glass structures

Upload: garych72

Post on 06-Jul-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Glass Structures

    1/53

    CTU in Prague

     ADVANCED DESIGN OF GLASS

    STRUCTURES Lecture L1_ME

    Design of glass beams 

    Martina Eliášová

    European Erasmus Mundus Master Course

    Sustainable Constructions

    under Natural Hazards and Catastrophic Events520121-1-2011-1-CZ-ERA MUNDUS-EMMC

  • 8/17/2019 Glass Structures

    2/53

    CTU in Prague

    22

    Objectives of the lectureObjectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

    • Introduction• Experimental research

    • Elements subjected to bendings

    • Lateral torsional buckling

    • Design methods

  • 8/17/2019 Glass Structures

    3/53

    CTU in Prague

    3

    Museum of glass - Kingwindford, United Kingdom

    • structure of extension: length 11,0 m

    • distance 1,1 m

    • height of column 3,5 m, depth 200 mm

    • span of beam 5,7 m, depth 300 mm

    • columns, beams – laminated

    glass• snow load 0,75kN/m2

    • roof, walls: insulated glass

    units

    Composition of insulated units:

    • outer layer 10 mm float colourlesssolar-control glass

    • cavity between the panels 10 mm

    • inner layer: 2 x 6 mm of  toughenedsafety glass with striped pattern of

    baked-on ceramic ink

    Practical examplesObjectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    4/53

    CTU in Prague

    4

    Connection between beam and

    column

    •  three layered glass 3 x 10 mm

    •  bonded on site with casting resin – total thickness 32mm

    Practical examples

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    5/53

    CTU in Prague

    5

    Eating room – family house in

    London, UKBackdoor to the family

    house - Germany

    Practical examples

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    6/53

    CTU in Prague

    6

    Canopies – Nijmegen, Netherlands 1999

    Cross section

    1 – clamped steel column HEB300

    2 – horizontal steel beam HEA300

    3 – continuous glass beam – 3x10mm, float glass

    4 – glass roof panels – 2x 10mm,

    float glass

    5 – vertical glass panel in gutter

    Practical examples

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    7/53

    CTU in Prague

    7

    Glass canopy at the underground station – Tokyo, Japan

    1996

    • built-up beam

    • size 10,6 x 4,8 m

    • height 4,8 m

    • length of cantilever 9 m• beam composed from

    triangular fins 

    Practical examples

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    8/53

    CTU in Prague

    8

    Glass canopy at the underground station – Tokyo, Japan

    1996

    • panes with length 1,9 – 2,5 m

    • toughened glass 2x 15 mm

    • triangular fins (laminated glass 2x19 mm + acryl pane 40mm)

    • acryl panes sufficient capacity incase of earthquake

    • from 1 at top to 4 fins at supportwith respect to the bending

    moment

    • bolted connection

    Practical examples

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    9/53

    CTU in Prague

    9

    • span of main beams 14m indistance 2,7m; beams

    composed of 13 fins withlength 4,5m – outer fins 2x

    12mm, inner 10+19+10mm

    • secondary beams in adistance 2,2m

    primary

    beams

    secondarybeams

    Glass roof of interior courtyard, commercial building in

    Munich, Germany 2003

    Practical examples

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    10/53

    CTU in Prague

    10

    ELEMENTS SUBJETED TO BENDING

    Glass roof of interior courtyard, commercial building in

    Munich, Germany 2003

    • secondary beams 2x 10mm, heatstrengthened glass

    • bolted connection subjected by the

    shear and bearing• roof – double insulated units (2,7 x

    2,3m)

    • high degree of precision – assembly

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    11/53

    CTU in Prague

    11

    glass roof above interior

    courtyard 24 x 30m

    Glass roof for refectory at the TU Dresden, Germany 2006

    Practical examples

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    12/53

    CTU in Prague

    12

    Glass roof for refectory at the TU Dresden, 2006

    • span of the principal beams5,75m

    • secondary beams indistance of 1,45m

    • beams depth 350mm, 4x12mm fully tempered glass

    installation of secondary beams

     preparation for installing the roof

     panels – placing the sealant strips

    Practical examples

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    13/53

    CTU in Prague

    13

    ELEMENTS SUBJECTED TO BENDING

    Glass roof for refectory at the TU Dresden, 2006

    TESTS 1:1• position of loads – joints,

    eccentricity 120mm

    • load-bearing capacity

    • residual capacity of beams

    • cyclic load, long term load

    • deflection

    Maximum breaking load 4,5

    times higher than design load

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    14/53

    CTU in Prague

    14

    Glass roof for university of Glasgow, 2002

    • triangular shape of glass roof

    • maximum span 15,5m = 4x 3,9m,beams distance of 1,5m

    • tempered glass 2x 19mm, friction grip

    connection

    Practical examples

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    15/53

    CTU in Prague

    15

    Glass roof for dry dock – Bristol, 2005

    • historic passenger liner built from iron  special dry dock to protect ship hull

    • plates 2x 10mm heat-strengthened glass with size 4,35 x 1,5m – at waterline

    • area 1000m2, 50mm of water weighing about 50 t – illusion of the dock

    • the ship expand, contract and bend sideways in response to shifts in

    temperature  junction between the waterline plate and the ship had to

    accommodate movements  flexible collar

    Practical examples

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    16/53

    CTU in Prague

    16

    • beams: 3x 10mm heat-strengthened laminated glass, supportedon steel beams of trapezoidal cross-section, propped by struts

    • accidental design case – dropping of a hammer from 15m, personfailing from deck, occasional foot traffic on the glass for cleaning 

    Practical examples

    Glass roof for dry dock – Bristol, 2005

  • 8/17/2019 Glass Structures

    17/53

    CTU in Prague

    17

    Experimental research

    LTB

    Experiments

    LTB of 3m laminated beam Belis, 2005 (UGent)

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    18/53

    CTU in Prague

    18

    LTB

    Experiments

    LTB of 3m laminated beam Belis, 2005 (UGent)

    Experimental researchObjectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    19/53

    CTU in Prague

    19

    LTB

    Experiments

    LTB of 3m laminated beam Belis, 2005 (UGent)

    Experimental researchObjectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    20/53

    CTU in Prague

    20

    LTB

    Experiments

    LTB of 3m laminated beam

    Belis, 2005 (UGent)

    Experimental researchObjectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    21/53

    CTU in Prague

    20

    LTB

    Experiments

    LTB of 3m laminated beam

    Belis, 2005 (UGent)

    Experimental researchObjectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    22/53

    CTU in Prague

    21

    GLASS BEAMS 

    • horizontal elements• simply supported, cantilevering

    • maximum length: float glass - 6,0 m

    laminated glass - 4,5 m

    tempered glass - 3,9 m

    GLASS FINS • vertical or sloping beams used to support facades, wind load

    • simple supported or fully cantilevering• longer than L  8m are usually top-hang shorter are bottom supported

    DESIGN METHOD

    • design according to the elastic stability

    • finite elements methods

    • tests 1:1

    • how the overall structure will behave

    • how the structure will behave after one or more glass elements

    have failed

    • safety of people at failure - injury by falling glass

    Elements subjected to bendingObjectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    23/53

    CTU in Prague

    22

    Ultimate limit state 

    simplified check of lateral and torsional stability based on

    M max   maximum unfactored destabilising bending moment

    E Young's modulus of elasticity

    t thickness of the glass pane

    υ  Poisson's ratio

    • it is possible to use for checking of buckling for glass fin with free

    edges (without intermediate buckling restraint)

     

    16 

    Et M M 

    3

    max Ed 

    Elements subjected to bendingObjectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    24/53

    CTU in Prague

    23

    LINEAR THEORY OF ELASTICITY

    • perfect elastic beam without any imperfections with rectangular cross-section is subjected to an increasing load – bending moment M 

    • instability (combination of lateral deflection and twisting) occurs

    suddenly when a critical load is reached M = MCR, where critical

    torsional buckling moment is

    • for rectangular cross-section including warping torsion

    t y CR    GI EI L

    M     

     

     

     

     

    t 2 

    w 2 

    t y CR  GI L

    EI 

    1GI EI LM 

        

    Lateral torsional buckling

    simplified formula without

    warping torsion - conservative

    simply supported beam loaded

    by constant bending moment

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    25/53

    CTU in Prague

    23

    LINEAR THEORY OF ELASTICITY

    • perfect elastic beam without any imperfections with rectangular cross-section is subjected to an increasing load – bending moment M 

    • instability (combination of lateral deflection and twisting) occurs

    suddenly when a critical load is reached M = MCR, where critical

    torsional buckling moment is

    • for rectangular cross-section including warping torsion

    t y CR    GI EI L

    M     

     

     

     

     

    t 2 

    w 2 

    t y CR  GI L

    EI 

    1GI EI LM 

        

    Lateral torsional buckling

    bending stiffness

    simplified formula without

    warping torsion - conservative

    simply supported beam loaded

    by constant bending moment

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    26/53

    CTU in Prague

    23

    LINEAR THEORY OF ELASTICITY

    • perfect elastic beam without any imperfections with rectangular cross-section is subjected to an increasing load – bending moment M 

    • instability (combination of lateral deflection and twisting) occurs

    suddenly when a critical load is reached M = MCR, where critical

    torsional buckling moment is

    • for rectangular cross-section including warping torsion

    t y CR    GI EI L

    M     

     

     

     

     

    t 2 

    w 2 

    t y CR  GI L

    EI 

    1GI EI LM 

        

    Lateral torsional buckling

    torsional stiffness simplified formula withoutwarping torsion - conservative

    simply supported beam loaded

    by constant bending moment

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    27/53

    CTU in Prague

    23

    LINEAR THEORY OF ELASTICITY

    • perfect elastic beam without any imperfections with rectangular cross-section is subjected to an increasing load – bending moment M 

    • instability (combination of lateral deflection and twisting) occurs

    suddenly when a critical load is reached M = MCR, where critical

    torsional buckling moment is

    • for rectangular cross-section including warping torsion

    t y CR    GI EI L

    M     

     

     

     

     

    t 2 

    w 2 

    t y CR  GI L

    EI 

    1GI EI LM 

        

    Lateral torsional buckling

    simplified formula without

    warping torsion - conservative

    simply supported beam loaded

    by constant bending moment

    critical length

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    28/53

    CTU in Prague

    24

    Critical torsional buckling moment depends on:

    • different moment distribution over the beam

    • boundary conditions

    • distance between the centre of gravity and the point where the

    load is applied

    Lateral torsional buckling

    Influence of following aspects on behaviour of glass

    beams must be taken into account:

    • glass thickness

    • initial deformation – float x tempered glass

    • laminated glass: shear modulus of PVB foil  temperature

    • load duration• damage of glass surface

    • tensile strength of glass

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    29/53

    CTU in Prague

    25

    RESEARCH BASED ON EXPERIMENTAL TESTS 

    EPFL, Lausanne, Switzerland

    • simple supported beam, concentrated load at mid-span

    • stress distribution is nonlinear over the beam height

    • lateral torsional buckling resistance is not limited by the critical

    torsional buckling moment

    • tensile strength of glass is determinant for the buckling resistance

    • influence of elastic interlayer (PVB foil) on the buckling strength –

    temperature, load duration, thickness of the glass as well as

    thickness of the interlayer

    Lateral torsional bucklingObjectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    30/53

    CTU in Prague

    26

    A) Monolithic glass – Analytical model

    Critical LTB

    Moment

    Lateral torsional buckling

      a

     z 

    a z 

    CR   z C 

     EI 

     LGI  z C 

     L

     EI C  M  22

    2

    2

    22

    2

    1

     

     

    • C i , z a …take into account different boundary conditions, different bending

    moment, distance between the centre of gravity and the load point

    • LTB formulas for steel are valid, e.g. EC3

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    31/53

    CTU in Prague

    27

    B) Laminated glass – Analytical model

    • No homogene, isotropic material

    • Shear deformation due to lateral

    bending & torsion

    Belis, 2005 (UGent)Critical LTB

    Moment

    Lateral torsional buckling

     

     

      a

    eff   z  g 

    eff  t 

    a

    eff   z  g 

    CR   z C  I  E 

     LGI  z C 

     L

     I  E C  M  22

    2

    2

    22

    2

     

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    32/53

    CTU in Prague

    27

    B) Laminated glass – Analytical model

    • No homogene, isotropic material

    • Shear deformation due to lateral

    bending & torsion

    Belis, 2005 (UGent)Critical LTB

    Moment

    Lateral torsional buckling

     

     

      a

    eff   z  g 

    eff  t 

    a

    eff   z  g 

    CR   z C  I  E 

     LGI  z C 

     L

     I  E C  M  22

    2

    2

    22

    2

     

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    33/53

    CTU in Prague

    28

    • it is possible to use same formula for MCR

    • lateral bending stiffness EIz and the torsional stiffness GIt are replaced by an

    equivalent stiffness (EgIz)eff  a (GIt)eff  (determined by sandwich theory )

    Effective bending stiffness (EgIz)eff

    B) Laminated glass – Analytical model

    Lateral torsional buckling

     

      

     

      

      2

    2

    1

    1 s g eff   z  g 

      I  E  I  E    ht t 

    t t t 

    t t  I 

     g  g 

     g  g 

    int 

     g  g 

     s

    21

    21

    2

    21

    24

     

      

     

    Luible

    Wölfel

     slower  , z  g eff   z  g   B I  E  I  E   

    2

    2121

    2

    int  g  g 

    int  g 

    int 

     g 

     g 

     s

    t t Wt 

     L

    t t 

    G

     E 

     E  B

     

      

     

    α, β – same formulas as for compression member

    Objectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    34/53

    CTU in Prague

    29

    Effective torsional stiffness (GIt)eff

    y

    x

    z

    t1 t

    2tPVB

    h

    PVB

    Glas

    Glas

    MT B

    tg1  tint  tg2 

    B) Laminated glass – Analytical model

    Luible

    Scarpino

    compt  glasst  glasst eff  t 

      GI GI GI GI      21

     

     

     

     

    2

    21h

    htanh

    GI GI   scompt   

     

    21

    21

     g  g int 

     g  g int 

    t t t 

    t t 

    G

    G

     

      f  GI GI  t eff  t   

     

     

     

     

    22

    2223

    6

    3646

    W G

    Gt t t 

    t t t t W G

    Gt t 

     f  

     g 

    int int  g  g 

     g int  g int 

     g 

    int int  g 

    Lateral torsional bucklingObjectives

    Introduction

    Experimental

    research

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    35/53

    CTU in Prague

    30

    Interlayer shear stiffness - Gint 

    Lateral torsional buckling

    • Influence of the shear modulus GPVB on the critical lateral torsional bucklingload Mcr,LT

    • The curves ratio Mcr,LT / Mcr,LT, without PVB

    Objectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    36/53

    CTU in Prague

    31

    • calculation of structure with initial imperfections

    • too complicated  unsuitable for design of beams

    C) Non-linear buckling analysis – second order calculation

    Lateral torsional buckling

    B) Laminated glass – Analytical model

    • Stress problem is not solved analytically

    Objectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    37/53

    CTU in Prague

    32

    D) Laminated glass – Numerical model

    Luible, 2004 (EPFL)

    x

    yz

     Axis ofsymmetry

    glass

    u

    vw

    v 0

    fork

    support

    φx

    φy

    φz

    Bonding condition:

    u=0, φy=φz=0

    F/2

    Lateral torsional bucklingObjectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    38/53

    CTU in Prague

    32

    D) Laminated glass – Numerical model

    Luible, 2004 (EPFL)

    x

    yz

     Axis ofsymmetry

    glass

    u

    vw

    v 0

    fork

    support

    φx

    φy

    φz

    Bonding condition:

    u=0, φy=φz=0

    F/2

    tPVB= 0

    = 0t1

    PVB (solid element)elastic or viscoelastic

    Equal nodes glass(shell element)

    with offset t/2

    Lateral torsional bucklingObjectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    39/53

    CTU in Prague

    32

    D) Laminated glass – Numerical model

    Luible, 2004 (EPFL)

    x

    yz

     Axis ofsymmetry

    glass

    u

    vw

    v 0

    fork

    support

    φx

    φy

    φz

    Bonding condition:

    u=0, φy=φz=0

    F/2

    tPVB= 0

    = 0t1

    PVB (solid element)elastic or viscoelastic

    Equal nodes glass(shell element)

    with offset t/2

    tPVB   = 0

    11

    740

    44My

    5

    9

    coupling

    PVB

    glassBeam element

    Lateral torsional bucklingObjectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods

  • 8/17/2019 Glass Structures

    40/53

    CTU in Prague

    33

    Only existing code:

     Australian Standard AS 1288: Glass in Buildings – selection andinstallation

     Appendix C: Buckling of glass fins

    Simple approach

    Better design approaches:

    • Non linear numerical model inlculding all imperfections

    • Buckling curves

    Design methods

    71 ,

     M  M    cr  Ed  

    Objectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods 

  • 8/17/2019 Glass Structures

    41/53

    CTU in Prague

    34

    determination of the lateral and torsional buckling

    resistance

    1) an appropriate FE model: tensile stress on glass surfaces can becompared to tensile strength - complicated

    2) buckling curves 

    • slenderness ratio depends on tensile strength of the glass

    where

    σ  p,t   - tensile strength of glass,

    σ CR  - critical lateral torsional buckling stress,

    M cr - elastic critical moment

    hM 

    I 2 

    CR 

    y t , p

    CR 

    t , p    

     

        

    Design methodsObjectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods 

  • 8/17/2019 Glass Structures

    42/53

    CTU in Prague

    35

    Design – buckling curve

    • Slenderness

    • Reduction factor LTB

    • Bending strength taking into

    account LTB

    • Verification

     D  

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0.0 0.5 1.0 1.5 2.0 2.5

     D coefficient d’élancement

    au déversement

    ,

    ,

     p t  D

    cr D

      

     

    ,

     y D

     p t 

       

     

    slenderness 

    Design methods

    h M 

     I 

    CR

     yt  , p

    CR

    t  , p

     LT 

     

     

      

    2

     yt  , p LT 

     y

    t  , p LT  Rd    W  I 

     M               2

     LT  LT    f         

     Ed  Rd    M  M   

     LT   

     LT 

      

     LT  

     LT  

    Objectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods 

  • 8/17/2019 Glass Structures

    43/53

    CTU in Prague

    35

    Design – buckling curve

    • Slenderness

    • Reduction factor LTB

    • Bending strength taking into

    account LTB

    • Verification

     D  

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0.0 0.5 1.0 1.5 2.0 2.5

     D coefficient d’élancement

    au déversement

    ,

    ,

     p t  D

    cr D

      

     

    ,

     y D

     p t 

       

     

    slenderness 

    Design methods

    h M 

     I 

    CR

     yt  , p

    CR

    t  , p

     LT 

     

     

      

    2

     yt  , p LT 

     y

    t  , p LT  Rd    W  I 

     M               2

     LT  LT    f         

     Ed  Rd    M  M   

     LT   

     LT 

      

     LT  

     LT  

    Objectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods 

  • 8/17/2019 Glass Structures

    44/53

    CTU in Prague

    35

    Design – buckling curve

    • Slenderness

    • Reduction factor LTB

    • Bending strength taking into

    account LTB

    • Verification

     D  

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0.0 0.5 1.0 1.5 2.0 2.5

     D coefficient d’élancement

    au déversement

    ,

    ,

     p t  D

    cr D

      

     

    ,

     y D

     p t 

       

     

    slenderness 

    LTB buckling curves need to

    be established for glass

    Design methods

    h M 

     I 

    CR

     yt  , p

    CR

    t  , p

     LT 

     

     

      

    2

     yt  , p LT 

     y

    t  , p LT  Rd    W  I 

     M               2

     LT  LT    f         

     Ed  Rd    M  M   

     LT   

     LT 

      

     LT  

     LT  

    Objectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods 

  • 8/17/2019 Glass Structures

    45/53

    CTU in Prague

    36

    Design – buckling curve

    Design methods

    slenderness  LT  

    • for different types of loading, glass geometries, shear modulus of PVB

    interlayer and initial deformations it is possible derived different buckling

    curves  reduction factor  

    • buckling curve (c) from Eurocode may be used as a conservative approach

    Objectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods 

  • 8/17/2019 Glass Structures

    46/53

    CTU in Prague

    37

    Australian standard AS 1288 - 1994: apendix H 

    1. Beams with intermediate buckling restraints

    where M CR   critical elastic buckling moment

    g 1  constant from table

    Lay   distance between effectively rigid buckling restraints

    (EI)y   effective rigidity for bending about the minor axis

    GJ effective torsional rigidity

    J torsional moment of inertia

    for rectangular cross-section

    d, b depth and breadth of the beam

      501   , yay

    CR   GJ  EI  L g 

     M     

      

     

     

      

     

    b ,

    db J    6301

    3

    3

    Design methodsObjectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods 

  • 8/17/2019 Glass Structures

    47/53

    CTU in Prague

    38

    intermediate buckling

    restraintside view of beam 

    top view of beam 

    M

    z

    Lay

    M

    z

    y

    y

    x

    x

    free restraint condition fixed restraint condition

    1,0 3,1 6,3

    0,5 4,1 8,20,0 5,5 11,1

    -0,5 7,3 14,0

    -1,0 8,0 14,0

    Coefficient g1 Moment parameter

    β = M1 / M2

    Design methodsObjectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods 

  • 8/17/2019 Glass Structures

    48/53

    CTU in Prague

    39

    Australian standard AS 1288 - 1994: apendix H 

    2. Beams without intermediate buckling restraint

    where M CR   critical elastic buckling moment

    g 2 , g 3  constants from table

    Lay   distance between effectively rigid buckling restrains

    (span of beam)

    (EI)y   effective rigidity for bending about the minor axis

    GJ effective torsional rigidity

    y h  height above centroid of the point of load application 

      5 ,0 y ay h35 ,0 y ay 

    2 CR    GJ EI L / y g 1GJ EI L

    g M   

     

      

     

    Design methodsObjectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods 

  • 8/17/2019 Glass Structures

    49/53

    CTU in Prague

    40

    Type of loading Bending moment MCondition of endrestraint againstrotation about y-y

    Coefficient

    g2

    g3

    free

    fixed

    3,6

    6,1

    1,4

    1,8

    free

    fixed

    4,1

    5,4

    4,9

    5,2

    free

    fixed

    4,2

    6,7

    1,7

    2,6

    free

    fixed

    5,3

    6,5

    4,5

    5,3

    free

    fixed

    3,3

    -

    1,3

    -

    Lay 8 

    wL2 ay 

    Lay 12 

    wL2 ay 

    4

    FLay 

    FLay 

    FLay 

    Lay

    Lay

    Lay

    F/2  F/2 

    Design methodsObjectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods 

  • 8/17/2019 Glass Structures

    50/53

    CTU in Prague

    41

    Australian standard AS 1288 - 1994: apendix H 

    3. Continuously restrained beams on tension side

    where M CR   critical elastic buckling moment

    Lay   distance between points of effective rigid rotational

    restraints

    (EI)y   effective rigidity for bending about the minor axis

    GJ effective torsional rigidity

    d depth of beamy h  location above the neutral axis of the loading point,

     positive or negative values

    y 0   distance of the restraints from neutral axis

    h0 

    2 0 

    2 a

    CR y y 2 

    GJ y 4

    d EI L

     

    Design methodsObjectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods 

  • 8/17/2019 Glass Structures

    51/53

    CTU in Prague

    42

    Serviceability limit state

    • deflection, vibration

    • simple rule for natural frequency 

    where d midspan deflection of beam or tip deflection of cantilever [mm]f first natural frequency [Hz] - foot traffic and wind

    Float glass – low tension stress levels  usually deflection is not

    problem

    Laminated or tempered glass – higher stress levels  important

    check of deflection

    Hz 5 d 

    16 f   

    Design methodsObjectives

    Introduction

    Experimentalresearch

    Elements

    subjected to

    bending

    Lateral torsional

    buckling

    Design methods 

  • 8/17/2019 Glass Structures

    52/53

    CTU in Prague

    43

    References

    Educational pack of COSTActin TU0905 „Structural Glass - Novel design methods and next generation

    products“ 

    HALDIMANN, Matthias; LUIBLE, Andreas; OVEREND, Mauro.Structural Use of Glass. Structural Engineering Documents 10 , IABSE, Zürich:2008. ISBN 978-3-85748-

    119-2

    THE INSTITUTION OF STRUCTURAL ENGINEERS

    Structural use of glass in buildings, London: The institution of Structural Engineers, 1999.

    KASPER, Ruth.

    Tragverhalten von Glasträgern, RWTH Aachen, Aachen: Shaker Verlag, 2005.

     Australian Standard AS 1288.

    Glass in Buildings – Selection and installation, Appendix C: Basis for determination of fin design to prevent

    buckling, 2006.

     AMADIO, Claudio; BEDON, Chiara.

    Buckling of laminated glass elements in out-of-plane bending, Engineering Structures 32 (2010), 3780–

    3788.

    BELIS, Jan; MOCIBOB, Danijel; LUIBLE, Andreas; VANDEBROEK, Marc.

    On the size and shape of initial out-of-plane curvatures in structural glass components, Construction and

    Building Materials 25 (2011), 2700–2712.

    LUIBLE, A.

    Stabilität von Tragelementen aus Glas. Dissertation EPFL thèse 3014. Lausanne: 2004.

    LINDNER, J.; HOLBERNDT, T.

    Zum Nachweis von stabilitätsgefährdeten Glasträgern unter Biegebeanspruchung. Stahlbau 75(6) (2006),

    488-498.

  • 8/17/2019 Glass Structures

    53/53

    CTU in Prague

    44

    Thank you

    for your kind attention

    53