get-1008l distribution data book

Upload: hramirezp

Post on 07-Aug-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/20/2019 GET-1008L Distribution Data Book

    1/35lo·n

    nOMI

    DISTRIBUTION DATA BOOK

    A col l

    ectio

    n of fundamental data pe rtain ing to the elements o f  and the

    loads on distr ibuti on syste

    ms

    In working on problems involving distribution

    circuits and equipmenl   our engineers often lind

    il convenient to refer to basic data that have been

    compiled from various sources

    by

    our Power

    Distribution Systems Engineering Operation.

    Since this material

    is

    equally useful to distribution

    engineers in the electric utility industry  we are

    printing it under one cover and presenting it as

    a Distribution Data Book.

    GENER L   ELECTRIC

    GET l  

    P n

    led

    in u

  • 8/20/2019 GET-1008L Distribution Data Book

    2/35

    TABLE

    OF CONTENTS

    SECTION

    PAGE

    I

    Circuit Characteristics . . . . . . . . . . . . . . . . 5

    A. Resistance

    and

    Reactance

    of

    Overhead Lines 5

    B Resistance and Reactance of Cables. . . . . 5

    C

    Underground Cables 5

    D Aeri al Cables. . . . . . . . . . . . . . . . . 11

    E Tran

    sformer

    Characte ri stics .  

    11

    II Underground

    Distr

    i

    bu t

    ion Systems

    fo

    r

    Residential Areas . . . . . . . . . .   13

    A Primary System 13

    B Secondary System . . . 3

    C

    Transformers 13

    O. Separable Insulated

    Connector

    ~ u

    ~ 14

    1

    Modules vailable

    14

    2

    Selection

    . • . . . 14

    II I   Transformer Connections • 15

    A Transformer Polarity 15

    B Single-phase Paralleling . . . . . . . . . . . . . 15

    C Small Three-phase Step-down Banks 15

    1 Delta-delta Banks

    . . . . . . . . . . .

    . . 15

    2 Wye-delta Banks 16

    3. Delta·wye Banks . 16

    4 Open-wye Open·del

    ta

    Banks 16

    5 Open-delta Open-delta Banks .   16

    6 Wye-wye Banks

    . 16

    7

    Caution

    . 16

    D

    Autot

    ransformers .

     •

    .

    16

    IV. Sh

    or t

    -circuit Calculations .   17

    A Line Impeda nce . .   17

    B Transformer Imp edance .   . . 17

    C Impedance

    of

    Lines

    wit

    h Different

    Vol

    tages.

    . . . . . . . . . . . . . . . . . . . . 17

    D. Effect of Offset. . . . . . . . . . . . . . . . . . 17

    E Per Unit 18

    F. Allowable Short -circuit Currents for

    Insulated Cond uctors . 19

    1

    Temperature Limits 19

    2 Conductor Heating. . . . . . . 19

    3. Characteristics of Short Circuits 19

    4 Application Procedure

    20

    5 Exa

    mples of Data

    Use . . . . . . .

    . .

    20

    V. Voltage Calcu l

    ations

    . 22

    A Voltage Drop .   22

    B

    Tables for Est imating Vo ltage

    Drop.

    . . . . 22

    1 Three·phase Problems . . . . . . .

    22

    2

    Single-phase Problems

    . . . . . . . . . .

    23

    VI. Voltage Regulating Equipment . . . . . . . 26

    A Selection of Regulator .   26

    1

    Type

    . . . . . . . . . . . . . . .

    26

    2 Location and Size . . .

    26

    3. Choice for Three·phase Circuits 28

    SECTION

    P GE

    B Regulator Control Settings . . . .   28

    1

    Regulator Bandwidth

    28

    2 Time Delay . . . . . . . . . . . . . . . . . 30

    3

    Voltage Level 30

    4 Line-drop Compensator Setting

    Chart . . . . . . . . . . . . . . . . . . . 30

    C Light Flicker. . . . . . . . . . . . . . . . . . . . 31

    D. Lamp Operating Voltage. . . . . . . . . . . .

    32

    E

    R

    educ

    tion

    of

    Light Flicker by

    Banking Secondaries. . . . . . . . . . . . . 32

    VII. Application of Shunt Cap

    ac

    it

    ors

    . . .

    33

    A Basic Considerations in Applying

    Shunt Capacitors .   . 33

    1 Released Capacity 33

    2 Voltage Rise . . . . . . . . . . . . . 34

    3. Reduction

    of

    Losses . . . . . . . . .

    . .

    34

    4 Protection 36

    5

    Additional Benefits . . . .

      36

    VII I Lightning Protec tion

    of

    Di stribution

    Systems 39

    A. Primary Dist r

    ibution

    Systems. . . . . . . . . 39

    1

    Impulse Withstand

    Le

    vel to

    be Protected 39

    2 Selection

    of Arrester

    . . . . . . . 39

    3. Effective Location of Arresters 41

    4 Special Applications . . . . . . . . . . . 42

    5

    Lightning Protection of

    UD

    Systems . 43

    6

    Overhead Line Protection

    . .

    43

    B Second ary Distribution Systems. . . . . . . 44

    IX

    Overcurrent

    Protection of Distribution

    Systems . . . . . . . . . . . . . . .  

    46

    A Primary Circuits . 46

    1 Calculating Short-circuit Currents . . 46

    2 Selection of Overcurrenr Protective

    Equipment

    . .

    . . 47

    3 Coordination Requirements

    . . . . . . 49

    B.

    Seconda

    ry

    Circuits.

    . . . . . . . . . . . . .

    . . 50

    X. System Design - Loading Data .   51

    A. Estimating L

    oad

    51

    B L

    oad Factor

    51

    C

    Coincidence of Diversity Factor . . . . . . . 52

    D. Distribution Transformer Size 52

    E

    Th

    ermal Loading of

    Un

    derground

    Cables.. 55

    F Design of the Secondary System 55

    G Monitor ing Transformer Loading 56

    XI. Losses and Economic Data . . . . . . . . . . . . 57

    A Line Loss . . . . . . . . . . . . . . . . . . . . . . 57

    B.

    Tr

    ansforme r Losses . . . . . .   . 57

    C. Evaluation of Energy Losses .   . .. .

    57

    D Increased Revenue from Increased

    Voltage . . . . . . . . 59

    E Pr

    esent Va

    lue

    of 1.00 59

  • 8/20/2019 GET-1008L Distribution Data Book

    3/35

    T BLES

    P

    Table 1. Physical and e lectrical characteristics of open

    -w

    ire distribution line conductors . . . . . . .

    Table 2.

    DC

    resis

    tance

    and correction factors for

    AC

    resistance

    . .

    Table 3. Conductor sizes, insulation th ickness and jacket thickness

    Part A. Crosslinked -polyethylene-i nsulated cab le

    s .

    . . . . . . . . . . . • . . . . . . . • . . . .

    Part B. Rubber-insulated

    cables.

    . . . • . _ . _ .• . • • _ . . . • . . . . .

    Part C. Paper -insulated cables .

      •

    .

    . .

    .   . .

      •

    _ . _

    . .

    Ta

    bl

    e 4.

    Approximate

    distribu tion

    transformer

    imped

    ances.

    . . . . . . . . . . . . . . . . . . • . . . . • . . .

    . .

    Table 5. Full-load curr

    ent

    of

    transformers in amperes • •  

    Table

    6.

    Typical data fo r single-

    conductor

    concentric neutral cable, crosslinked-

    po l

    yethylene

    -insu la

    ted . .

      .

    Table 7. Typical data for si ngle-phase trip lexed 600.., service cable, crosslinked-

    jX)lyethylene-insulated . . .   _ . . . . . . . . .

    Table 8 . Trans

    former

    imba lance .

    Tab le 9. Circuit breakers, circu it reclosers, dist ri bution expulsion ar resters and fuses

    Table 10. Max imum short-circuit temper

    at

    ures for types of insul

    at

    ion. . . . •

    Table 11. Natu ral si nes , tangents and angl es corresponding to cosine values of 1.

    00

    to

    0.00

    . . . . . . . .

    . .

    Table 12. Voltage drops

    of

    open -wi re lines in volts per 100,000 ampere feet .   • . _ .

    Table 13. Voltage drops

    of

    underground cables in volts per 100,000 ampere feet . . . . . . . . . . . . . . .

    . .

    Table 14. Function

    perfo

    rmed by regulators and capacitors . .   •

    Table 15. l oad bonus regulation .

    . .

    .

    Table 16. Power-

    factor

    co rrection fa

    ctors.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . .

    Table 17. Applicat ion guide for

    group

    -

    fu

    sing ca

    pacitor

    banks wit h General Electric universal

    ca

    ble-

    type

    and oil cut

    out

    fuse link ratings N  ,

    OI L

      , K , and

    T types

    (G

    ro tmd ed-wye

    and

    de lta co nnections; 25-,

    50

    - and 100-kVar units)

    . .

    Table 18 . Application guide fo r

    group

    -fusing

    capacitor

    banks with General Electr ic universal

    cab le-type and oil cutou t fuse link ratings N , O i l , K , and T types

    (Floating-wye

    con

    n

    ection;

    25-,

    50

    - and 100-kVar units) _

    Table 19. Applicat ion gu ide for

    group

    -fusing capacitor

    banks

    wit h General Electric universal

    cable-

    type

    and o  l cu tout fuse link

    rat

    in

    gs

    N , Oil , K , and T  types

    (Grounded-wye and delta

    connect

    ions; 150-,2

    00

    -, and

    300

    -kVar un its) .

    Table 20. Application guide for group-fu sing capacitor banks with General

    El

    ec tric universal

    ca ble-ty pe and o il

    cutout

    fu se link r

    at

    in

    gs N , O IL

      ,

    UK ,

    and T ty pes

    (Float ing-wye connections; 150

    -,

    20 0-, and 300-kVar units) . . . . . . . . . . . . . . . . . .

    . .

    Table 21. Bas ic impulse insula

    tion

    leve ls (B lls) and withstand tests .

    Table 22. Arrester ratings

    vs

    maximum overvoltages .   .

    Table 23. P

    erformance

    characte

    ri

    stics

    of

    General Electric

    distribution

    arresters

    Table 24.

    Di

    electri c tests for dry-

    type

    transformers and dry -

    type

    sh

    unt

    reactors _• . . • . _ . . _ . .

    Table 25. UD transformer-arreste r protection .

    .   _• • . . • _ . . _

    Table 26. T ime-current curves for HR rec losers

    . .

    Table 27. Distri

    bution

    transformer losses .

    Table 28. Distribution transformer losses

    at othe

    r than rated voltages . . .  

    Table 29. Losses for distribution transformers operating

    at other

    than rated voltages .  

    Table 30. Prese

    nt

    values (Vn) of 1 .

    00

    in vestments

    to

    be made in years (n) from now, based

    on certain rates

    of

    interest (i)

    . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . .

  • 8/20/2019 GET-1008L Distribution Data Book

    4/35

    I - CIRCUIT CHARACTERISTICS

    A.

    Res istance and Reactance

    of

    Overhead Lines

    Resistance depends primarily

    on

    the

    conductor

    size and

    type

    of

    conductor

    used. Reactance depends not

    only

    on the

    conductor size but also on the equivalent delta spacing be tween

    the conductors. Accordingly, Table 1 gives the physical and

    electrical characteristics for commonly used overhead conductor

    sizes and types of conductors.

    The

    conductor

    reactance may be separated into

    two

    parts -

    the internal reactance

    of

    the condu

    ctor

    including the area

    around the conductor of one foot radius and the external

    reactance

    of

    the

    conductor

    beyond the one· foot radius. Hence,

    the total reactance X) per

    conductor is

    equal

    to

    the sum of the

    two parts, or:

    X • Xl X

    2

    in

    ohms

    per

    1000

    feet

    Xl

    ;: reactance of conductor at one foot

    X

    2

    = reactance of

    conductor

    beyond one foot

    Table 1 gives the values for

    Xl

    for the various

    conductor

    types and sizes. Fig.

    1

    gives the va lues of

    X

    2

    for various

    equivalent spacings between conductors as may be used in

    practice.

    For ordinary single· phase circuits. the equivalent spacing is

    the distance between conductors. For ordinary three-phase

    circuits, the equivalent spacing

    is

    expressed by

    the

    formula:

    ~

    x

    B

    x C where A, B and C are the di stances, center·to·

    center.

    of

    the con ductors.

    as

    follows:

    The reactances of three-conductor or triplexed cables may be

    obtained by usi ng t he upper scales of thickness of insulation and

    jacket in Fig. 3. For cables not in direct contact with each

    other, use

    the bott

    o m scale (abscissa)

    of

    Fig. 3.

    Example showing me

    th

    o of us ing Tables)

    Given: A triplexed

    50

    0

    MCM.

    aluminum, 15 kV grounded

    neutral , shielded and jacketed cross-l inked polye

    th

    ylene cable,

    9OC.

    From Table 2. D-C resistance at 25C

    =

    0.03538 ohms

    per

    1000

    228

    90

    feet. At 9OC, the resistance would

    be 0.03538

    x 253 ..

    0.04447 ohms per

    1000

    feet. The a·c correction factor

    is

    1.

    06,

    50 the a·c resistanct at 9OC   0.0447 x 1.06 =

    0.04714 ohms

    per

    1000 feet.

    From Table 3, Part A. The insulation thickness

    is

    175 mils. The

    jacket thickness is 80 mi ls. An additional 100 mils shou ld be

    added for semicon layers and shielding. (See

    pa

    ragraph C. w

    hi

    ch

    follows.)

    The

    total thickness of insulation and sheath system

    is

    1

    75

    80 100  

    355

    m

     

    s.

    From Fig.

    3.

    At the

    in

    tersection of 500

    MCM

    and

    355

    mils

    (interpole between 350 and 400 mils), read 0.036 ohms per

    1000 feet.

    Underground Cables

    To

    assist

    in

    obtaining the spacings. a few typical arrange. C.

    ments wit h their equivalent spacings are shown in F

    ig.

    2. The

    arrangements used in practice wi ll vary from system to system,

    For three·conductor cables, the insulation thicknesses

    ordinar

    ily

    used can be obtained from Table 3, Parts A,

    Band C,

    and then the reactance can be

    obta

    ined directly from Fi

    g.

    3 at

    the intersection

    of

    the cable si

    ze

    and insulation thickness lines.

    On th ree-conductor cables an i

    dentify

    ing

    tape is

    frequently

    applied over the insulation of t

    he

    individual conductors. Th is

    tape

    usually adds approximately 30 mils to the diameter of the

    ooncluctor and consequently 15 mils snould

    be

    added to the

    insulation thickness to find the correct value of reactance. For

    inner semi·con tapes,

    outer

    semi·co n tapes and shield add 100

    mils when this shielding system

    is

    used. Metallic tape insulation

    shields generally add 10 to 30 mils to cable diameter. For sector

    cables use a corresponding round

    conduc

    tor diameter.

    but because of space limitat ions only these few are shown.

    8.

    Re

    sistance

    an

    d Reactance

    of

    Cables

    Cable resistances are given in Table

    2,

    and cable reactances in

    Fig. 3. The reactance data

    that

    follow are based

    on

    the formula:

    X ..

    0.023

    (loge K

    X

    =

    Reactance in

    ohms

    per

    1000

    feet at 60 hertz.

    S • Spacing of conductors (center·to·center) in inches.

    D

    =

    Diameter of conductor in inches.

    K - A coefficient dependent on the ratio of the inside

    diameter of a con

    ductor to

    the outside diameter of the

    cond uctor. For cable of standard·strand construct ion, K

    equals 0 .25.

    These reactance curves are co rr

    ect

    for shielded or non,

    shielded cable without a magnetic bin der.

    To obtain the reactance for three single condu

    cto

    r cab les

    with random spacing in a conduit , multiply the reactance for

    three

    co

    ndu ctor cable spacing (Fig. 3) by 1.20 for non·magnetic

    oond uit or by 1.50 for magnetic conduit.

    Reference on cab le ampacities are given

    in

    Section X under

    Thermal Loading of Underground

    Cab les

    5

  • 8/20/2019 GET-1008L Distribution Data Book

    5/35

    Table 1. Physical and el

    ect

    ri

    ca

    l characterist i

    cs

    of open

    -w

    ire distribution line conductors

    Size

    I I

    Diamele

    L

    o..

    Aw,

    Str ands) MCM

    In I n.

    1000 Fl .

    Copper - Hilrd Drawn

    ,

    111

    16.51

    0.1285

    50

    6

    111

    26.25 0.162

    80

    4

    (3)

    41

    .7

    4

    0.254

    .

    2

    (7)

    66.37 0.292

    205

    (7)

    83.69

    0.328

    258

    1/0

    (7)

    105.5 0.368

    326

    2/0

    (7)

    133.1

    0.414

    4

    11

    3/0

    (7)

    167

    .8

    0.464

    518

    4/0

    (7)

    211.6 0.522

    653

    19)

    250

    0.574 772

    119)

    300

    0.629 926

    (1 9)

    350

    0.679

    OS

    AUSt

    ee

    l

    ACSR

    6

    6/ 1 26.25

    0.198

    36.2

    4

    6/1

    41.74 0.250

    57.6

    2

    6/1

    66:37

    0.316

    91.6

    1/0

    611

    105.54 0,398

    145.6

    2/0 8/1

    133. 1

    0.447 183.7

    3/0 6/1

    167.8 0.502 231.6

    410

    6/1

    211.6 0.563

    192.1

    2617

    266.8

    0.642 366.8

    26/7

    336.4

    0.721

    462.4

    26/7

    397 .5

    0.783

    546.4

    26/7

    477.0 0.858

    655.7

    26/7

    556.5 0.927

    765.0

    26

    /7

    795.0

    1.108 1093.0

    (S l

    rlnds)

    AU Aluminum - Ha

    rd

    Drewn

    4

    (7) 0.232 390

    2

    (7)

    0.292

    62.0

    1/0

    (7)

    0.368

    98.5

    2/0

    (7)

    0.41 4

    124.3

    3/0

    (7)

    0.

    46

    4

    156.7

    410

    {7) 0.522

    197.6

    (7) 266.8

    0.586

    249.1

    (191

    336.4

    0.666

    315.7

    19)

    397.5 0.724

    373.0

    ( 1

    9)

    477.0

    0.793

    447.6

    (19

    1

    556 .5

    0.856 522.0

    37)

    795.0

    1.

    026

    N6.0

    Copperwetd _ Copper

    8A

    0.199

    74.3

    6A

    0.230

    101.6

    4A

    0.290

    161.5

    2A

    0.366

    256.8

    ' Conducror af 80 C. 40

    C

    AMBIENT, emissivity

    -0 .

    5 for copper. 0.2 forlliuminum.

    LOWl r

    current

    Vlllues correspond to

    srill

    air.

    Higher

    current

    vlllues corres

    pond

    ro

    air moving

    it

    two

    feel

    pilr

    second.

    o Resisfimce of

    conoocror

    in ohms/fOOD

    f l, 60

    hertz. C remp(Jrllture

    -X reactance of

    conduc

    to r out tJ one foot III ohms per 1000 ft. 60 hertz.

    Approx. Amp_

    Cap ac

    i ty

    50 80

    70 110

    110 161

    \45

    2

     0

    170 245

    200 285

    240 335

    280 390

    330 450

    375 510

    425 575

    475 635

    55

    85

    75 120

    110 165

    50

    225

    175

    260

    210

    305

    245

    355

    290

    410

    340

    480

    380 535

    430

    605

    480 670

    620

    850

    75

    115

    105

    60

    .45 215

    170 250

    200 290

    240

    340

    280

    400

    330

  • 8/20/2019 GET-1008L Distribution Data Book

    6/35

    ;fl

    :)<

    1

    l-

    i; -

    '

    -

     

    o

    Q

    ,

    I-

    0I . S I O l < 5

    vO\ ' oGr - .v

    '10( ':$ ' 7 '

    IT l

    t o .... ," ."

    i '

    ~ . ' ' ' n

    .,

    ..

    ..

    ,J

    o.o U>I'

    . < £ ~ ••

    '

    .,. ,

    .

    /

    ,=1

    H

    ,

    Q J

    0<

    . 501

    H ( ~

    ..oMLNAL

    00\.'4G£

    ..

    It

    . Tl

    n

    to 40 , ' "

    l4, .m U

    ,,

    ,,

    ,

    ..

    ..

    (QIOVAL[N

    .J ' C I fI G

    'n

    M

    M.

    io>

    0.08

    I

    300

    7

    3-conduclor cable

    ' 00

    thickness of Insula ion

    0.0

    + shield a sheath In

    250

    6

    mils

    200

    .-

    .0

    I

    150

    .-.>

    5.0

    100

    V

    -

    >

    450

    /

    .-.>

    I'-.,

    V

    ;:

    ;: ....

    /

    >

    /

    -

    0.0

    0.0

    0.0

    2

    0.0

    ~ - n

    S I O l < S

    O O h O N A ~

    '0'0

  • 8/20/2019 GET-1008L Distribution Data Book

    7/35

    CHARACTERISTICS

    Table 3. Conductor sizes,

    in

    sulation thickness and jacket thi ckne

    ss

    Part

    B.

    Rubber insulated cables *

    Insula

    tion

    Thickness

    Single-conduct or Jacket Th ickn llS

    100

    Percent 133

    Percent

    100 Porcent

    133

    Per

    cen

    t

    Insul ati on Insul ati on

    Insul

    atio

    n

    Insulation

    Circu it Co

    ndu

    c

    tor Level t

    Le

    ve

    l'

    Co

    nd uctor

    Level t

    Con ductor Lavel

    age

    Size,

    (Grounded

    (Ungrounded

    Size,

    IGr

    ou

    nd

    ed

    Size,

    (

    Un

    gr

    ou

    nd

    ed

     o ·Phase,

    A WG or

    Neutral

    Neu

    tr

    all

    AWGo.

    N ....tr aJ)

    AWGo

    . Neutra l)

    s

    MCM m

    il

    s

    mm mit s

    mm

    MCM

    mils

    mm

    MCM

    ml S

    I

    mm

    0·600 1

    8·16

    30 0.76 30

    0.76 18·16 .. .

    .. .

    .

    ..

    .. .

    1

    4-9

    45 1.14 45 1.14

    14

    ·9

    15 0.38 15

    0.38

    8·2

    60

    1.52

    60 1.52 8·2 30

    0.76 30 0.76

    1-4/0

    80 2.03 80 2.03

    1-4/0

    45 1.14 45

    1.14

    225·500

    95 2 .41 95

    2.4 1 225·500

    65 1.65

    65 1.

    65

    525· 1

    000 110

    2.79

    110 2.79

    500·1000

    65 1.65

    65

    1.65

    Over-IOOD

    125 3.18 125

    3.18

    Over.1

    0ClO

    95

    2041

    95

    2.41

    14

    ·8

    60 1.52 60

    1.52

    7·2

    80 2.03 80

    2.03

    1

  • 8/20/2019 GET-1008L Distribution Data Book

    8/35

    Table 5. Fu ll-load currents o f transforme

    rs

    in am peres

    Single-ph. sl Circu lls

    Circ uil ~ t O

    'VA

    1

    20

    24

    0 480

    2400 4160

    4800

    7200 762

    0 12,000

    5

    41.7

    20.8

    I DA

    2.08

    1.20

    1.04

    0.69

    0.66

    0.42

    10 83 .3

    41.7 20.8 4.17

    2.40

    2.08

    1.39

    1.31

    0.83

    15

    125

    62.5 31.3 6.25

    3.61 3.13

    2.08

    1.97

    1.25

    25 208 104

    52.1

    ID

    6.01

    5.21

    3.48 3,28 208

    37,5

    3 3

     

    156

    78. 1 15.6 9.01

    7.8 1 5.21 4.92 3.12

    50

    417

    208

    104

    20.8

    12.0 10.4

    6.94

    6.56

    4.17

    75 625 313 156

    31.3

    18.0

    15.6 10.4

    9.84

    6.25

    1

    00

    833

    417

    208

    41.7 24.0 20.8

    13.9

    13. 1

    8.33

    167

    1392

    696 348

    69,6 40.2

    34.8 23.2 21.9 13.9

    250

    2083 1042 521

    104 60.1 52.1

    34.7

    32.8

    20,8

    333 2775

    1388 694 139 SO.O

    69.4 46.3

    43.7 27.8

    500

    4167

    2083 1

    0

  • 8/20/2019 GET-1008L Distribution Data Book

    9/35

    DISTRIBUTION SYSTEMS FOR RESIDENTIAL AREAS

    Table 7. Ty

    pi

    cal dat a for single-phase triplexed 600V service cable, crosslinked polyethy lene

    in

    sulated

    Overall

    I

    mpeda

    n

    ce -

    Ohm s

    Size_AWG Cable

    per Condu ctor

    % Volt age

    Reg ul

    ation

    or MCM Diamel&r

    per

    1000

    h .

    p r 10,000 a mp.h .

    Ampa

  • 8/20/2019 GET-1008L Distribution Data Book

    10/35

    Wy

    e-delta Banks

    I

    t

    the high-voltage neutral of the transformer bank is

    to the

    circuit

    neutral, the transformer bank may burn

    theJoliowing

    reasons:

    1. It will cafry circulating current in the delta in an attempt

    to

    balance any unbalanced load connected

    to

    the primary

    line beyond it.

    2. It will

    act as a grounding bank and

    will

    supply

    fault

    current to any fault on the circui l

    to

    Which

    it is

    connected.

    3. It provides a delta in which triple harmonic currents will

    circulate.

    All of these effects cause the bank

    to

    carry current in

    to its normal load current, and often this combination

    sufficient to cause roast-out of the bank.

    When this transformer connection is used, and the high .

    neutral of the transformer is not connected to the

    neutral,

    an

    open conductor in the primary results in a

    phase input

    and

    output

    of the bank.

    If

    the transformer

    motor

    load, a harmful overcurrent

    is

    produced

    in

    each

    motor circuit. An equal current flows in two

    nductors of the motor branch circuit. and the

    sum

    of the two

    flow in the

    third

    conductor.

    The usual overload protection in

    motor

    circuits consists of a

    device in only two

    of

    the conductors.

    If

    the highest

    the three currents happens to be in the unprotected circuit,

    will very likely occur.

    If a th ird overload device is installed in each motor circui t.

    t

    he

    likelihood

    of

    motor failure from this

    cause is

    is

    he probability of an open primary line to the

    Such a probability is effected by the kind of

    and protective arrangements used in that part of the

    Dclta -wye Banks

    T

    he

    comments about

    motor

    pro tcction in regard to wye·

    .

    Open·wye, Open-delt a Banks

    Distribution lines in rural

    areas

    often consist of two phase

    and one neutral wire. In urban distribution it

    is

    sometimes

    rable

    to have multi

    ·phase, where only single-phase primary

    is

    b

    le

    and the second

    phase

    wire

    is

    installed. These lines

    nate from three-

    phase.

    four·wire, ground·neutral systems

    are known commonly as V' ·phase lines. T

    he

    major

    of

    the load laken

    from

    these

    V ·phase

    lines

    is

    but

    occasionally it

    is

    necessary to supply three·

    motor

    loads from

    these

    lines. in addi tion

    to

    a single·phase,

    /240·volt connection.

    Since both transformers carry the three·phase load, and one

    the single·phase load in addition, the latter transformer

    be

    the larger unit. It must carry the vectorial sum

    of

    the

    of the three·phase load, while

    e smaller transformer must carry

    only

    58 percent

    of

    the

    For example, i f i t is desired to carry a

    ·phase load of seven kVA and a three.phase load of f ive

    kVA.

    where the loads have the

    same power factor

    transformer

    sizes are arrived at as follows:

    La rge

    Smll il

    Transformer Trans

    fo:mer

    Singl

    phase 1000

    7 kV A

    Three-phase load

    (0.58 )

    51

    2.9

    2.9

    9.9

    kVA

    2.9

    kVA

    Required transf

    ormer

    size

    lQkVA

    3 kVA

    These sizes are based on the assumption that the loads are

    continuous, steady·state loads. In actual practice. this is seldom

    the

    case.

    Some judgment can

    be

    exercised, depending upon the

    knowledge of actual load conditions. as in the selection of

    transformers for any other application.

    5. Open-delta , O

    pe

    n·de

    lt

    a

    Ba

    nks

    This connection is similar to open·wye, open·delta except

    that the transformers are connected phase·to·phase instead

    of

    phase·lo·neutral. Selection

    of

    large and small transformer ratings

    can

    be made the same way.

    6. Wye·wye Banks

    A bank of wye·wye transformers should

    not

    be used unless

    the system is four·wi

    re.

    It is important to remember that the

    primary neutral of the transformer bank should be tied

    firmly

    to the system neutral.

    If

    this

    is not

    done, excessi

    ve

    voltages may

    develop on the secondary side.

    7. Caution

    Single·phase, self·protected transformers should Jot be used

    to supply three·phase, four·wire, closed·del ta circuits serving

    combined three·phase power and single'phase lighting loads.

    If

    the secondary breaker in the lighting phase opens, the lighting

    phase is

    still supplied with 240 volts. With the breaker open,

    however, there is nothing to hold the low·voltage neutral at the

    midpoint between the 240 volts. The voltage betweef) each

    phase

    to

    ne

    u tral will depend on the relative impedance of the

    loads connected

    on

    either side

    of

    the 120/240·vol t circuit. Since

    lhese

    are

    rarely equal. the lam

    ps

    on one

    side

    will probably burn

    out from overvoltage.

    D. Autotransformers

    A considerable saving in cost may often

    be

    effected by using

    autotransformers instead of

    two

    ·winding transformers.

    When

    it

    is

    desired to effect a comparatively small voltage change. or

    where both voltages are

    low

    , an autotransformer can usually be

    used as successfully as a two·winding transformer.

    Autotransformers should not. except under special con·

    ditions.

    be used

    where the difference between the high ·vol

    tage

    and low

    -voltage ratings

    is

    great.

    because

    the occurrence

    of

    g ounds at certain points w ill sllbject the insulation on the

    low·voltage circuit to the same stress as the high-voltage circuit.

    Auto transformers are rated on the

    basis

    of their kVA output

    rather than the transformer kV A . Efficiencies. regulation and

    other electrical characteristics are also

    based

    on output rating.

    IV

    - SHO RT-CIRCUIT CALCULATIONS

    A. Line Impedance

    When the resistance AL and the reactance

    XL

    have been

    determined, the impedance, ZL' of a circuit

    can

    be obtained

    from the relation ZL .. JAL 2 + XL 2.11 limited only

    by

    a circuit

    impedance, the short·circuit current is as follows:

    Three ·phase fault = m p r s in each phase.

    v3 Z

    L

    line-Io.neutral fault : -,;=,E--_ amperes, assuming that the

    v32ZL

    impedance of the phase conductor and the neutral conductor

    are

    equal and that the phase conductors are arranged like the

    points of

    an

    equilateral triangle with the neutral conductor

    an

    equal distan

    ce

    from all

    phase

    conductors.

    l ine

    · o· ine fault = am

    peres

    L

    wher

    e:

    E

    =

    line·to·line voltage

    Zl '

    line to neutral impedance in ohms. or the impedance

    of

    one conductor to the point of fault.

    B. Transformer Impedance

    It is frequently necessary to take

    into

    account the effect of

    step

    ·up or step·down transformer banks. The impedance

    of

    delta·wye, wye·delta. and delta·delta transformer banks should

    be

    combined directly

    with

    conductor impedances in calculating

    short·circuit currents. The transformer impedance, which is

    usually given in percent, will have to be converted to ohms

    before it

    is

    combined wi th the line impedance. This can

    be

    done

    with the relation:

    n

    10E2

    Z - _  '' ' '_

    lI - kVA

    where:

    ZT n ' transformer impedance in ohms

    ZT% • transformer impedance in percent

    E - line·to·line voltage in kV

    kVA = rating of the three· phase transformer bank

    The short·circuit currents

    for

    the combination of line and

    transformer

    are:

    Three·phase fault   Vi E amperes in each

    phase.

    3(Zl

    +

    ZTn'

    Line·to·neutral fault

    = ..Jj(

    E amperes wi th the

    3(2Z

    L

    + ZTn'

    same assumptions as given under line impedance.

    Line·to·line fault ' 2 (Zl .; ZTn amperes.

    -In

    the case of a multi·grounded

    neutral system the

    impedance of

    the

    neutral is

    somewhat

    less

    thao that

    of a phase

    conductor

    of equat

    s i ~ e 10

    f

    igu

    ring the impedance of a multi·

    grounded

    oeutr&1 conduc

    tor

    , a faCIOr

    of 2 3 is sugge ted. because of

    the

    multiple

    path

    for

    the return

    current.

    C. Impedance of lines with Different Voltag

    When it is necessary to c ombine a line and

    impedance with the impedances of another line

    of

    voltage, the impedance

    of

    the new line must be

    put

    o

    voltage base as the or iginal line. This

    can

    be done by

    the impedance of the new line

    by

    the ratio of the sq

    line·to ·line voltages of the transformer connectin

    together. It must

    be

    remembered that the ohms

    var

    ies directly as the voltage squared. Therefore, in

    g

    l

    ow

    voltage

    to

    a higher vottage, the impedance

    will

    in

    vice·versa. The transformer line·to·Hne voltages sq

    must

    be

    taken so that this will be the case.

    D. Effect of Offs

    et

    The magnit ude of the short·circuit current, as

    from voltage and impedance values, does not

    represent the rms value of the current

    for

    the first

    because of

    the fact that the current wave may b

    unsymmet r ical

    with

    respect to its zero axis. The rm

    the first half-cycle increases

    as

    the amount

    of

    offse

    For constant reactance circuits the maximum value

    rms

    of

    the offset current wave

    can

    attain

    with

    respec

    of the symmetrical current wave is a funct ion. a

    things, of the reactance / resistance ratio of the circu

    point

    of

    fault .

    tn the Transactions

    of

    the American Institute

    o

    Engineers (Vol. 67, 1948) paper entitled

    Simplifie

    rion of Fault Currents  are the various multiplying

    be used

    with

    the currents calculated by the form

    These

    are t

    he basis

    of the values shown in Table 9.

    When applying circuit breakers, circuit reclosers,

    expulsion arresters and fuses. the formulae for the t

    which

    will

    give the highest value

    of

    rms symmetr

    should be used. Then the multiplying factor in Tab

    be

    applied to determine the rms current which

    compared with the rating of the device.

    The relationship shown by the curve in Fig. 7

    give

    that

    can be used

    in calculating the maximum rms

    first half-cycle of fault current. This curve can be u

    of Table 9 for checking the suitability of the interrU

    of fuse cutouts and reclosers when the circuit con

    particular installation

    are kno

    wn.

    Ratio of for Sl,lbstation tr llnsformer plus primary ci

    R

    exceeds

    4 and ts

    usually 1

    to

    3.

    Fig. 7. Mult iplying factot

    for

    det&rmining short ·circ uit

    rlll ·ampete·rated devices, such as distribu tion cuto ut

    cal

    cu

    l

    8ted Vmm

    otrical sho

    rt

    ·c;rcuit

    cu

    rre

    nt

  • 8/20/2019 GET-1008L Distribution Data Book

    11/35

    Table 9. Circuit breaker

    s,

    circuit reclosers. distribution expulsion a

    rr

    esters and fuses

    Reacun

  • 8/20/2019 GET-1008L Distribution Data Book

    12/35

    CALCULATIONS

    220

    '&D

    ..,

    COPP  R CONDUCTORS

    LU

    MINUM CONDUCTORS

    ': fN _ __ r

    i

    1

    Y ' l ' f I Y f : l J

    } t · ~ f

    .-

     

    ..

    .. .

    ••

    ,-

    .   n .. ;

    ,;;;;

    : ' 1

    .

    -

    1-

    '"

    -

    -1000

    ,..., _no

    -'

    .

    Rr ....

    N t y e e .. ..

    ,

    , .

    ..

    . . . .

    Ou. .

    .. c ~ [ O '>

    [ . ,.,

    ..

    ,.

    ,

    - - t t t t - t - t - i . O ~ H

    ' e (. ·'

    .. 00.

    ,

    .....

    ,.

    t .

    0 . ,0 >0. ·7>.·

    100 ]0

    , CTeL[ .. .

    .CTC , EHU • •

    :

    ---{

    -{,

    , ,.>i-.d -o,;,.,-,,

    O,

    .

    t, . ;('

    lIO 10 ,>0 • >0 0.00

    _I -r- _ 40

    ,000

    '0

    .,0

    c . . . . $I   owe 00 .. e .

    ' >0''''

    111

    ,,.

    Fig. 8. Maximum siZes of insulated copper and alum inum conductors for a conductor t emperature change from 75 C initi

    al

    to 200 C final during a short·circuit·cu rrent interrupting interval .

    A'

    .

    ..

    :Yf

    .

    ;,:-'

    1

    ..

    ~

    /$

    ){ .;p

    -

      -

    4. Application

    Proce du

    re

    Step'

    - Evaluate the symmetrical short·circuit current

    Step 2 - Knowing

    th

    e clearing time

    of

    the protective device,

    determine a correction fac tor Ko from Fig.

    1' .

    Mult ply the symmetrical current by factor Ko to

    allow for the d·c component

    Step 3 - If the problem involves

    an

    initial temperature other

    than 75 C

    or

    a maximum short·circuit temperature

    other th

    an

    200 C a correction

    fa

    ctor K

    t

    should

    be

    obtained

    from

    Fig. 9. Multiply the symmetrical

    curre

    nt

    (or its corrected value from Step 2) by the

    factor K

    t

    to allow

    for

    different limiting temperatures

    ..

    ,10

    '

    .

    .

    Step 4 - Check the conductor

    size

    being considered on Fig.

    Fig. 9. Corret:tion factors K

    t

    for initial and ma •.

    short

    ·circuit

    temperatu

    res

    .

    ,

    ,

    ,

    'OTo

    .

    ,u..

    .'

    ,

    ,

    ,

    , ,

    , ,

    10. Oscillograms showing dec ay of d ·c com ponent

    asymmetry of current

    and effect

    01

    S using the corrected value

    of

    current. The

    permissible time should exceed the protector inter·

    rupting time to

    prevent

    cab

    le damage.

    5. Examples o f Data Use

    EHampl a 1 - Feeder ci rcuits are

    to

    be

    run

    fr

    om

    a 48D-volt, 6D-hertz load

    center unit su

    bst

    ation. During

    normal

    operat ion it has been

    decid

    ed that a No. 2 AWG

    Versato

    l Geoprene Cable

    (co pper conductor) will provide adequate current·carr ying

    capacity. Evautalion indicates

    that

    the symmetrical shon·

    ci.cuit

    current

    is

    16,000

    amperes.

    The interrup

    t ing

    time

    of

    th

    e c ho

    sen

    breaker

    is

    1.5

    cycles

    and it is desired to check

    the cab le 's short·circuit capacity.

    Sol

    ution;

    Symmetrical curre nt - 16,000

    amps.

    Time duration - 1.5 cyc les.

    Factor Ko - 1.3 (

    From

    Fig. 111.

    Corrected current - 16.00 0 x 1.3 - 20,800 amps.

    In

    Fig. 8

    we

    deTermine

    thaI

    a N

    o.2

    AWG

    copper conductor will

    wi

    thstand 20,800

    amperes for more

    than

    two cycles. The refore, an

    interrupting time o f 1-

    1/2

    cycles

    will

    adequately prolect Ihe

    cable.

    E>

  • 8/20/2019 GET-1008L Distribution Data Book

    13/35

    v - VOLTAGE CALCULATIONS

    Voltage Drop

    When

    the

    electrical characteristics of

    the

    line under con·

    have

    been

    determined, the line

    drop for

    a

    g i ~ n

    of power-factor cos can be computed from

    formula :

    Volts

    drop

    = I fR

    cos J +

    X sin 0

    here R and X are

    the

    total resistance and reactance,

    of one

    conductor

    of the line under consideration.

    formula

    gives the voltage drop on one conductor, line-to

    The three-phase line-te-line drop is..j3 imes the above

    drop is tw ice the above value, To

    drop in percen t, the fo l lowing equation

    can

    be

    %

    volts

    drop = kVA

    fR cosO + X sinO)

    10

    kV2

    kVA

    is three·phase kVA, R and X are the

    total

    resistance

    of one

    conductor

    in ohms and

    kV

    is

    ·line kilovolts.

    For

    single'phase circuits,

    kVA is

    single·

    kVA, R

    and X are

    total

    values

    for both

    conductors, and

    is

    the

    actual single'phase

    kilovolts.

    It

    can

    be seen from

    the vector diagram

    in

    Fig. 12

    that both

    are approximate, but are close enough

    for

    practica l

    In this diagram, is shown

    as

    the

    powedactor

    angle at the

    of

    the feeder because,

    on

    most

    distribution

    feeders,

    is

    the

    only lo

    cation at

    which

    the power factor

    of

    the load

    be

    measured.

    To assist in the application of this formula, Table 11 has

    le gives

    the

    values of ,sines, tangents, and

    l

    es

    which correspond

    to

    cosine or power·factor values

    from

    O.

    In actual practice, loads are usually distributed over the

    rather than concentrated at one end. When this is the

    simpl ifying assumptions can often be made. These are

    own in

    Fig. 1

    3.

    For instance,

    if

    a load

    is uniformly distributed

    the

    drop to

    the end

    of

    the tine

    is

    the

    same as if

    to t

    al

    load were concentrated at a

    point

    half

    way out

    on the

    . Th is is mathematically correct

    for

    a very large number of

    For a small number of

    distributed

    loads the error may be

    When the load can be divided into a number of large

    loads

    distributed

    along the tines,

    it is

    possible to

    lin

    e

    into

    the sections between loads

    for

    calculation

    to

    consider each section

    individually

    w

    ith

    the

    hich

    it

    carries.

    If there is

    distributed

    load

    on

    a line and it is desired to

    find

    voltage

    drop to

    some

    point on

    the line, the

    following

    will be

    helpful:

    kVA

    (R

    cosO+X sinO)

    Ll

    % volts drop = 2

    10

    kV

    e re:

    kVA

    "

    total

    three·phase load

    in

    L l ine

    A • resistance per 1000

    It

    X '" reactance per 1000

    It

    '

    source power' factor angle

    L l • distance

    from

    source

    to

    desired

    point

    in

    thousands of feet

    L . total length of line in thousands of feet

    CoI(ula led d,ap

    Fig.

    12. VlI(:

    lor diagrem

    ~ ~ = = : : = = = = = = = O ~ ~ r ~ ~ = =   ~ ~ ; :

    v,

    ,.

    B. T

    ab

    les for Estimating Voltage Drop

    Voltage drops

    for

    open·wire and cable circuits can be

    quickly

    estimated by simple calc

    ul

    ations and

    use of

    the foflowing

    ampe

    re · eet tables. The values given in the tables are the

    absolute difference in voltage (voltage drop) between sending

    end and receiving end line·

    to

    ·neutral voltages

    of

    a balanced

    three·phase

    circuit for

    each 100,000 ampere·feet of combined

    load and circu

    it

    length. Tab le 12 covers standard. open·wire

    three·phase voltages used for distribution. A wide range of

    spacing is use d to cover various line construction. Table

    13

    gives

    similar

    information for

    various

    classes of distribution

    cable

    voltages.

    1. Th ree ·phase Prob lems

    In using

    the

    tables. the

    first

    thing required is

    the

    number of

    ampere·feet involved

    in

    the problem. This

    is

    obtained

    by

    multiplying

    the amperes per phase by length

    of circuit in feet.

    Divide this ampere·feet by 100

    ,000

    to determine the multiplier

    to be used

    wit

    h values in the tables. For the

    proper

    voltage,

    conductor s ze,

    conductor

    material, power factor, and

    conductor spacing (interpolate, if necessary) find the vol tage

    drop factor in

    the table and mul t

    iply by

    the

    multiplier

    determined previously. Th is

    will

    be the absolute line·to·neutral

    volts

    differe

    nce (drop) between the sending and receiving ends

    of the

    circuit.

    Dividing

    by

    l ine·to·:1eutral voltage

    of

    sending end

    So . e. LlRt

    (A)

    tatle

    t

    M,a

    l

    t

  • 8/20/2019 GET-1008L Distribution Data Book

    14/35

    Tabl

    e 12.

    Voltage drops of open_wire

    lin

    es

    in yolts

    per 100

    ,

    000 ampere le et Inote

    1)

    SYSTEM VOLTAGE CLASS

    -,

    (qui

    000,. _ ' ",",. 21

    LotP .....

    f

    ,

    I

    G.

    •••

    .M

    ..

    ..,

    I I  

    .M

    ,

    .

    COI'I'ER Wille

    . ~ -

    l '

    '1 .1

    . •

    41.1

    4J

    .1

    ..

    ••

    _-

    21.'

    N.'

    1. '

    1. '

    '

    n2 31.7

    n>

    oN 5 .

    N .

    N.' N.'

    n.

    ".

    23.2

    n.

    2'.5

    n.'

    .110-1

    S"

    15.

    .5.1

    1l.9

    11.2

    '

    11.6

    2

    15.0

    11,0

    .210-1S

    .

    '

    1l.1

    12. '

    11.&

    'M

    " ,1

    15.5

    ,

    2 .J

    8.

    • • 10-1 $ ..

    '

    10.0

    8.11

    •.U

    ,

    ,.

    11.'

    10.7

    11.27

    ' .N

    ~ / o I C ~ 1 2 S

    '.M

    .m

    J

    .n

    .

    II.'

    1.73

    '.D

    •••

    3OOMC/d.12S"

    ,n

    w

    .

    10.1

    ..,

    M

    m

    §OCIMCM

    ·

    IIIS

    .

    ' '

    .n

    S. .n ' .1

    ,.,

    • m

    ,

    .

    A l U M I ~ U M WlR£

    ' ' ' lS '

    ,

    .11

    e .

    01.7 e.,

    41 .0

    '

    q

    .• '9,

    ,

    ...

    2·7S".

    17.1

    n •

    JI.I

    N.'

    n . 32.1

    32.8

    n •

    28.1

    • 110,7 $I ••

    I ~ . B

    N.'

    N •

    N.'

    'B.2

    n

    '

    lU

    21.7

    17.'

    .2Ja.l $I.

    '

    11.5

    ,

    .

    I • .• » ,

    N.'

    .

    .

    .,

    • 0111-75

    .

    1

    .2

    '

    ••

    .

    ,u

    .

    ,10

    l l I I ' _ · I I I 5 0 .

    ,

    m

    >2.1

    .

    11.11

    387.&_·1150.

    . OM

    '.M

    1 . ' .

    • .13

    '2 .2

    11 .2

    'N

    ...

    .nllOC

    ...

    Sv

    '.M

    '. 01

    U2

    11

    .1

    '0 .'

    '.11

    1.

    '

    M e M - 3 1 S ..

    1.0\

    ••

    • M

    .

    OM

    ".

    • . . . . , .50.

    .

    ••

    M.'

    M.

    q,

    .

    ", 2

    .

    ,. ... So.

    n

    n •

    ,

    .2

    31.S

    n.

    ••

    ••

    JI

    .2

    • •

    04JI

    s

    ,U

    ..

    2 '

    .3

    ,U

    N .

    .

    ..

    N '

    N'

    ,Ja.4f1

    St.

    =

    N '

    N2

    .7

    ••••

    '

    ,

    n

    N .

    ,.,

    . 410-6/1 St.

    0

  • 8/20/2019 GET-1008L Distribution Data Book

    15/35

    ."

    Ie . '"

    l &k ,

    ~

    -

    ••

    OK

    '

    .

    •.

    U OK ...

    '

    ••

    ••

    '.K

    ,.

    '

    ••

    ••

    OK

    .

    '

    K .

    ••

    '

    42.'

    .u

    .1.5

    .

    • ••

    3. '

    m

    ,

    ••

    .,

    47.'

    K '

    .

    .

    ..,

    ••

    •••

    n .

    ..

    n •

    3

    ..

    n.'

    a .,

    m

    NA

    n . n .

    ~

    n ,

    31.'

    n.'

    '

    a .,

    '

    .

    M .'

    .

    '3.0

    23.2

    n.

    ,,.

    17.7

    M. '

    m

    M '

    M.

    18.0

    ,..

    ,

    no

    21.1

    ,,.

    1 .0 11.3

    .1

    11 .'

    16._

    .1

    '

    15.1

    .7

    14,0

    11.'

    '

    n .'

    lG.'

    15.2

    II •

    15.1

    12,'

    l1

    .e .K 1B

    .7 15.5

    .1

    .

    13.3

    '

    12

    .•

    .6 ' .00

    ''''

    < t'p

    .2

    '"

    8.9.

    13.3

    8.22

    13 ••

    12,'

    10 .8

    •••

    M. 10

    .5 V

    ,.

    OK 13. '

    10 .9

    ~

    5,62 10.5

    '.1'

    ,..

    '.1.

    12.5

    11,5

    W

    ••

    ••

    'K

    9.61

    9.10

    '

    7.31

    '

    12

    . '

    K

    ••

    .

    .31

    B,

    'M

    '"

    10 .1 9 .01

    '

    .K

    .K

    .m

    ".

    10.'

    1 n

    ,.

    8

    .1

    7

    .M

    ' .

    11

    ,

    10

    .3

    '

    .n

    '

    ,.

    '.n 'K

    ."

    7. '7

    '"

    .M

    '..

    '

    '

    .3

    .,

    ".

    .,

    '

    ...

    K ' K.'

    .,

    H.'

    .u

    '"

    .,

    KA

    ••

    •.

    •••

    m

    ••

    '

    .

    .,

    n ,

    n •

    n.'

    N '

    ".

    ...

    '

    31.1

    ,

    u,

    no

    n.'

    ,

    77 .1

    MO

    '"

    77 .  

    '

    n. 71.1

    '

    ..

    .

    M.

    '

    18,0

    ?lot

    '

    m

    '

    .3

    ,

    11.3

    .

    10 .5

    ,

    .,

    11. 1

    '

    .3

    17

    .1

    17.5

    n . 

    .

    '"

    » ,

    .9

    19

    .1

    '"

    .,

    '

    7.1

    '

    g.OJ

    II.

    ,'.3

    .

    '

    1.

    12.11 n.B

    n.2 11.1

    9.15

    1

    $.11

    .3

    .0

    17. ' 17.9

    'K

    8.10

    $.70

    '"

    17.1 10,e

    ••

    ••

    10.1

    D

    n

    ••

    8."

    5,16

    ,

    17.7 10.7

    ••

    5.10

    10 ,1

    7.17

    ".

    ••

    17 .7 1\ ,3

    ,.

    ••

    ' .K

    .K

    'K

    1 .12

    M

    12.3

    , 1.3

    ,

    .n

    1 .

    '"

    10.

    1.$1

    as

    S.10 1.

    11

    .

    '1.1

    10.5

    ..,

    1

    ,. 

    ••

    •2 •.

    51

    1 .

    12

    on

    1 .12

    ••

    ,X

    6.

    _3

    ••

    2

    .•

    ••

    W

    OM

    ,

    ..

    ' .K

    . . .

    ••

    ...

    .

    .

    .,

    .u

    • •

    ",

    •••

    ..

    31.1

    U .

    .

    ••

    ••

    .

    n .

    '

    n.

    ..

    .,

    '

    ,

    10.3

    U I

    '

    •.

    ••

    .,

    ••

    .. 

    23.'

    ~

    2 '

    .3

    .

    21.1 X ,

    ••

    .,

    .,

    21 0

    '

    19.7

    16.7

    23.2 23

    .1

    n

    141.5

    M.

    11.1

    23.2

    '

    n.'

    11 .0

    m

    .1

    ",

    '"

    11

    .3

    '

    16._ 11. 1

    10.  

    '"

    15.3

    .7

    ,U

    11

    .1 18.3

    '"

    'B.'

    IS.1 11

    .1

    .15 •

    1.12 7.98

    611 1

    1.1

    11 .1

    10._

    1.17

    ••

    •• ••

    U 5.75 11,8

    11.11

    IQ.5

    ••

    '.M

    .13

    4.80 12.0

    '

    •••

    1.28

    ' .67

    V O

    •••

    ,

    ..

    7.11 . 11.0 11 .1

    ,

    ••

    ..

    1

    '.K

    1 .2 .

    l.ll i 11

    .3

    10.l 8.71

    ,.,

    'M O .

    7.

    03

    6.21 11 .3

    10 3

    on

    '

    ,.

    ••

    • x

    ••

    2.36 I

    • .81

    ,

    '

    2.23

    OK

    . W

    ,

    n

    '.11

    on

    ,

    .•

    .16

    I

  • 8/20/2019 GET-1008L Distribution Data Book

    16/35

    2

    5kV

    35 W 5y s n .. VOLTAGS CLA

    SS

    .'

    ..

    .. _ , Dol

     

    $pod., IN ... 21

    ••

    'M

    '. 

    ..

    ••

    •••

    ,.

    .'

    ••

    •••

    'M

    '. 

    ..,

    " M

    ,.

    UWni

    ...._ . . .

    COf'PER W'RE

    .u

    .

    ~

    .

    .

    .

    ".

    ~

    l

    0.2

    ...

    .

    ' .$

    ...

    .5

    .

    ",

    » .

    » .•

    'OJ

    » ,

    'u

    n ,

    31. ' m

    n..

    » 0 » .•

    'u

    n .'

    31.J

    n .

    ...

    -

    ~

    =

    H .

    no no

    n .

    ,,,

    11.2

    ~

    M.'

    H .

    no no

    n . 

    21.5

    '

    OJ

    . 2 ·3 5

    '"

    1 .8

    'OJ

    '

    '

    ".

    ,OJ

    .

    10.1

    15.1

    '"

    I •

    .•

    ,u

    11

    .2

    '

    n .•

    '"

    .

    .

    . l tG l Sit

    '

    12.3

    II.e 1.

    13

    ,

    15 •

    13.1

    '"

    ~

    '

    " .1

    ' '

    11 .'

    ~

    ,

    ...

    1 .0

    ,,,

    •.•

    1

    • 2/Gl 51•

    ••

    '.00

    ' .10

    ,

    '02

    H '

    10 •

    '

    10.5

    ' M

    ••

    '.11

    '"

    12 •

    ' '

    '.N

    ~

    . .

    tGl St.

    1'.

    •. 51 .2 • II •

    ••

    .

    .n '.00

    J>

    ••

    .n

    • . •

    12.5

    II •

    11.73

    ~

    4,. 5

    ?5OMC"'·12S

    , .

    .n

    1.23

    ,L1

    10 •

    ,.»

    .

    . a

    1.17 .00 1» n.

    '"

    '

    1 .51 3,11

    300 r.oe.w.l1S1

    ••

    .A

    ••

    n

    '0.2 .J>

    1.12

    5,.'

    ,

    .

    • 1

    •.

    12

    ...

    • •

    13

    '"

    9,01

    ' .N

    l.IO

    _WCW·lI1S

    .

    ALUM,NuM W l ~

    ."

    y ,

    '

    ...

    00.'

    45.1

    ••

    oo,

    m

    ».,

    '2.11

    4•. 5 41.1

    M.'

    .

    '5,1

    ••

    OO., ...

    •• 7

    SI'

    N.'

    » .

    '

    N'

    » .

    n .

    n .

    32,3 » ,

    no

    »

    • 31.1 » •

    »

    .• 32,'

    '"

    32. '

    ».,

    .2 -1

    s ..

    M'

    M' M'

    " .0

    n . 13.1

    n.

    ,,.

    11,1

    ...

    M.'

    M.'

    M .

    18.2

    22.9 23.1

    n.

    21 1

    H. . I JO.l

    S

    .

    11.5 n .3

    .

    .2

    M

    II1.t

    ... n .1I 13,8 11.1

    17.1;

    n

    .3

    .

    10.3

    M.'

    11.1

    " .0

    1'.0

    1 . 1

    .2I(}'lS .

    12.'

    12 .2

    11

    ,

    15.11

    '5.2

    .

    12 .5

    8

    , '

    9

    ,OJ

    '"

    12.2 11.5

    .M

    '"

    15.2

    .

    IU

    8.15

    O.l S .

    ••

    8.0

    1

    '"

    n .D

    10 • .m 5.111 10.1

    '.M

    ...

    ••

    '"

    '"

    ' '

    .

    5."

    336 .  

    /oICM'11I

    S"

    '

    ,.

    'M

    ,

    '"

    ••

    ' . 10

    . .»

    ••

    ,.

    1.

    10 ' .73

    ",

    '"

    ••

    .n. • .

    51

    3117.1'MCM·IIS .

    '

    '

    .2

    '

    II.'

    10 •

    'M

    ... .00

    ' .07

    7.12

    ~ 11.5

    ,OJ

    '

    1.41

    .

    .n....:; . I.s"

    ~

    ~

    ..

    ,n

    .n

    'J>

    OM

    ,

    ,.,

    0» 0»

    ••

    ••

    OM

    2.

    1 '

    7lI5 w:..-37

    I

    ~

    .'

    ••

    ••

    .,.

    "

    .5

    '

    00'

    . . ~

    '

    .

    ~

    4

    '"

    .

    51

    .3

    ".

    _"",,,151

    .

    n.'

    » .,

    .

    , , ~

    n.

    » ,

    ..

    n .'

    » ., » .,

    3 ' .6

    n.

    X., ~

    31.2

    _2 ·GI1 S"

    1 '.1

    2 '

    .3

    , o J

    M.'

    ~

    M

    .'

    » .

    " .

    M.'

    m

    .'

    " .3

    .

    M. '

    n.

    n.

    M. . ~ I S ..

    .

    M.'

    M.'

    19.8 16.' 1 3.2

    n . 

    n.

    M '

    15.11

    M.'

    M.' M.'

    19.1

    ,

    13.2 13. 1

    22 ,0

    '"

    .2/0-111 Su

    .

    1&.3

    "

    .8

    13.8 10.1 1

    8.3

    17.7 18.2

    , ,8

    10 .3

    15.'

    15.3

    "

    ,6

    13,8 1

    0.9

    1

    8.3

    11.1 18,3

    ".11

    10.6

    .410-111 S"

    ,

    11.07

    '.M

    12.7

    '

    10.2 a.1Il OM 9

    .B5

    •.

    *

    7.95 " .1

    '"

    1

    0,.

    t.OJ

    5."

    J.JII

    .' o.I

    C"·2&/7 SIt

    .M 1 .11

    . f i

    '.00

    11 .9

    .

    8.03

    . »

    ' .00

    'M

    '

    '  7.

    12.0 n 

    '"

    8, 11

    3111.8

    C .

    21i'7

    Su

    ~

    ..

    ',15

    'M

    , 1.2

    10.2

    ' .0

    '

    1.11

    'M

    .M

    ~

    11.2 10.2

    . M

    3.73 .n MC,, ,21 n

    5 .

    B.16

    a.ll1

    .

    ,.,.

    I.

    6.17

    5

    .•

    <

    '

    6.111

    5.13

    '

    .05

    1.3 1

    ..

    .

    'M

    2.12

    n ir.ocM-2I/1S"

  • 8/20/2019 GET-1008L Distribution Data Book

    17/35

    Table 13. Vo ltage drops

    of underground

    cab l

    es

    in volts per 100 ,000

    ampere

    feel see note

    CABLE VOLTAGE CLASS 000 V

    V

    FIICtOf

    •.

    .A

    . ~ ,

    ' .DO

    •.

    •• ••

    .

    .,

    .m

    c.bk Sire

    ALUMINUM

    .6

    '

    ..,

    ,.,

    29'

    ..

    ' -8

    16 .1

    ....

    ...

    .

    ,, a A.

    5.19

    ,.,

    .

    eo

    '50

    ....

    ' .88

    36»

    41. 1

    26.'

    28.

    11.8

    .3

    14.8

    .

    2

    .5

    '33

    10.

      .. »

    8.

    7.

    ..os

    ,. 

    ' .66

    628 6.88

    5.51

    '

    .

    53

    ' .38

    '

    '

    .

    <

    3 .16

    lS

    kV

    25 .V

    3SkV

    •.•

    .'

    •m

    ..

    •.• •.•

    ,..,

    .m

    •.,

    .. •.•

    .'

    .m

    'a,

    ..,

    ....

    m

    '03

    ...

    ...

    '.,

    .,.

    26.'

    ...

    ,

    81,

    '-

    <

    2.5

    .,.

    '.

    52.'

    m

    .,. .,.

    '-,

    ...,

    - '

    33.3 33S

    21 .1

    2S.

    32

    31'

    31 '

    '

    2a8

    30.'

    ,U

    31 '

    ,,.

    la6

    ,..

    n» 2<

    .1

    26»

    ' '

    ...

    ,.-

    ,,.

    ,,-

    26.

    20.

    21.

    < , , »

    18.1 19.7

    , , »

    21 .5

    ,, »

    .

    .,

    •••

    21.1

    ,

    .

    21 .0

    11. 1

    17

    .

    <

    16.9

    15.2

    ' 6 '

    ,

    .

    ' 6 '

    ..,

    17.4 17.6

    '6

    '

    '

    .

    ,,

    -

     .,

    '

    '

    .,.

    ,

    v

    ,,.

    <

    .0 14.1

    '

    ,-

      ,

    ..,

    ,os

    , , »

    A

    11.4

    10.5

    10.1

    ,,-

    11

    .5 11.4

    ...

    .75

    ' .>0

    a

    . .

    . 2 0

    ....

    ...

    9.11

    .SO

    9 .52

    ' .88

    ,0»

    ....

    .SO

    7.51

    ,,.

    6.'

    ,. 

    ' .66

    ' .6<

    , ..

    ' .69

    , ..

    1 .11

    '55

    ~

    ~ 6 6

    5 .43

    '50

    , .

    , .

    . ..

    '50

    , .

    .

    ..

    02'

    ,

    .

    ,.00

    ' .62

    <

    .31

    .» .

    '00

    U 6

    ....

    ..

    <

    . 10

    300

    ' .55

    '25

    ,-

    <

    .

    18

    ' .

    00

    ,

    ..

    '

    2.30

    ..

    ,so

    ,

    ..

    ~

    ~ 2 8 65>

    , ..

    ...,

    '.00

    6. ,

    U3 ~ S O

    12'

    n.

    ,.

    U6

    ' .

    SO

    us

    ....

    ' .00

    .

    '

    ' .39

    , ..

    ' .00

    55 '

    ,

    .

    '52

    '

    • .00

    ...

    ,n

    2.>, u •

    • .50

    <

    .13

    3.18

    V ,

    .... ...

    '26

    388

    ,. 

    .

    , .

    .... ...

    366

    '23

    ,.,

    .

    .

    <

    .12

    ,..

    '

    ...

    . ,.39

    ....

    '

    ' 28

    ,.,

    2

    ....

    ,..,

    , .

    ,.,

    '52

    ....

  • 8/20/2019 GET-1008L Distribution Data Book

    18/35

    VI

    - VOLTAGE REGULATING EQUIPMENT

    . Selection of Regulator

    The

    two

    fundamental factors

    of

    service, from both the

    r's and the operating company's point-of-view,

    is

    the

    of continuity and as nearly a constant vol tage

    as

    is

    economically possible. To the consumer,

    an

    in

    voltage regulation means greater satisfaction

    electric devices and a stronger incentive

    for

    extending the

    of electric energy. To the operating company, an improve·

    in voltage regulation results in greater customer satisfac

    greater goodw ill towards the operating company, an

    of service rendered, and a higher

    average

    vol

    tage

    ich results in higher revenue to the company for the

    va lue of connected load. Where the load

    is

    chiefly lighting

    as in residential areas, this variation

    in kW

    ·hr

    will

    be most pronounced .

    Fig.

    14 gives the

    on typical circuits.

    . Type

    Several different types of equipment are used to maintain

    roughout a system. This equipment can be

    into three major classes:

    1.

    Source voltage control; generat ing station bus voltage

    control.

    2. Voltage ratio control.

    a. l oad tap changing transformers

    b. Step voltage regulators

    c. Induct ion voltage regulators

    3.

    Ki

    lovar control

    a. Synchronous condensers

    b. Switched capaci tors

    The l ypes and sizes of the equipment chosen depend upon

    of the load and the characteristics of the system.

    It

    should be recognized that

    the

    easiest and least expensive

    et hod of system voltage control

    is

    by variation of the

    X

    >14

    L

    ·

    .'

    e

    ,

    "

    >

    <

    ·

    AS5umpliOM

    Feeder load loc

    i

    or

    • 0.30,

    pI

    =0.95

    UQhlillQ

    l

    ood

    5 ° 1

    10 10 1.

    VolloQe

    drop ofteelillQ all lighlinQ

    lood

    7 °1

    0 1

    drop

    01

    o

    ron uat

    p ak

    R ...e

    llu

    . fro m incr o s d

    loo

    d 0 1

    3 c

    p.r

    kWh

    200

    ,

    generating station bus voltage, using the generator field control.

    Although fun use shou ld be made of th

    is

    method of voltage

    control, this met hod alone does not meet all of the require

    ments of the system. To meet the system requiremen ts most

    utilities use,

    in

    varying degrees, a combination of

    au

    tomatic

    voltage·ratio and kilovar control or. as applied here, regulators

    and shunt capacitors. The question arises as to how much

    emphasis should be placed upon each of these methods of

    voltage control. The technical functions that can be performed

    by regulators and capacitors are given in Table 14.

    2. l ocation and Size

    To determine the correct location and size of the regulator,

    the loading and voltage characterist ics of the circuit should be

    known. Also, the voltage conditions from the substation to the

    end of the feeder should be known fo r b oth the peak and light

    loads. These voltages may be measured or t hey may be

    calculated if the following are available: a circuit diagram which

    shows

    the

    size, spacing, and length of conductor;

    an

    indication

    of at least the most important loads and the phases to which

    they connect; and a notation

    as

    to whether the loads and

    circuits are single-phase or three·phase.

    The size of the regulator depends upon the load which it

    must carry and the percent of voltage regulation. Therefore it

    is

    necessary first to determine the proper location for the

    regulator. In determining the location for a regulator it

    is

    adv isable to consider

    the

    effect of load growth as well as present

    loa

    d condit

    ions_

    If a voltage profile based on a reasonable

    estimate of

    fu

    ture load

    is

    made and compared with a vo ltage

    profile based on present load, a determi nati on of the extent of

    voltage control requ ired with time can be made. A regulator

    that is sized and located in accordance with this procedure

    will

    provide proper voltage correct ion for present and future load

    conditions. See Fig. 15.

    . , ~

    00 XlO

    2000

    XlO

    Example: Compensating for a 5-percenr drop at yearly peak load

    o

    600 kVA increases the annual revenuB $f 250.

    Fi

    g.

    14. Dollar< reve

    nu

    e

    pe

    r yea r r ecovered b y

    compe

    nsating

    fo

    r vo lt age

    dr op a t yea

    rly

    peak

    t

    oa

    d

    VOLT GE REGUL TING E

    Table 14. Function pe rformed by re gulators and ca pa citors

    P

    trlo

    rmed By Perfor

    ...

    d By

    FI,nc.

    ti

    on

    Voltage Ra To Con

     

    ol Kilo"a. Cont rol

    Commllnts

    Vo ltage Reg

    ul

    aTOf

    $)

    )Switched Capaci to.s

    L

    c.,

    raise and lower OUTPUT VOLTAGE. YES YES '

    ·

    No

    inherent

    with switched capacit

    Or<

    bu

    this eHect by being swllched off ,

    ,

    Carl rilise

    SVSlem

    voltages on source or i

    "put

    NO

    YES

    side of regulati"g mea"s .

    ,

    Capable

    .

    stepless

    "

    small voltage step

    YES

    NO'

    ·

    Not inherent with switched capaCitors.

    bu

    control.

    duce

    small c h

    ar>ge5

    in vollage if

    ba"k

    s i ~ e

    system

    impeda...::e to ba"k is small.

    4.

    Capable

    .

    mai"tai"i"g a

    ±

    314-volt band·

    YES

    NO'

    Switched capacilOfs do not usuallv pefmit

    w.dth,

    bandwidth,

    5.

    Capable

    of

    many SWitching operations with· YES

    NO'

    ·

    Capacitor switch contacts deterio'Dle

    ra

    oul

    l'eQuent inspec tion.

    large numbe,

    01

    switching operatio"s per da

    6.

    Reduces 12R loss lI"d 1

    2

    X loss in system . NO'

    YES

    ·

    Not

    inherent with uoltage regulators but s

    tion in losses may rasult on output side b

    ,"creased volta{le.

    7.

    Reduces thermal loading. NO

    YES

    8. Raises

    system

    loading capabililV.

    YES'

    YES

    ·

    Voltage

    regulat

    ors

    will raise

    the

    loading

    ca

    output

    side

    but

    will

    0"'

    raise loading ca

    system

    on

    input side.

    NOTE : Neilhe, egulerors nor cepacitofs by themselves can fulf il l all

    of

    these desired funct,ons. However, used

    s a

    c ~ m b , a l , o n , ,the twO

    voltage

    control

    can

    maintain

    relati vely

    flat

    feeder voltage

    profile and

    at the same

    time

    reduce system

    lones and provide for

    com,derable s

    grOWlh on the feeder.

    The amount of kVA of regulation required for a single·phase

    regu lator

    in

    a single'phase circuit can be determined as the

    product of percent vol tage regulation and the total circuit kVA

    beyond the regulator div id ed by 100

    (see

    Fig. 16.).

    A three-phase circuit can be regulated by one th ree-phase

    regu

    lator, two single-phase regulators, or three single·phase

    regu lators. Fig. 17, 18, 19, 20a and 20b show the connections

    fo

    r the different methods. There are two types of th ree·phase

    regulato rs:

    a. Three·phase core·and·coi l construction with three·pha

    se

    switchi

    ng

    mechanism.

    b. Triplex. Three separate single·phase units mechanically

    coupled within one rank.

    The amount of kVA of regulation required for wye·

    connected three-phase regulators

    is

    equal to the product of

    percent voltagE regulation and the circuit kVA beyond the

    regulator divided by 100 (see Fig. 17.).

    ;;

    >

    UI II

    moll

    ~ 0 I t a 9

    profll.

    - --- - -,;.

    Conte

    t locollon lOt

    tl9uloto. ,IUd In

    oeco,donet

    . I th

    ultimol.

    lOad

    10 co t

    p

  • 8/20/2019 GET-1008L Distribution Data Book

    19/35

    TAGE REGULATING EQUIPMENT

    ("""'''''

    eon

    ... lon

    ~ ' £

    VA,o

    l R

    . . . . .

    _

    ) ( I C ~ . u k V ' 1

    ,

    .

    '

    ,

    IXI. l ..... Vo l t . R'9'I0""" 1

    ~

    V o.R . . . . ....

    ICotcuo,

    kVAI

    -

    ' S .

    ,M

    ,. .

    ,

    kVA 1 R.. . , .

    'X

    ll.l

    ....

    Vo l t .

    R.,OI, ....

    8:: '

    &leu,k"'

    ,... R. . O IO< H

    looJ5

    OPt

    [)el l.

    ,

    ,.

    IX

    ,\

    L'' ' '

    Voh.,. R . . . ."onl

    ,.....

    r

    kVA 1 II . . .

    .

    "

    .

    le . . , il kVAI

    ..•.

    P . R.. ,IOI i j 1I 31

    .:

    - . . . - .

    "

    ..

    200

    A.

    -¥ .:1 ,., .• .

    6' .

    kVA 01 1109''''''''

    IX'lOu'

    PII,l

    ... Vol, . R"""'' ' ' ' ' I

    IC"eu.' kVAI

    Method I

    p 11"9>100< in

    .

    0.110'.,\

    lSO\l1'

    fio.:IOb

    -)I.

    X - 11 SI ("" . . .

    R.,.,...

    , IOh Og·

    I ' ~ P

    nd UUOIU .W

    q

    o

    q

    0_

    -.

    §

    .

     

    ,

    o.

    g-

    o

    "

    §

    .

    ,

    o.

    "

    t

    III"'"

    I " : I J ~ JO

    I

    . ,""ufdwo, 01

    t1I

     

    U ' O H O ' ~

    o 0

    O ~ ' I ln' J

     '

    o w ) J d JOI

    .'o

    ...

    "' o' 01 .. UUOI < U W

    VOLTAGE REGULATING E

    :

    ,

    < ,

    .

    .=

    , -

    ••

    ,

    1-;;:'

    ,

    "

    0

    i

  • 8/20/2019 GET-1008L Distribution Data Book

    20/35

    REGULATING EQUIPMENT

    Singl '

    EI,valor

    M ~

    Hoists

    Rleiprotall

    ng

    Cron

    Pumpi

    .

    ,

    Compr,,,or.

    ,

    Automalic

    ;

    Spal_wlld .

    ,

    1\

    ,

    -

     

    -

    -

    -

    1 -

     -

    ,'

    "-

    ,

    "

    ;

    "

    -

    ......

    1

    / ~ " " ' "

    r - '-t

    I

    I ,

    r -

    ,

    ,

    .......

    ,

    r-

    A

    o

    '0

    -

    I ,

    i

    or

    : M ~ o :

    I

    01 I "

    '0 "

    ' I '

    i li ' 1

    ,

    I'

    ,

    I

    ,'''0'

    1

    olid Lines

    composi

    te curves

    of

    voltage f(icker

    studies by

    General Electric

    Company.

    Gener; 1

    Electric Rev iew

    August

    1925;

    Kansas City

    Power

    &

    Light

    Company, Electrical World

    May 19,

    1934;

    T.

    & D. CommiHee, EEl, October 24,1934,

    Chicago;

    Detroit

    Edison

    Company;

    est

    Pennsylvania Power

    Company; Public

    Service

    Company of Northern

    Illinois.

    DOlled Lines voltage flicker

    allowed by two

    utilities, references Electrical

    World November

    3,

    1958 and

    June

    26,

    1961.

    Fig. 24. Relations of voltage fluc

    tuat

    ions to frequency of their

    occur

    rence iincandescent lamps)

    consumption corresponding

    to

    a given connected load.

    amount

    of

    increased revenue resulting

    from

    the additional

    can

    be calculated using the

    following

    formula:

    '"

    Voltage·sensitive kW·hr Load

    Total kW-hl'

    load

    voltage reduction in band width x load factor x annual peak

    x rate in cents per kW-hr.

    01 bandwidth

    of

    one

    or two

    volts. A change in revenue

    from

    large voltage changes can be determined by

    Fig. 14.

    time

    delay should

    be set

    so that a proper compromise

    the number

    01 tap change operations and the

    control

    desired. I the

    time

    delay is

    too

    short, the

    will operate excessively

    by

    responding to

    voltage changes. It is recommended, then , that the

    of

    operations

    be

    controlled

    by

    changing the

    time

    delay,

    than

    by

    varying the bandwidth.

    regulators are cascaded on a

    circuit

    the regulator

    to the source should have the shortest

    time

    delay setting,

    time delays should be increased for regulators. located

    is set lor the

    from the source.

    3. Volt

  • 8/20/2019 GET-1008L Distribution Data Book

    21/35

    Burning lamps

    may

    be extinguished if voltage drop to appro>:;·

    75 percent o the ,ated

    ine

    voltage.

    Fig. 27. FllIores

  • 8/20/2019 GET-1008L Distribution Data Book

    22/35

    OF SHUNT CAPACITORS

    p., wnll (a pocUot kVA • .Y

    kVA ,

    mple: Assume

    II 5Q()(}--k

    VA SUbstatiorr has II load power faeror

    of

    0.70

    that 2000

    k

    VA

    of

    ,,pacitors IIf. applied.

    The Pf/f·uni t

    capacitof

    k VA

    - 0.40

    for which

    the

    feleased

    capaci

    tv IH 0.70 power

    f lewr

    per unit or

    (0.24

    x

    50001 - 1200 kVA. Also

    it may be

    noted

    rhe

    dotted

    ines) {niH

    the

    final power faclo

    r is IIbOUI 0.92.

    Fig.

    32.

    Thermal ca pacity re lEtlsed bV application0 1 ca pa

  • 8/20/2019 GET-1008L Distribution Data Book

    23/35

    OF SHUNT CAPACITOR

    S

    ble 17.

    App licat ion guide for group-fusi ng capacitor banks with Genera l Electric uni

    ve

    r

    sa

    l cab

    le-

    type and oil

    cu tout fuse link rati ngs N, O

    IL

    , K, and T  types

    ·WVE ANO DELTA CONNECTIONS

    BANKS

    W

    ITH l00

    ·

    KVAR

    UNITS

    .

    . V O I I $

    .

    4160 Valli 4800

    Voln 7200 Vol

    .

    12470 Vo u.

    13200 Volt. 13800 voru

    l(u.. N/D,I - '(' T NID,I

    ."

    NIDi   Kn"

    N/D,I

    Kn"

    W O r

    Kn"

    NIOli

    Kn"

    NID il

    ."

    ' ,00

    100

    /-

     

    50

    57/60

    50

    ,.

    25 25

    25

    25

    00

    -

    1

    00

    /-

    -

    tOO / -

    8s/ tOO

    50

    .

    50

    ,.

    30

    -

    100

    1-

     

    50

    50

    50

    9

    51 100

    80/ - 851100

    85

    / 100

    I

    -

    100/

    -

    -

    100/-

    100

    /-

    -

    '00 1

    -

    '00 1

    -

    '00 1

    ,

    TOR SANKS

    WI

    TH 25 ANO

    50

    KVAR

    UNITSI

    2400

    Vol

    41

    60 Volts

    4800

    Volls 7200 12410 Yolts

    13200

    Volts 13800 VoU,

    e

    1(

      3

    NID,I

    '

    N

    ID

    ,I

    m

    Nl

    a,1

    m

    N/Dil

    m

    NIO

    ,I

    m NIOil

    ."

    N/D

    il

    ."

    ,.

    2. 2.

    .

    ..

    50

    /-

     .

    25

    ,.

    25

    .

    .

    7&

    /60 501 -

    50

    .

    JO

    20

    2.

    2.

    2.

    >2

    713

    1-

    501-

    75/ -

    501-

    ,.

    25 25

    25 25

    B51-

    65/ -

    75/ - 501-

    50

    JO

    2.

    30 2. 30 2.

    75/ -

    501

    -

    ,.

    25 25 25

    75/ - 501-

     .

    25

    ,.

    25

    ,.

    25

    85

     

    65

    /-

    50

    .

    SO

    ,.

    30

    S

    f

    50

    /-

    SO

    ,.

    0

    ,.

    15f 50 /-

    75

    /- 501-

    50

    ,.

    75/-

    50

    1-

    75

    /-

    501- 75/60 501-

    15/- SO/ -

    75/ - 501- 75

    /-

    501-

    75

    /-

    SO

    /- 75/ -

    501-

    75

    /-

    501-

    85 /-

    65/

    -

    75

    /-

    501

    -

    '51

    -

    50

    /-

    15

    I

    851

    -

    65

    /-

    851 -

    651-

    85

    /-

    65

    /-

    651- 85 /- 65/- 85

    /-

    65

    /-

    100 h .. ' ' ' . / .u/ll; ,' . , ould nOf

    uned

    SOOO .,.,,,e" f.

    15 ·

    ,

    ,,,d 1 r ~ . J ' ' ' . 111.111 ' u em

    .

    hould

    nOI eX

    ;eed 4()(}()

    m{Jt'n .

    For . ,gll1''', oI'l1 (; iH: or b;mlr .

    Ihe .m

    gle·

      ha

    . e

    k ~ a , '041 '9 3 10

    obI

    ' II,,,

    I1Q

    .. l l 1 n r

    3· , .11

    ,. ng. and mul /l ' Ih

     

    ''''9Ie. h .

    by 1

    131

    0 o

    m ,,,

    I

    he

    nJ

    l 1m 3· ha. ~ o l l ~ g t I 'al,n9_ SeIeOO,

    , ... 0 ' .

    '

    Fig. 38. Proposed ch

    aracle

    rislil;S 01 150 ·, 200 ·,

    an

    d 3OO

    rated 2400·1960 ~ o l

  • 8/20/2019 GET-1008L Distribution Data Book

    24/35

    OF SHUNT CAPACITORS

    Application guide for group-fusing capacitor banks with General Electric universal cab le-type and oil

    cutout fuse link ratings N, OIL, K, and T types

    FlOA.TING ·WYE CONNECTION

    CAPACITOR BANKS WITIi

    25.

    50 ·

    OR l00

    · KVAR

    UNITSIt

    4160

    Volt.

    4800 Voh.

    7200 Voh.

    8320 Vol . 12470 Volts 13200 Vol .

    13800 V"II>

    J. h

    .. Ky

    . "

    NIO,I

    '

    "1/0,1

    '

    NI

    Oil

    '

    N{Oil

    '

    NIOil

    '

    NIOil

    '

    1,0,\

    '

    ,

    -

    - -

     

    40130

    ' ' ' '

    ,

    ,

    ,

    45140

    ' '

    '

    '

    75160

    '

    '

    '

    85175 45/50

    '

    ' ' ' '

    '

    ,. -

    -

    85/-

     

    -

     

    40/ -

     

    ' '

    -

     

    '

    951-

    -

    75/60

    '

    '

    .,

    ,.-

    75160

    '

    451.0

    '

    4

    5

    40

    85/ -

     '

    '

    45

    150

    '

    45

    150

    '

    ''''

    95/-

    -

    85/-

     

    ~ I '

    ,

    '

    '

    951-

    -

    ,.-

     '

    ~ I O O

    ' ''''' '

    00

    '

    '

    95/_

    -

    75 60

    '

    75 60

    '

    -

    '

    '

    ' '

    '

    151-

    ,. -

    151_

    '

    125

    851

    -

     '

    '

    '

    851-

     '

    ,.-

     '

    75/-

    '

    215 -

    851 -

     '

    85

    1-

     

    '

    ,.-

    -

    ,. -

    -

    ,.-

     

    425

    ,.-

    -

    95

    /  

    -

    ,

    '

    ,. -

    -

    - Application guide for group-fusing capacitor banks with General Electr ic universal cable-type and oil

    cutout

    fuse link rat ings N, OIL, K, and "TH types

    ·WVE

    AND DELTA CONNECTIONS

    I

    TOR

    BANI{S

    WITH

    150-, 200· AND 300·I( VAR UNITS

    '

    '

    '

    ''''

    ''''''

    00 ' / -

     

    100/ _ 85/100

    200'/

    -

    2 - ~ , . o c up ,

    ..

    _

    a/xl

    . 25()(}ampe

    Orf circulr curren .

    1

    >

    15

    25/25

    4(1/40

    '''''

    5/65

    95/95

    100/ '00

    125/ 100/ 1

    00

    125/

    100/100

    150/ 140/ 1401

    150/

    140/1401

    200'/

    -

    e 20 - Application guide for group-fusing capacitor banks with General El

    ect

    r

    ic

    universal cable-type and o

    il

    cutout fuse link ratings

    N,

    "OIL

    , K,

    and

    T

    types

    FLOATtN

    G·WVE

    CONNECT

    I ONS

    CAPACITOR SA NKS WITH 150-

    zoo.

    ANa 3

    00

    I{VAR UNITS

    3·pIo_

    4160 Votu

    4800 VolU

    7200

    Vot .. 8320 Vol "

    12.410

    Vol

    13.200 Vott. 13.900 Vol ..

    K•• •

    N/o;l

    '

    N/o;l

    ,.

    N/o;l

    '

    N/o;l

    '

    N/o;l

    '

    NfOil

    '

    N/o;l

    '

    .'

    951100

    '''''

    ,. -

    65/65

    '

    40140

    "''''

    40140

    ,.'

    25125

    ;ro/20

    -

    20120

    '

    - -

    - -

    75175 751€0

    .,,'

    45140

    :1()/30

    4

    0/40

    25125

    2 >125

    '

    - -

    -

    -

    100/100

    -

    ,. -

    ,.'

    '

    '

    ,.'

    "''''

    "'-

    40/

    40

    ,

    '

    - -

    - -

    - -

    -

    -

    8 >1100

    65165

    ,. - 65165

    ,.-

      '

    '

    - -

    - -

    -

    - -

    -

    951100

    '

    ,. - 65165

    ,.- 6 >165

    -

    - -

    - -

    -

    1001100

    -

    10011

    00

    - -

    VIII LI HTNIN PROTECTION OF DISTRIBUTION SYSTEM

    A.

    Primary Distribution Systems

    Continual research in the laboratory and in the field on

    lightning and its effects on circuits and apparatus has established

    the fundamentals of lightning

    protection

    so well

    that the

    careful

    selection

    and

    application of modern arresters will provide

    distribution systems with a high degree of immunity from

    lightning troubles.

    Adequate lightning protection of distribution systems

    depends upon three major considerations:

    1. The selection of distribution transformers

    and

    other

    distribution

    equipment that

    have an insulation strength

    to

    lightning voltages

    not

    less than present·day basic insula·

    tion levels.

    2. The selection of arrester ra t ings which will limit

    the

    lightning stress

    to

    a value well below the standard

    impulse-withstand level of

    ap

    paratus .

    3. The effective application of the arresters, by mounting

    them in close

    shunt

    relation with the apparatus

    to

    be

    protected and, whenever possible, interconnecting

    the

    primary arrester ground to transformer secondary neutral.

    1. Impulse Withstand Level

    to

    be P

    rotected

    ANSI basic in sulation levels and withs tand test values for

    electrical apparatus are shown in Table 21. For example, this

    table shows

    that

    the primary winding of a 15·kV voltage class

    distribution transformer must withstand a

    1.2

    x 50

    tlS

    impulse

    full ·wave test of

    95

    -kV crest

    and

    a chopped·wave

    test

    of 11O·kV

    crest.

    Conservative protection for a distribution transformer

    throughout

    its service life generally requires