2 contrast

    Image Acquisition

    Pre-RF225

  • B.Hargreaves - RAD 229

    Mag

    nitu

    deP

    hase

    πx

    ySpin Distribution Signal vs Balanced SSFP

    Reversed Gradient Spoiled Signal

    • Almost identical signal to gradient-spoiled imaging

    • Flat signal vs. frequency profile

    226

  • B.Hargreaves - RAD 229

    Double Echo Imaging: DESS/FADE

    RF

    Gz

    Signal

    TR

    a b

    c d

    a b

    c d

    a b

    c d

    a b

    c dEcho 1 Echo 2 Average Difference

    227

  • B.Hargreaves - RAD 229

    Gradient-Spoiler Question

    • What if we split the spoiler into two and sample mid-way between?

    • No signal!

    • Averaging the “TE=TR/2” bSSFP state -- sign flip with every band

    • GRE and reversed GRE average bSSFP states just after and just before the RF pulses

    228

    RF

    GzTR

  • B.Hargreaves - RAD 229

    Gradient-Spoiler Question (cont)

    229

    Pha

    se

    π

    Frequency

    Pha

    se

    π

    Mag

    nitu

    deP

    hase

    π

    xy

    x

    y

    x

    y

    Post-RF

    Pre-RF

    Center

    Flipped!

    Recall bSSFP Dynamics...Gradient-Spoiled

    Distribution

    Reverse Gradient-Spoiled Distribution

    This Example

  • B.Hargreaves - RAD 229

    Summary: Gradient Spoiling

    • Average balanced SSFP magnetization

    • Reduce sensitivity to off-resonance

    • Unbalanced gradients - more motion sensitivity

    FFE, FISP, GRASS, GRE, FAST, Field Echo,T2-FFE, PSIF, CE-FAST

    FADE, DESS230

  • B.Hargreaves - RAD 229

    RF Spoiled Imaging

    • Goal: Pure T1 contrast with short TR

    • Fast, 3D T1-weighted imaging

    • Need to “zero” Mxy at end of TR

    Frahm 1987, Zur 1991

    SPGR, FLASH, T1-FFE, RF-spoiled FAST

    231

  • B.Hargreaves - RAD 229

    RF-Spoiled Gradient Echo

    RF

    Gz

    TR (Quadratic Phase Increment)S

    igna

    l

    1

    0

    Mz

    X XEliminate transverse magnetization: T1 contrast

    232

  • B.Hargreaves - RAD 229

    Quadratic Phase RF

    • RF axis of rotation, not flip angle!

    • RF phase is “randomized”

    Mx

    My

    Mx

    My

    Mz

    233

  • B.Hargreaves - RAD 229

    RF Spoiling

    • Goal: Eliminate transverse magnetization

    • Quadratic phase increment with gradient spoiling:

    φk = (0.5)117° k2

    • Shifting, spoiled profile

    • Transverse magnetization “cancels”

    • T1 contrast

    Frahm 1987, Zur 1991

    234

  • B.Hargreaves - RAD 229

    0 50 100 150 2000

    0.1

    0.2

    0.3

    0.4

    Excitation

    Mag

    nitu

    de

    0 50 100 150 200−1

    0

    1

    2

    3

    Excitation

    Phas

    e (ra

    d)

    SPGR Signal Evolution (Bloch)

    1 Pixel

    Average(gradient-smoothed)

    Excitation # Excitation #

    Magnitude Phase

    235

  • B.Hargreaves - RAD 229

    RF Spoiled Signal

    Repetition Number

    Repetition Number0 200

    0 200

    Mag

    nitu

    deP

    hase

    π

    −π

    Signal with residual transverse magnetization perfectly zero

    236

  • B.Hargreaves - RAD 229

    RF-Spoiled Gradient Echo

    237

  • B.Hargreaves - RAD 229

    RF-Spoiled Contrast-Enhanced MRPre-Contrast SPGR Post-Contrast SPGR

    238

    Courtesy Lewis Shin

  • B.Hargreaves - RAD 229

    RF Spoiling: Summary

    • Gradient spoiling + Quadratic phase RF

    • “Eliminates” transverse magnetization

    • Lower signal than GRE or balanced SSFP

    • Pure T1 contrast

    239

  • B.Hargreaves - RAD 229

    Gradient Echo Sequence Comparison

    Sequence

    Spoiling

    Transverse Magnetization

    Contrast

    SNR

    RF-Spoiled

    RF + Gradient

    Cancelled

    T1

    Lower

    Gradient Echo

    Gradient

    Averaged

    T2/T1

    Moderate

    BalancedSSFP

    None

    Retained

    T2/T1

    High(but Banding)

    240

  • B.Hargreaves - RAD 229

    Image Comparison

    • Same TR, TE, flip angle

    • Differences: Signal, Contrast, Dark-Bands

    Balanced SSFP Gradient Spoiled RF Spoiled

    241

  • B.Hargreaves - RAD 229

    Your Turn...Here are a balanced SSFP and RF-Spoiled post-contrast image. Which is the image on the left?

    1) RF-Spoiled Post Gd

    2) Balanced SSFP

    242

  • B.Hargreaves - RAD 229

    Your Turn...An RF-Spoiled and balanced SSFP image are shown. Which is on the right?

    1) RF-Spoiled

    2) Balanced SSFP

    243

    • bSSFP: Bright fluid, Opposed-phase, dark bands

  • B.Hargreaves - RAD 229

    Flip Angle Selection

    Ernst Angle Buxton 1990244

  • B.Hargreaves - RAD 229

    Flip Angle Selection?The best flip angle to use is found by:

    1) Maximizing the image SNR

    2) Maximizing contrast between certain tissues

    3) Both 1 and 2

    245

  • B.Hargreaves - RAD 229

    Flip Angle Examples

    Balanced SSFP

    Gradient Spoiled

    RF-Spoiled

    5∘ 10∘ 20∘ 30∘ 40∘ 50∘

    Best?

    Best?

    246

  • B.Hargreaves - RAD 229

    Echo Time (TE) Considerations• Longer TE: T2* weighting (BOLD, Perfusion)

    • BOLD Imaging for fMRI

    • T2*-weighted perfusion

    • Short TE

    • Reduced flow/motion sensitivity

    • Reduced T2* weighting

    • In-phase and Out-of-phase TE

    • Water/Fat cancellation, Dixon Imaging

    247

  • B.Hargreaves - RAD 229

    Blood-Oxygen Level Dependent (BOLD) Imaging

    Bandettini, et al. NMR Biomed (1994)248

  • B.Hargreaves - RAD 229

    tGx

    t=TE

    Full Echo

    tGx

    t=TE

    Partial Echo

    Clinical MRI, ed. Edelman, R et al., W.B. Saunders Co., 1996TE=9 TE=7

    Echo Time Reduction

    249

  • B.Hargreaves - RAD 229

    Short TE to Reduce Artifacts

    • Fractional TE reduces motion and flow sensitivity

    Fractional TEFull TEFreq

    250

  • B.Hargreaves - RAD 229

    TE and balanced SSFP

    • SSFP signal is refocused at TE = TR/2

    • Fat / water are often opposed-phase

    • SSFP is naturally flow-compensated

    RF-SpoiledBalanced SSFP251

  • B.Hargreaves - RAD 229

    UTE

    Ultrashort TE Imaging

    Fast Spin Echo

    (Courtesy of Jiang Du, Graeme Bydder)252

  • B.Hargreaves - RAD 229

    Preparation Options

    • Fat Saturation

    • Inversion - Recovery

    • Myocardial Tagging

    • T2-prep

    • Magnetization Transfer

    Mag Prep

    Imaging Sequence

    Mag Prep...

    253

  • B.Hargreaves - RAD 229

    Cardiac: bSSFP and IR-RF-Spoiled

    IR-Prep RF-SpoiledBalanced SSFP

    254

  • B.Hargreaves - RAD 229

    Gradient Echo Summary

    • Spoiling Variations

    • Flip Angle Selection

    • Echo Time (TE) Selection

    • Magnetization Preparation

    255