gas turbine engine combustion,

16
RTO-MP-14 AC/323(AVT)TP/lO * NORTH ATLANTIC TREATY ORGANIZATION RESEARCH AND TECHNOLOGY ORGANIZATION BP 25, 7 RUE ANCELLE, F-92201 NEUILLY-SUR-SEINE CEDEX, FRANCE RT0 MEETING PROCEEDINGS 14 Gas Turbine Engine Combustion, Emissions and Alternative Fuels (la Combustion dans les turbomoteurs, les émissions et les carburants de remplacement) Papers presented at the Applied Vehicle Technology Pane1 (AVT} Symposium (organized by the former AGARD Propulsion and Energetics Pane1 (PEP)), held in Lisbon, Portugal, 12-16 October 1998. Published June 1999 Distribution and Availability on Back Cover

Upload: ka3bool13

Post on 27-Apr-2015

666 views

Category:

Documents


10 download

TRANSCRIPT

RTO-MP-14 AC/323(AVT)TP/lO

* NORTH ATLANTIC TREATY ORGANIZATION

RESEARCH AND TECHNOLOGY ORGANIZATION

BP 25, 7 RUE ANCELLE, F-92201 NEUILLY-SUR-SEINE CEDEX, FRANCE

RT0 MEETING PROCEEDINGS 14

Gas Turbine Engine Combustion, Emissions and Alternative Fuels (la Combustion dans les turbomoteurs, les émissions et les carburants de remplacement)

Papers presented at the Applied Vehicle Technology Pane1 (AVT} Symposium (organized by the former AGARD Propulsion and Energetics Pane1 (PEP)), held in Lisbon, Portugal, 12-16 October 1998.

Published June 1999

Distribution and Availability on Back Cover

NORTH ATLANTIC TREATY ORGANIZATION

RTO-MP-14 AC/323(AVT)TP/lO

RESEARCH AND TECHNOLOGY ORGANIZATION

BP 25, 7 RUE ANCELLE, F-92201 NEUILLY-SUR-SEINE CEDEX, FRANCE

RT0 MEETING PROCEEDINGS 14

Gas Turbine Engine Combustion, Emissions and Alternative Fuels (la Combustion dans les turbomoteurs, les émissions et les carburants de remplacement)

Papers presented at the Applied Vehicle Technology Pane1 (AVT) Symposium (organized by the former AGARD Propulsion and Energetics Pane1 (PEP)), held in Lisbon, Portugal, 12-16 October 1998.

The Research and Technology Organization (RTO) of NATO

RT0 is the single focus in NATO for Defence Research and Technology activities. Its mission is to conduct and promote cooperative research and information exchange. The objective is to support the development and effective use of national defence research and technology and to meet the military needs of the Alliance, to maintain a technological lead, and to provide advice to NATO and national decision makers. The RT0 performs its mission with the support of an extensive network of national experts. It also ensures effective coordination with other NATO bodies involved in R&T activities.

RT0 reports both to tbe Military Committee of NATO and to the Conference of National Armament Directors. It comprises a Research and Technology Board (RTB) as the highest level of national representation and the Research and Technology Agency (RTA), a dedicated staff with its headquarters in Neuilly, near Paris, France. In order to facilitate contacts with the military users and other NATO activities, a small part of the RTA staff is located in NATO Headquarters in Brussels. The Brussels staff also coordinates RTO’s cooperation with nations in Middle and Eastem Europe, to which RT0 attaches particular importance especially as working together in the field of research is one of the more promising areas of initial cooperation.

The total spectrum of R&T activities is covered by 7 Panels, dealing with:

l SAS Studies, Analysis and Simulation

l SC1 Systems Concepts and Integration

l SET Sensors and Electronics Technology

l IST Information Systems Technology

. AVT Applied Vehicle Technology

.HFM Human Factors and Medicine

l NSPG NATO Simulation Policy Group (Modelling and Simulation)

These Panels are made up of national representatives as well as generally recognised ‘world class’ scientists. The Panels also provide a communication link to military users and other NATO bodies. RTO’s scientific and technological work is carried out by Technical Teams, created for specific activities and with a specific duration. Such Technical Teams cari organise workshops, symposia, field trials, lecture series and training courses. An important function of these Technical Teams is to ensure the continu@ of the expert networks.

RT0 builds upon earlier cooperation in defence research and technology as set-up under the Advisory Group for Aerospace Research and Development (AGARD) and the Defence Research Group (DRG). AGARD and the DRG share common roots in that they were both established at the initiative of Dr Theodore von Karman, a leading aerospace scientist, who early on recognised the importance of scientific support for the Allied Armed Forces. RT0 is capitalising on these common roots in order to provide the Alliance and the NATO nations with a strong scientific and technological basis that Will guarantee a solid base for the future.

The content of this publication has been reproduced directly from material supplied by RT0 or the authors.

Printed on recycled paper

Published June 1999

Copyright 0 RTO/NATO 1999 Al1 Rights Reserved

ISBN 92-837-0009-O

Printed by Canada Communication Group Inc. (A St. Joseph Corporation Company)

4.5 Sacré-Cœur Blvd., Hull (Québec), Canada KIA OS7

ii

Gas Turbine Engine Combustion, Emissions and Alternative Fuels

(RT0 MP-14)

Executive Summary

NATO efficiency in the future Will depend largely on air superiority, long range deployment capacity and rapid response both on land and at sea. The gas turbine engine Will remain the power source of choice, and fuel efficiency, fuel availability and exhaust emissions Will drive its design. The combustor is one of the crucial engine components and combustion system problems have traditionally contributed to well over half of the engine service problems in most air forces. The symposium focused on and addressed the key challenges for reducing fuel consumption, lowering emission levels and burning alternative fuels as requirements concurrent with improved performance and operation.

Widening the narrow standards of today’s fuels offers a short term solution to scarcity but has detrimental effects on combustor life and emission levels. New fuels, such as liquid hydrogen and methane, offer some potential advantages but also pose new combustion problems. The contribution of military engines to en-rissions is of major concert-r today and Will continue to be in the future. There are additional requirements for military engines such as higher combustion temperatures which are needed for superior efficiency but at the same time low exhaust temperatures and low exhaust volumes to reduce the infrared signature. Operability (blow-out stability and wind milling re-ignition, throttle response, etc.) must be enhanced as the aircraft flight envelope and manoeuvrability are expanded. Component durability must be maintained in an increasingly adverse environment. Combustor design, active control of flame stability, control performance and exhaust gas composition as well as operating procedure optimisation are the aims. Tools for combustion simulation and experimental validation are under continua1 elaboration to save on development and life cycle costs through better design.

Scientists and engineers met military and civil operators, and discussion concentrated on the customer’s future needs and constraints. A review of current R&D activities and formulation of specific research resulted from the Symposium, for which there is no known competing event. Universities, government laboratories, industry and some agencies of the military services were represented and presented their knowledge and advice. The correct makeup of participants was indeed achieved. Al1 papers presented were of good quality and covered new advances in many important areas.

Highlight topics for future AVT symposia in this field would seem to be as follows: gaseous and particulate emissions at altitude, optical diagnostics at elevated pressures in near-real combustors, and active combustion control a11 of which cari crucially contribute to the military usefulness of engines.

LU

La combustion dans les turbomoteurs, les émissions et les carburants de remplacement

(RT0 MP-14)

Synthèse

L’efficacité des forces de I’OTAN à l’avenir dépendra largement de la supériorité aérienne, de la capacité de déploiement à grande distance et de l’intervention rapide terrestre et maritime. Le turbomoteur restera le propulseur de choix et sa conception sera guidée par des considérations d’émission de gaz polluants, ainsi que par des questions de rendement et de disponibilité du carburant. La chambre de combustion est l’un des composants clés du moteur et l’expérience montre que plus de la moitié des problèmes d’entretien des moteurs, rencontrés par la majorité des forces aériennes sont liés aux systèmes de combustion. Le symposium a privilégié les défis clés de la diminution de la consommation du carburant, l’atténuation des niveaux d’émission de gaz polluants et l’utilisation de carburants de remplacement en vue d’améliorer les performances et le fonctionnement des turbomoteurs.

Bien que l’assouplissement des normes restrictives qui s’appliquent aux carburants modernes offre une solution à court terme aux problèmes de pénurie, elle s’accompagne d’effets indésirables pour la durée de vie des chambres de combustion et les niveaux d’émission de gaz polluants. Les nouveaux carburants, tels que l’hydrogène liquide et le méthane, s’ils offrent quelques avantages possibles, posent en même temps des problèmes nouveaux de combustion. La contribution des moteurs militaires aux émissions polluantes est, et restera, un sujet de préoccupation majeur. En plus, les moteurs militaires ont des caractéristiques spécifiques, à savoir, des températures de combustion élevées, pour assurer une meilleure efficacité, avec en même temps des températures et des volumes de gaz d’échappement moindres, pour permettre de réduire la signature infrarouge. L’exploitabilité (stabilité en cas de surpression, réallumage en autorotation, réponse du moteur, etc.) doit être améliorée au fur et à mesure de l’augmentation de la maniabilité et de l’élargissement des domaines de vol. Il s’agit également de conserver la longévité des composants dans un environnement de plus en plus contraignant. La conception des chambres de combustion, le contrôle actif de la stabilité de la flamme, les performances en matière de contrôle, la composition des gaz d’échappement et l’optimisation de la procédure d’exploitation sont les objectifs en vue. Les outils de simulation et de validation expérimentale de la combustion sont en évolution permanente dans le but de réaliser des économies sur les coûts de développement et de possession par l’amélioration de la conception.

Les scientifiques et les ingénieurs qui ont assisté à la réunion ont pu rencontrer des exploitants militaires et civils et leurs discussions ont porté essentiellement sur les besoins futurs des clients et les contraintes qui leur sont imposées. Le symposium, qui est, à notre connaissance, unique en son genre, a permis de faire le point des activités de R&D actuelles et de formuler des projets de recherche spécifiques. Les universités, les laboratoires gouvernementaux, les industries et les agences militaires représentés ont exposé leurs connaissances et proposé des conseils. Du point de vue des participants, la répartition était équilibrée. Toutes les communications présentées ont été de bonne qualité, couvrant de nouvelles avancées dans bon nombre de domaines importants.

Les sujets présentant un intérêt particulier pour les futurs symposia AVT dans ce domaine pourraient être : les émissions particulaires et gazeuses en altitude, le diagnostic optique aux pressions élevées dans des chambres de combustion quasi-réelles, et la combustion active, ces sujets pouvant faire l’objet de contributions déterminantes dans le domaine des moteurs militaires.

iv

Contents

Page

Executive Summary . . . lu

Synthèse iv

Theme/Thème ix

Recent Publications on Propulsion and Power Systems of the Former AGARD Propulsion and Energetics Pane1 and the RT0 Applied Vehicle Technology Pane1 X

Programme Committee xii

Reference

Technical Evaluation Report by G.J. Sturgess

T

Keynote Address by J.S. Lewis

K

SESSION 1: GAS TURBINES IN LAND, SEA AND AIR APPLICATIONS

Ground Vehicle Mobility Requirements. Meeting the Challenge with Electric Drives by G. Khalil and J. Hitchcock

1

Advances in a Gas Turbine System for Ship Propulsion by M.L. Parker, P.K. MacLeod and M. Coulson

2

Technical Challenges Associated with the Development of Advanced Combustion Systems by C.A. Van Erp and M.H. Richman

3

SESSION II: LOW EMISSION COMBUSTORS

Paper 4 withdrawn

Empirical and Anchored Methodologies for Controlling Combustion Dynamics by R.P. Pandalai, G.C. Hsiao and H.C. Mongia

5

Paper 6 withdrawn

NO, Reduction by Lean Premixed Prevaporized Combustion by Th. Ripplinger, N. Zarzalis, G. Meikis, C. Hassa and M. Brandt

7

Status of Catalytic Combustion R&D for the Department of Energy Advanced Turbine Systems Program

8

by D. Fant, G. Jackson, H. Karim, D. Newburry, P. Dutta, K. Smith, D. Smith and R. Dibble

Measurement of Spray/Acoustic Coupling in Gas Turbine Fuel Injectors by T.J. Anderson, D.W. Kendrick, J.M. Cohen and T.J. Rosfjord

9

SESSION III: COMBUSTION MODELLING - PART 1

Soot and Radiation Modelling in Gas Turbine Combustion Cbambers by H.T. Brocklehurst, J.B. Moss, C.D. Hurley and C.H. Priddin

10

A Novel Code for the Prediction of Transient Flow Field in a Gas Turbine Combustor Simulator

by N. Selçuk and 0. Oymak

11

Reduced Kinetic Mechanisms for Modelling LPP Combustion in Gas Turbines by A. Linan, M. Bollig, A.L. Sanchez and B. Lazare

12

Numerical Simulation of the Reactive Flow in a Tubular Chamber with Detailed Kinetic Effects

13

by B. Zamuner, B. Bourasseau, C. Berat and H. Niemann

Kerosene Combustion Modelling using Detailed and Reduced Chemical Kinetic Mechanisms

14

by M. Cathonnet, D. Voisin, A. Etsouli, C. Sferdean, M. Reuillon, J.C. Boettner and P. Dagaut

Modelling of a Lean Premixed Combustor by P.J. Coelho and P. Salvada

SESSION IV: OPTICAL MEASUREMENTS - PART 1

Validation and Application of a Droplet Evaporation Mode1 for Real Aviation Fuel by K. Prommersberger, G. Maier and S. Wittig

Optical Diagnostics Applied to a Jet Diffusion Flame by F. Grisch, B. Attal-Tretout, P. Bouchardy, V.R. Katta and W.M. Roquemore

Experimental Investigation of an Axially Staged Combustor Sector with Optical Diagnostics at Realistic Operating Conditions

by C. Hassa, M. Carl, M. Frodermann, T. Behrendt, J. Heinze, 1. Rohle, N. Brehm, Th. Schilling and Th. Doerr

SESSION V: EMISSIONS

Measurement and Prediction of NO and NO2 Emissions from Aero Engines by T.J. Foster, C.W. Wilson, M. Pourkashanian and A. Williams

Influence of Engine Performance on Emission Characteristics by A. Dopelheuer and M. Lecht

Modeling the Effects of Operating Conditions and Alternative Fuels on Gas Turbine Performance and Emissions

by W.P.J. Visser and S.C.A. Kluiters

15

16

17

18

19

20

21

In-Flight Spectroscopie Aircraft Emission Measurements by H.W. Jentink and J.J.F. van Veen

22

SESSION VI: COMBUSTOR DESIGN - PART 1

The Design and Evaluation of a Piloted, Lean But-n, Premixed, Prevaporised Combustor by M.I. Wedlock, J.R. Tilston and R.E. Seoud

23

Advance Fuel Injection Strategies for High Performance Gas Turbine Engines by S. Samuelsen and V. McDonell

Turbulent Structure of Generic LPP Gas Turbine Combustors by B. Lazaro, E. Gonzalez, J. Alfaro, P. Rodriguez and A. Lecuona

24

25

Paper 26 withdrawn

NO, Reduction in a Fuel Staged Combustor by Optimisation of the Mixing Process and the Residence Time

27

by N. Brehm, Th. Schilling, A. Mack and G. Kappler

Paper 28 withdrawn

SESSION VII: IGNITION PROCESSES

A Novel Technique for Predicting the Ignition Performance of an Aero Gas Turbine Combustion Chamber

by C.W. Wilson, C.G.W. Sheppard and H.C. Low

29

Caractérisation des systèmes d’injection prémélangés en auto-inflammation et remontée de flamme

30

(Characterisation of Autoignition and Flashback in Premixed Injection Systems) by C. Guin

Ignition Diagrams and Bifurcation Maps by F.P. Di Maio, G. Barbier-i and P.G. Lignola

SESSION VIII: COMBUSTOR DESIGN - PART 2

On the Analysis of Combustion Performance in a LPP Combustor at Atmospheric Pressure

by P.M. Anacleto and M.V. Heitor

The Use of Fluidics in Gas Turbine Combustion Design by R.J. Woolhouse, J.R. Tippetts, M. Whiteman, K.J. Young, S.B.M. Beck and J. Swithenbank

31

32t

33

FueUAir Preparation in the Design of Low Emissions Gas Turbine Combustion Systems by M.K. Razdan

34

Experiments in a Small Gas-Turbine Combustor with Gas and Liquid Fuels by A.L. Heyes, D. Jelercic and J.H. Whitelaw

35

SESSION IX: ACTIVE COMBUSTION CONTROL

AGARD Workshops on Active Combustion Control for Propulsion Systems by V. Yang and K.C. Schadow

Combustion Instabilities in Low NO, Gas Turbines and Their Active Control by B.T. Zinn, T. Lieuwen and Y. Neumeier

Active Control of Combustion Instability in a Liquid-Fueled, Low-NO, Combustor by J.M. Cohen, N.M. Rey, C.A. Jacobson, T.J. Anderson and T.J. Rosfjord

36

37

38

t Paper not available at time of printing

vii

Adaptive Control of Aeroacoustic Instabilities with Application to Propulsion Systems by M. Mettenleiter, E. Haile and S. Candel

Application of Active Combustion Control to Siemens Heavy Duty Gas Turbines by S. Hoffmann, G. Weber, H. Judith, J. Hermann and A. Grthmann

Optimization of Active Control Systems for Suppressing Combustion Instability by J.G. Lee, B.-S. Hong, K. Kim, V. Yang and D. Santavicca

39

40

41

SESSION X: OPTICAL MEASUREMENTS - PART 2

Optical Measurements of Jet-Mixing in a Swirling Crossflow of a Combustion Chamber by B.H. Krautkremer, M.M. Blomeyer and D.K. Hennecke

42

Optical Measurements of Spray Combustion in a Single Sector Combustor from a Practical Fuel Injecter at Higher Pressures

43

by T. Behrendt, M. Frodermann, C. Hassa, J. Heinze, B. Lehmann and K. Stursberg

Combustion Characteristics of a Trapped Vortex Combustor by G.J. Sturgess and K.-Y. Hsu

SESSION XI: ALTERNATIVE FUELS

European Evaluation of JPS+lOO Fuel and Its Impact on Engine/Fuel System Design by S.P. Bullock, A. Hobday and C. Lewis

Paper 46 withdrawn

Catalytic Combustion Concepts for Industrial Gas Turbines From MicroWatt to MegaWatt

by J.M. der Kinderen and R. van Yperen

Modification of the Fuel Control System of a Gas Turbine Engine from Kerosene to Hydrogen

by D. Dini

SESSION XII: COMBUSTION MODELLING - PART 2

44

45

47

48

Numerical Predictions and Experimental Measurements of Radiative Heat Transfer in Gas Turbine Combustors

49

by P. Di Martino and G. Cinque

Soot Formation Modelling in Turbulent Diffusion Flames by P. Di Martino and G. Cinque

50

Effkient Numerical Calculation of Evaporating Sprays in Combustion Chamber Flows by R. Schmehl, G. Klose, G. Maier and S. Wittig

51

Paper 52 withdrawn

Pollutants Emission Prediction in Combustion in Inert Porous Media by 1. Malice, X.Y. Zhou and J.C.F. Pereira

53

“111

Theme

NATO efficiency in the future Will depend largely on air superiority, long range deployment capacity and rapid response both on land and at sea. The gas turbine engine Will remain the power source of choice, and fuel efficiency, fuel availability, and exhaust emissions Will drive its design. The symposium Will focus on the combustor as the crucial engine component, and Will address the key challenges of reducing fuel consumption, lowering emission levels, and buming alternative fuels. Widening the narrow standards of today’s fuels offers a short term solution to scarcity but has detrimental effects on combustor life and emission levels. New fuels, such as liquid hydrogen and methane, offer some potential advantages, but also pose new combustion problems. The use of these fuels Will be considered, as Will the contribution of military engines to exhaust emission levels, combustor design and operating procedures, and active control of flame stability. Development tools such as combustion simulation and experimental validation Will also be discussed. Scientists and engineers Will meet military and civil operators and discussion Will concentrate on the customer’s future needs and constraints. A review of current R&D activities and formulation of specific research may result from the Symposium, for which there is no known competing event.

Thème

L’efficacité, à terme, des forces de 1’OTAN dépendra en grande partie de la supériorité aérienne, ainsi que des capacités de déploiement à grande distance et de réaction rapide sur terre et sur mer. Le turbomoteur restera le propulseur de choix et sa conception sera guidée par des considérations de rendement énergétique, de disponibilité de carburant, et d’émission de gaz polluants.

Ce symposium s’attachera à étudier la chambre de combustion en tant que composant propulsif fondamental et il examinera les défis décisifs représentés par la diminution de la consommation de carburant, l’abaissement des niveaux d’émission et les carburants de remplacement. Si l’augmentation des normes actuelles qui s’appliquent aux carburants peut fournir une solution à certains problèmes ponctuels de pénurie, elle a en revanche des effets contraires sur la durée de vie des chambres de combustion et sur les niveaux d’émission. Les nouveaux carburants, tels que l’hydrogène liquide et le méthane, offrent certes des avantages possibles, mais ils posent aussi de nouveaux problèmes de combustion.

L’utilisation de ces carburants sera étudiée, ainsi que l’apport des moteurs militaires aux problèmes des niveaux d’émission des gaz d’échappement, aux procédures de conception et d’exploitation et au contrôle actif de la stabilisation de flamme. Les outils de développement, tels que la simulation de la combustion et la validation expérimentale, seront également pris en compte. Des contacts seront établis entre scientifiques et ingénieurs d’une part, et militaires et exploitants civils d’autre part, avec des échanges de vues sur les attentes futures des utilisateurs et sur les contraintes qui leur sont imposées.

Le symposium, qui est le seul à être organisé sur ce sujet à l’heure actuelle, pourrait aboutir à une mise au point des activités courantes de recherche et développement dans ce domaine, ainsi qu’à la formulation de projets spécifiques de recherche.

ix

Recent Publications on Propulsion and Power Systems of the Former AGARD Propulsion and Energetics Pane1 and the RT0 Applied Vehicle

Technology Pane1

CONFERENCE PROCEEDINGS (CP)

Combustion and Fuels in Gas Turbine Engines AGARD CP 422, June 1988

Engine Condition Monitoring - Technology and Experience AGARD CP 448, October 1988

Application of Advanced Material for Turbomachinery and Rocket Propulsion AGARD CP 449, March 1989

Combustion Instabilities in Liquid-Fuelled Propulsion Systems AGARD CP 450, April 1989

Aircraft Fire Safety AGARD CP 467, October 1989

Unsteady Aerodynamic Phenomena in Turbomachines AGARD CP 468, February 1990

Secondary Slows in Turbomachines AGARD CP 469, February 1990

Hypersonic Combined Cycle Propulsion AGARD CP 479, December 1990

Low Temperature Environment Operations of Turboenghtes (Design and User’s Problems) AGARD CP 480, May 1991

CFD Techniques for Propulsion Applications AGARD CP 510, February 1992

Insensitive Munitions AGARD CP 5 11, July 1992

Combat Aircraft Noise AGARD CP 5 12, April 1992

Airbreathing Propulsion for Missües and Projectiles AGARD CP 526, September 1992

Heat Transfer and Cooling in Gas Turbines AGARD CP 527, February 1993

Fuels and Combustion Technology for Advanced Aircraft Engines AGARD CP 536, September 1993

Technology Requirements for Small Gas Turbines AGARD CP 537, March 1994

Erosion, Corrosion and Foreign Object Damage Effects in Gas Turbines AGARD CP 558, February 1995

Environmental Aspects of Rocket and Gun Propulsion AGARD CP 559, February 1995

LO~S Mechanisms and Unsteady Flows in Turbomachines AGARD CP 571, January 1996

Advanced Aero-Engine Concepts and Controls AGARD CP 572, June 1996

Service Life of Solid Rocket Propellants AGARD CP 586, May 1997

Aircraft Fire Safety AGARD CP 587, September 1997

Future Aerospace Technology in the Service of the Alliance - Sustained Hypersonic Flight AGARD CP 600, Volume 3, December 1997

Advanced Non-Intrusive Instrumentation for Propulsion Engines AGARD CP 598, May 1998

MEETING PROCEEDINGS (MP)

Design Principles and Methods for Aircraft Gas Turbine Engines RTA MP-8, February 1999

x

ADVISORY REPORTS (AR)

The Uniform Engine Test Programme (Results of Working Group 15) AGARD AR 248, February 1990

Test Cases for Computation of Interna1 Flows in Aero Engine Components (Results of Working Group 18) AGARD AR 275, July 1990

Test Cases for Engine Life Assessment Technology (Results of Working Group 20) AGARD AR 308, September 1992

Terminology and Assessment Methods of Solid Propellant Rocket Exhaust Signatures (Results of Working Group 21) AGARD AR 287, February 1993

Guide to the Measurement of the Transient Performance of Aircraft Turbine Engines and Components (Results of Working Group 23) AGARD AR 320, Match 1994

Experimental and Analytical Methods for the Determination of Connected - Pipe Ramjet and Ducted Rocket Internal Performance (Results of Working Group 22) AGARD AR 323, July 1994

Recommended Practices for tbe Assessment of the Effects of Atmospheric Water Ingestion on the Performance and Operability of Gas Turbine Engines (Results of Working Group 24) AGARD AR 332, September 1995

Structural Assessment of Solid Propellant Grains (Results of Working Group 25) AGARD AR 350, December 1997

CFD Validation for Propulsion System Components (Results of Working Group 26) AGARD AR 355, May 1998

LECTURE SERIES (LS)

Blading Design for Axial Turbomachines AGARD LS 167, June 1989

Comparative Engine Performance Measurements AGARD LS 169, May 1990

Combustion of Solid Propellants AGARD LS 180, July 1991

Steady and Transient Performance Prediction of Gas Turbine Engines AGARD LS 183, May 1992

Rocket Motor Plume Technology AGARD LS 188, June 1993

Research and Development of RamlScramjets and Turboramjets in Russia AGARD LS 194, December 1993

Turbomachinery Design Using CFD AGARD LS 195, May 1994

Mathematical Models of Gas Turbine Engines and their Components AGARD LS 198, December 1994

Integrated Multidisciplinary Design of Higb Pressure Multistage Compresser Systems (LS-211) published as RT0 EN 1, September 1998

AGARDOGRAPHS (AG)

Measurement Uncertainty within the Uniform Engine Test Programme AGARD AG 307, May 1989

Hazard Studies for Solid Propellant Rocket Motors AGARD AG 3 16, September 1990

Advanced Methods for Cascade Testing AGARD AG 328, August 1993

REPORTS (R)

Application of Modified LO~S and Deviation Correlations to Transonik Axial Compressors AGARD R 745, June 1990

Rotorcraft Drivetrain Life Safety and Reliability AGARD R 775, June 1990

Propulsion and Energy Issues for the 21st Century AGARD R 824, March 1997

Impact Study on the use of JET A Fuel in Military Aircraft during Operations in Europe AGARD R 801, January 1997

The Sit@e Fuel Concept and Operation Desert Shield/Storm AGARD R 810, January 1997 (NATO Unclassified)

Active Combustion Control for Propulsion Systems AGARD R 820, September 1997

xi

Programme Committee

BELGIUM

Prof. R. Jacques Ecole Royale Militaire 30 avenue de la Renaissance

1000 Bruxelles

CANADA

Mr. D. Rudnitski Head, Engine Laboratory Institute for Aerospace Research

National Research Council of Canada Ottawa. Ontario KlA OR6

GERMANY

Prof. D.K. Hennecke Fachgebiet Gasturbinen und Flugantriebe Technische Hochscbule Darmstadt

Petersenstrasse 30 64287 Darmstadt

GREECE

Prof. Dr. P. Kotsiopoulos Hellenic Air Force Academy

Chair of Propulsion Systems Dekelia, Attiki

Programme Committee Chairman Prof. R. Evans

Department of Mechanical Engineering

University of British Columbia

2324 Main Mal1 Vancouver, B.C. V6T lW5

Canada

ITALY

Prof. G. Torella Accademia Aeronautica

Dipartimento di Scienza e Applicate al Vo10 80078 Pozzuoli (Napoli)

NETHERLANDS

Prof. W. De Wolf National Aerospace Laboratory

P.O. Box 153 8300 AD Emmeloord

PORTUGAL

Prof. M.N.R. Nina CTAMFUL

Instituto Superior Tecnico Avenida Rovisco Pais 1096 Lisboa Codex

SPAIN

Prof. J. J. Salva Monfort Dept. de Motorpropulsion y Termofluidodinamica ETSIA

Plaza Cardenal Ciseros 28040 Madrid

TURKEY

Dr. T. Yafar Katirçioglu

MSG ARGE D. Ba$anligi 06650 Yucetepe

Ankara

UNITED KINGDOM

Mr. R. Cottington Research Manager Propulsion Technology Department

DERA Pyestock Farnborough, Hants, GU14 OLS

Prof. R.S. Fletcher Deputy Vice Chancellor

Cranfield Institute of Technology Cranfield, Bedford MK43 OAL

UNITED STATES

Prof. F. Culick California Institute of Technology

205 Guggenbeim Mail Stop 205-45 Pasadena, CA 91125

Mr. R. Hi11 Chief of Technology

WLIPOT, Building 18 1950 Fifth Street Wright Patterson Air Force Base, OH 45433-7251

Dr. C. Russo Director of Aeronautics NASA Lewis Research Center

MS 3-8 21000 Brookpark Road

Cleveland, Ohio 44135

Dr. K. Schadow Head, Propulsion Research Section Code 47420D, NAWCIWD

First Administration Circle, MS 104d China Lake, CA 93555-6001

xii

I REPORT DOCUMENTATION PAGE / 1. Recipient’s Reference 2. Originator’s References 3. Further Reference 4. Security Classification

of Document

RTO-MP- 14 ISBN 92-837-0009-o UNCLASSIFIED/

AC/323(AVT)TI’/lO UNLIMIl-ED

5. Originator Research and Technology Organization North Atlantic Treaty Organization BP 25, 7 rue Ancelle, F-92201 Neuilly-sur-Seine Cedex, France

6. Title Gas Turbine Engine Combustion, Emissions and Alternative Fuels

7. Presented atkponsored by

the Applied Vehicle Technology Pane1 (AVT) Symposium (organized by the former AGARD Propulsion and Energetics Pane1 (PEP)), held in Lisbon, Portugal, 12-16 October 1998.

8. Author(s)/Editor(s)

Multiple

9. Date

June 1999

10. Author’siEditor’s Address

Multiple

12. Distribution Statement

11. Pages

616

There are no restrictions on the distribution of this document. Information about the availability of this and other RT0 unclassified publications is given on the back caver.

13. Keywords/Descriptors

Gas turbine engines Performance evaluation Combustion Research projects Combustion chambers Combustion efficiency Fuel consumption Combustion control Exhaust en-rissions Mathematical models Jet engine fuels Computerized simulation Aviation fuels Optical measurement Availability Emission control Alternative fuels Design Aircraft engines Ignition

14. Abstract

The symposium dealt with Gas Turbine Engine Combustion, Emissions and Alternative Fuels. Forty-six papers and a Keynote Address elucidated the role of the combustion process as a crucial factor of engine performance and operability under various conditions including non- standard, new fuels and environmental effects of civil and military interest.

There were 12 Sessions covering the following topics (some in 2 sessions):

- Gas Turbines in Land, Sea and Air Applications - Low-Emission Combustors - Combustion Modelling - Optical Measurements - Emissions - Combustor Design - Ignition Processes - Active Combustion Control - Alternative Fuels

NORTH ATLANTIC TREATY ORGANIZATION

RESEARCH AND TECHNOLOGY ORGANIZATION

BP 25 l 7 RUE ANCELLE

F-92201 NEUILLY-SUR-SEINE CEDEX. FRANCE

Télécopie 0(1)55.61.22.99 . E-mail mailboxQrta.nato.int

DIFFUSION DES PUBLICATIONS

RT0 NON CLASSIFIEES

L’Organisation pour la recherche et la technologie de I’OTAN (RTO), détient un stock limité de certaines de ses publications récentes, ainsi que de celles de l’ancien AGARD (Groupe consultatif pour la recherche et les réalisations aérospatiales de I’OTAN). Celles-ci pourront éventuellement être obtenues sous forme de copie papier. Pour de plus amples renseignements concernant l’achat de ces ouvrages, adressez-vous par lettre ou par télécopie à l’adresse indiquée ci-dessus. Veuillez ne pas téléphoner.

Des exemplaires supplémentaires peuvent parfois être obtenus auprès des centres nationaux de distribution indiqués ci-dessous. Si vous souhaitez recevoir toutes les publications de la RTO, ou simplement celles qui concernent certains Panels, vous pouvez demander d’être inclus sur la liste d’envoi de l’un de ces centres.

Les publications de la RT0 et de I’AGARD sont en vente auprès des agences de vente indiquées ci-dessous, sous forme de photocopie ou de microfiche. Certains originaux peuvent également être obtenus auprès de CASI.

CENTRES DE DIFFUSION NATIONAUX

ALLEMAGNE ISLANDE Fachinformationszentrum Karlsruhe Director of Aviation D-76344 Eggenstein-Leopoldshafen 2 c/o Flugrad

BELGIQUE Reykjavik

Coordinateur RT0 - VSL/RTO ITALIE Etat-Major de la Force Aérienne Aeronautica Militare Quartier Reine Elisabeth Ufficio Stralcio RTO/AGARD Rue d’Evère, B-l 140 Bruxelles Aeroporto Pratica di Mare

CANADA 00040 Pomezia (Roma)

Directeur - Recherche et développement - LUXEMBOURG Communications et gestion de l’information - DRDCGI 3

Voir Belgique

Ministère de la Défense nationale NORVEGE Ottawa. Ontario KlA OK2 Norwegian Defence Research Establishment

Attn: Biblioteket DANEMARK P.O. Box 25

Danish Defence Research Establishment Ryvangs Allé 1, P.O. Box 2715

N-2007 Kjeller

DK-2 100 Copenhagen 0 PAYS-BAS

ESPAGNE NDRCC

INTA (RTO/AGARD Publications) DGM/DWOO

Carretera de Torrejon a Ajalvir, Pk.4 P.O. Box 20701

28850 Torrejon de Ardoz - Madrid 2500 ES Den Haag

ETATS-UNIS PORTUGAL

NASA Center for AeroSpace Information (CASI) Estado Maior da Força Aérea

Parkway Center, 7121 Standard Drive SDFA - Centro de Documentaçao

Hanover, MD 21076-1320 Alfragide P-2720 Amadora

FRANCE O.N.E.R.A. (Direction) ROYAUME-UNI

29, Avenue de la Division Leclerc Defence Research Information Centre

92322 Châtillon Cedex Kentigem House 65 Brown Street

GRECE Hellenic Air Force

Glasgow G2 8EX

Air War College TURQUIE Scientific and Technical Library Millî Savunma Bagkanliii (MSB) Dekelia Air Force Base ARGE Dairesi Bavkanliii (MSB) Dekelia, Athens TGA 1010 06650 Bakanliklar - Ankara

AGENCES DE VENTE

NASA Center for AeroSpace Information (CASI)

Parkway Center 7121 Standard Drive Hanover, MD 2 1076- 1320 Etats-Unis

The British Library Document Supply Centre

Boston Spa, Wetherby West Yorkshire LS23 7BQ Royaume-Uni

Canada Institute for Scientific and Technical Information (CISTI)

National Research Council Document Delivery, Montreal Road, Building M-55 Ottawa KlA OS2 Canada

Les demandes de documents RT0 ou AGARD doivent comporter la dénomination “RTO” ou “AGARD” selon le cas, suivie du numéro de série (par exemple AGARD-AG-315). Des informations analogues, telles que le titre et la date de publication sont souhaitables. Des références bibliographiques complètes ainsi que des résumés des publications RT0 et AGARD figurent dans les journaux suivants:

Scientific and Technical Aerospace Reports (STAR) STAR peut être consulté en ligne au localisateur de ressources uniformes (URL) suivant:

http://www.sti.nasa.gov/Pubs/star/Star.html STAR est édité par CAS1 dans le cadre du programme NASA d’information scientifique et technique (STI) ST1 Program Office, MS 157A NASA Langley Research Center Hampton, Virginia 2368 l-0001 Etats-Unis

Government Reports Announcements & Index (GRA&I) publié par le National Technical Information Service Springfield Virginia 2216 Etats-Unis (accessible également en mode interactif dans la base de données bibliographiques en ligne du NTIS, et sur CD-ROM)

Imprimé par le Groupe Communication Canada Inc. (membre de la Corporation St-Joseph)

45, boul. Sacré-Cœur, Hull (Québec), Canada KIA OS7

NORTH ATLANTIC TREATY ORGANIZATION

RESEARCH AND TECHNOLOGY ORGANIZATION

BP 25.7 RUE ANCELLE

F-92201 NEUILLY-SUR-SEINE CEDEX l FRANCE

Telefax 0(1)55.61.22.99 l E-mail [email protected]

DISTRIBUTION OFUNCLASSIFIED

RT0 PUBLICATIONS

NATO’s Research and Technology Organization (RTO) holds limited quantities of some of its recent publications and those of the former AGARD (Advisory Group for Aerospace Research & Development of NATO), and these may be available for purchase in hard copy form. For more information, Write or send a telefax to the address given above. Please do not telephone.

Further copies are sometimes available from the National Distribution Centres listed below. If you wish to receive all RT0 publications, or just those relating to one or more specifïc RT0 Panels, they may be willing to include you (or your organisation) in their distribution.

RT0 and AGARD publications may be purchased from the Sales Agencies listed below, in photocopy or microfiche form. Original copies of some publications may be available from CASI.

NATIONAL DISTRIBUTION CENTRES

BELGIUM Coordinateur RT0 - VSLIRTO Etat-Major de la Force Aérienne Quartier Reine Elisabeth Rue d’Evère, B-l 140 Bruxelles

CANADA Director Research & Development

Communications & Information Management - DRDCIM 3

Dept of National Defence Ottawa, Ontario KlA OK2

DENMARK Danish Defence Research Establishment Ryvangs Allé 1, P.O. Box 2715 DK-2 100 Copenhagen 0

FRANCE O.N.E.R.A. (Direction) 29 Avenue de la Division Leclerc 92322 Châtillon Cedex

GERMANY Fachinformationszentrum Karlsruhe D-76344 Eggenstein-Leopoldshafen 2

GREECE Hellenic Air Force Air War College Scientifîc and Technical Library Dekelia Air Force Base Dekelia, Athens TGA 1010

ICELAND Director of Aviation c/o Flugrad Reykjavik

ITALY Aeronautica Militare Uftïcio Stralcio RTO/AGARD Aeroporto Pratica di Mare 00040 Pomezia (Roma)

LUXEMBOURG See Belgium

NETHERLANDS NDRCC DGM/DWOO P.O. Box 20701 2500 ES Den Haag

NORWAY Norwegian Defence Research Establishment Attn: Biblioteket P.O. Box 25 N-2007 Kjeller

PORTUGAL Estado Maior da Força Aérea SDFA - Centro de Documentaçao Alfragide P-2720 Amadora

SPAIN INTA (RTOIAGARD Publications) Carretera de Torrejon a Ajalvir, Pk.4 28850 Torrejon de Ardoz - Madrid

TURKEY Millî Savunma Baqkanligi (MSB) ARGE Dairesi Bavkanligi (MSB) 06650 Bakanliklar - Ankara

UNITED KINGDOM Defence Research Information Centre Kentigem House 65 Brown Street Glasgow G2 8EX

UNITED STATES NASA Center for AeroSpace Information (CASI) Parkway Center, 7121 Standard Drive Hanover, MD 21076-1320

SALES AGENCIES

NASA Center for AeroSpace Information (CASI)

Parkway Center 7121 Standard Drive Hanover. MD 21076-1320 United States

The British Library Document Supply Centre

Boston Spa, Wetherby West Yorkshire LS23 7BQ United Kingdom

Canada Institute for Scientific and Technical Information (CISTI)

National Research Council Document Delivery, Montreal Road, Building M-55 Ottawa KlA OS2 Canada

Requests for RT0 or AGARD documents should include the word ‘RTO’ or ‘AGARD’, as appropriate, followed by the serial number (for example AGARD-AG-315). Collateral information such as title and publication date is desirable. Full bibliographical references and abstracts of RT0 and AGARD publications are given in the following joumals:

Scientific and Technical Aerospace Reports (STAR) STAR is available on-line at the following uniform resource locator:

http://www.sti.nasa.gov/Pubs/star/Star.html STAR is published by CAS1 for the NASA Scientific and Technical Information (STI) Program ST1 Program Office, MS 157A NASA Langley Research Center Hampton, Virginia 2368 l-0001 United States

Government Reports Announcements & Index (GRA&I) published by the National Technical Information Service Springfield Virginia 22 16 1 United States (also available online in the NTIS Bibliographie Database or on CD-ROM)

Printed by Canada Communication Group Inc. (A St. Joseph Corporation Company)

45 Sacré-Cœur Blvd., Hull (Québec), Canada KIA OS7

ISBN 92-837-0009-o