fundamentals on electronics part 2: a design oriented ...jose silva-martinez 3 3 pipeline cell...

64
Jose Silva - Martinez 0 1 st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies Jose Silva-Martinez Department of Electrical and Computer Engineering Texas A&M University Fundamentals on Electronics Part 2: A Design Oriented Teaching Methodology

Upload: others

Post on 12-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 0

1st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Jose Silva-Martinez

Department of Electrical and

Computer Engineering

Texas A&M University

Fundamentals on Electronics Part 2: A

Design Oriented Teaching Methodology

Page 2: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 1

Outline

• Introduction

Background

• TechnologyTransistor models

• Basic Configurations

Current mirrors and diff pair

• Amplifiers for Pipeline ADCsCapacitive loaded amplifiers

• Amplifiers for Sigma-Delta ModulatorsResistive loaded amplifiers

• Conclusions

Page 3: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 2

Conventional (Nyquist) ADC

A/D

Data

Out

Vin

SQNR=6.02*n+1.76

Page 4: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 33

Pipeline Cell (sub-ADC and MDAC)

Φ1

Φ2

Φ2

Φ1

M

C1

C2

A

MUX

-VR

VR

VR/4

VIN

-VR/4

VOUT

Sub-ADC MDAC

1.5bits/stage

S/H and Gain Stage

VD

AC

INC

INC

VCq

VCqq

21,2

11,1

1

DACC

OUTC

VCq

VCqq

22,2

12,1

2

1

2

1

21C

CV

C

CVV DACINOUT

021 CC qq

Implementation of Pipeline Stages

Page 5: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 44

MDAC

Φ2

Φ1

Φ2

Φ1eC1

AVOUT

VIN

Ф2

CL

C2 x

VDAC

Ideal (C1=C2)

Ideal Transfer Function (1.5bits/stage):

Φ2

Φ1

Φ2

Φ1eC1

AVOUT

VOS

VIN

Ф2

CL

C2

CP

x

VDAC

Real (C1≠C2), finite OPAMP, non-

ideal switches

Real Transfer Function (1.5bits/stage):

Implementation of Pipeline Stages

Page 6: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 5

Design of Operational Amplifiers for High-

Performance ADCs

Part II: Basic Modeling

Jose Silva-Martinez

Department of ECE

Texas A&M University

[email protected]

Page 7: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 6

MOS Transistor: Basic Model

substrate

P+ P+

S G D

P-channel

N

N+

B

D

S

BG

P-type transistor

Thick oxideThin oxide

Polysilicon (heavily doped)

L

W

Page 8: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 7

OUTPUT RESISTANCE (SATURATION REGION)

Drain current

substrate

P+ P+

S G D

N+

B

Depletion region

Channel length modulation is a second (unreliable) order effect!

(Badly) Represented in SPICE by using or a more complex model.

Simulated and experimental results might be off by more than 100%

Channel Length Modulation

DSTGS

eff

OXD VVV

L

WCi

1

2

2

Leff

Lch

0

VD

S

IDS

VGS2

=0

Measure this parameter!

Page 9: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 8

Transistor Model: Capacitances

23

2

substrate

N+ N+

VS=0 VG>VTVD>0

P (NA)

P+

B

Csb Cdb

Cchb

Cgs

CgdoCgso

L*W*CjC

CjswCjbC

CjswCjbC

L*Wt

C

ChB

DB

SB

OX

OXGCh

Triode

2

L*W*CjdPd*CjswAd*CjdC

2

L*W*CjsPs*CjswAs*CjsC

CC

L*W*t2

L*W*

tC

DB

SB

GSGD

D

OX

OX

OX

OXGS

Pd*CjswAd*CjdC

L*W*Cjs*3

2Ps*CjswAs*CjsC

L*W*t

C

L*W*t

L*W*t

*3

2C

DB

SB

D

OX

OXGD

D

OX

OX

OX

OXGS

Saturation

Page 10: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 9

Small Signal Model (Saturation region)

Small signal model (saturation region)

B

gogmbvbs

gmvgs

B

D

Cdb

Cgd

Cgs

Cbs

S

S’

GD

....vv

iv

v

i

vv

iV1VV

L

W

2

Ci

2V2VV

V1VVL

W

2

Ci

bs

Qbs

Dds

Qds

D

gs

Qgs

D

Q

DS2

TGSeff

OXD

FSBF0TT

DS2

TGSeff

OXD

SBF

m

Qbs

T

Q

TGS

eff

OX

Qbs

Dmb

Q

TGS

eff

OX

Qds

D

Q

TGS

eff

OX

Qgs

Dm

V

g

v

V*VV

L

WC

v

ig

VVL

WC

v

ig

VVL

WC

v

ig

22

2

20 bsmbds0gsmDD vgvgvgIi

Page 11: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 10

Other important effects! Mobility of the carriers is voltage dependent

MOBILITY DEGRADATION: VERTICAL ELECTRIC FIELD

A bit more accurate equation:

L

V

V1

1

VVTHETA1

1

DS

MAX

0TGS0

Electric Field

VELOCITY

TGS0

VVTHETA1

1

MOBILITY DEGRADATION: LATERAL ELECTRIC FIELD

L

V

V1

1

L

V1

1

DS

MAX

00

CRIT

DS0Effect of the drain-source electric filed

THETA IS A FITTING PARAMETER ~ 0.1-0.5 V-1

Page 12: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 11

Saturation region :

As V(x) increases Qinv(x) decreases. Its minimum is at the drain

the drain is in the pinch-off condition.

If VDS > Vsat,

satDSA

VVqN

2L

DSsatDS2

AsatDS2

A

V1VVLqN

1

VVLqN

21

1

LL

L

Page 13: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 12

• Avalanche: drain current ID and a substrate current IB

• The substrate current may contribute to latch-up

• The device noise increases

• The output impedance decreases

• Carriers can be trapped on the oxide and the VTh changes (hot

electron effect)

Page 14: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 13

Saturation region :

DSsatDS2

AsatDS2

A

V1VVLqN

1

VVLqN

21

1

LL

L

More accurate expression of the output conductance : very non-linear!

(first order) (short channel) (velocity saturation) (avalanching)

DS

S

DS

D

DS

T h

mDds

V

I

V

I

V

VgIg

Page 15: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 14

Deep Submicron Technologies: first order equations

are really off from real system performance

Qgs

d

v

iGm

Linear function

Hot carriers

Quadratic function

Subthreshold region

Characterize your technology before you start you design!!

Quasi-linear Gm

Deep Submicron Technologies: Cadence

Page 16: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 15

Deep Submicron Technologies: Linearity Issues

Sweet spots are quite sensitive to PVT variations

Linearity could be good for small signals only: hard to use it in broadband

applications, but….

Large HD2 and HD3 requires huge power consumption and large parasitics

Characterize for Gm/Cgs (speed)

Measure Cgd

Measure gds and Av

Page 17: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 16

Design of High-Performance Mixed-Mode

Systems

Part III: Basic Building Blocks

Page 18: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 17

Current Mirrors

VGS

VDS

+

_

+

_

DS

2

TGS

OXn

DV1VV

L

W

2

CI

ID

TGDTGSDSTGS VVVorVVVandVV

If

DS

OXn

D

TGS

V1L

W

2

C

I2VV

or

VGS

+

_

ID

1

ID

2

1DS

2

TGS

OXn

1DV1VV

L

W

2

CI

M1=M2 =>

2DS

2

TGS

OXn

2DV1VV

L

W

2

CI

ID1 generates the voltage VGS

VGS generates ID2

M1 M2

Page 19: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 18

Current Mirrors: Accuracy limitations

VGS

+

_

ID1 ID2

M1 M2

In general (W/L)2=N(W/L)1, most probably VT1VT2, then

1D

1DS12

1TGS1P

2DS22

2TGS2P1D

1DS12

1TGS

1

OXn

2DS22

2TGS

2

OXn

2D

2DS22

TGS

2

OXn2D

NIV1VVK

V1VVKI

V1VVL

W

2

C

V1VVL

W

2

C

I

V1VVL

W

2

CI

1DS12DS2 VVError

L

1 Long devices reduce the

error; make VDS1=VDS2

1P2P KKError

Errors can be reduced (but not

eliminated) by using replicas of the

main device and good layout!

1T2T VVError

Good solution ==> use cascode structures

Effective mobility and

threshold voltages are

sensitive to VDS.and

Vdsat

Current Mirrors

Page 20: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 19

DC Current Mirrors: Second-Order Effects

VGS

+

_

ID1 ID2

M1 M2

NV1VV

V1VV

I

I

1DS1

2

1TGS1n

2DS2

2

2TGS2n

1D

2D

12Error

Error is minimized by using

replicas of the basic device

1T2TVVError

crit

dsgs

0

L

V1

1

V1

1

W

VT

VT0

1-3m

Mobility degradation

After good layout: Tolerances in N are in the range of 0.5-2 %. Usually

mismatches are inversely proportional to gate area!

Intra-die VT mismatches are

inversely proportional to

gate area!

Current Mirrors

Page 21: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 20

Small signal analysis: AC components id1-2

VGS

+

_

ID1 + id1

M1 M2

02021d

011m

2m

2dvgi

gg

gi

Notice:

•gm1vgs1 is controlled by its own terminal

==> represents an impedance (conductance =gm1)

•The output resistance is given by r02If the capacitors are considered,

g01=1/r01==> g01+sCeq

g02==> g02+sCeq2

Also, you have to consider the

overlapping capacitor CGD2

..vsCg

gg

Cs1

i

gg

gi

022eq02

011m

1eq

1d

011m

2m

2d

G1 D1,G2 D2

iD1 iD2

r01r02

gm1vgs1

gm2vgs2

ID2 + id2

Current Mirrors

Page 22: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 21

IMPEDANCE: Basic Configurations

Vd1

+

_

id1

M1

G1 D1

iD1

r01gm1vgs1

011m

1

1d011m1d

gg

1Z

vggi

VSS

vin

idG1 D1

id

r01gm1vin

vin

VB

If Vd~0

but be careful

when using this

approximation

Can you ignore gmb?

VdVd

𝑖𝑑 = 𝑔𝑚1 + 𝑔01 𝑣𝑖𝑛 − 𝑔01𝑣𝑑

𝑍𝑖𝑛 =1 +

𝑍𝐿𝑟01

𝑔𝑚1 + 𝑔01

𝑍𝑖𝑛 ≈1

𝑔𝑚1 + 𝑔01

Cascode Transistors

Page 23: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 22

Output impedance: Cascode stage

OUTPUT IMPEDANCE

D2

iD2

r02

id2

gm4vs4

v02

S4

r04

0ini02

2dout

v

iY

4s022d

4s4m044s022d

vgi

vggvvi

04024m0402outrrgrrZ

Notice that most of the AC current re-circulates within the cascode device and only id2 is extracted from r02 !!

This is the main advantage of the cascode architecture

g02 vs4

Page 24: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 23

Improved (self regulated) current source

ID

1

ID

2

M3

M4

VGS1

+

_M1 M2

+

_VDS2

+

_

VDS4

0402V4mout

rrA1gr

-AVVs4

D2

iD2

r02

iD2

gm4(1+AV)vs4

S4

r04

Similar to double cascode

Key issue: Please understand the concept!!

Signal swing Vgs increases drastically due to auxiliary amplifier

Page 25: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 24

Noise

Noise Unwanted electrical signals generated in the device

or externally and coupled to the output of the system.

Make impossible to detect, with sufficiently quality,

signals with an amplitude comparable to the noise

level.

Thermal Noise

Intrinsic Flicker Noise

Noise

Extrinsic Surrounding Circuitry

(PSRR, CMRR)

Page 26: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 25

Thermal Noise in resistors

Due to the random flow of the carriers, thermal noise

(undesired current variations) is produced due to

Collisions of carries with the crystal

Collisions between carriers

Fluctuations increase with temperature

Random fluctuations

RMS value of these variations is quasi-uniformly spread up to several GHz

Power Noise Density: Usually noise is characterized by its Spot power

noise (RMS power in bandwidth of 1 Hz) at a given frequency

vn12

R1f

vn12

1x

2

1n kTR4fv

fX

dfvvoltsv0

2

1n

22

ntotal

This integral gives infinite total noise, but

usually capacitors limit the bandwidth

leading to a finite value

Page 27: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 26

Thermal Noise in resistors

Thermal noise in resistors can be characterized in terms of voltage noise

density or current noise density

1

2

1n kTR4v

vn12

R1

in12=4kT/R1

R1

Hz/Ampsi

Hz/Voltsv

22

1n

22

1n

Units

02

2

total

2

2

n

2

2

n0

C

kT4df

RC1

kTR4v

ascomputedispowernoisetotal,and

RC1

kTR4v

sRC1

1v

+vin

-

vn Rv0

C

Page 28: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 27

Flicker Noise (1/f)

- Due to imperfections in the Si - SiO2 interface. The traps and

imperfections interfere with the charges flowing through the

channel.

- Strongly dependent of the technology

kF = fitting parameter

f = frequency

IDS = drain current

fLC

Iki

2

ox

DSF2

d

Page 29: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 28

Typical noise spectrum

f

veq2

fc

Flicker

Thermal

f(log)

2eqv

IM3 IM3

fo1 fo2

signal power of the signal

noise + THD power noise + power THD

Corner frequency is obtained

equating the expression for

Flicker and Thermal noise and

solving for fc

Signal tones

Page 30: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 29

Differential Pair: Linear range is limited to VDSAT

id1

IB

M1 M1

v1 v2

id2

2

1DSAT

21211m2d

2

1DSAT

21211m1d

V2

vv1

2

vvg

2

IBi

V2

vv1

2

vvg

2

IBi

If both transistors are saturated and IB is ideal (rIB=)

2T2gs

OXn

2d

2

T1gs

OXn

1d

2d1d

VVL

W

2

Ci

VVL

W

2

Ci

IBii

Solving these equations => Valid for |v1-v2| < 21/2VDSAT1

IB

IB/2

-21/2VDSAT121/2VDSAT1

LINEAR

REGION

V1-V2

-VDSAT1

VDSAT1

Page 31: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 30

Differential Pair

id1

IB

M1 M1

v1 v2

id2

The diff pair is a nonlinear circuit

If vd=v1-v2<VDSAT1 =>

IB

-VDSAT1VDSAT1

LINEAR

REGION

V1-V2

2

1DSAT

21

211m2d1dV2

vv1vvgii

Non-linear term

21BOXn2d1d

vvIL

WCii

Note:

Linear range increases for large VDSAT1

VGS is also increased (limited by supply

headroom)

Page 32: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 31

Basic Operational Transconductance Amplifier

id1

IB

M1 M1

v1 v2

id2

DESIGN CONSIDERATIONS:

Vd=v1-v2 < VDSAT

V1,2 -VSS >VGS1+VDSATB

21mout

21BOXnout

vvgi

or

vvIL

WCi

iout

VSS

VDD

id1

For an ideal current source and ignoring the effects of gmb, and transistor mismatches, then

iout=0 for v1=v2 ==> rejection to common-mode (noise) signals present at the input!

Sensitive to differential signals

op1oout

21outmout

IIrrr

vvrgv

For small signals, ignoring the capacitors:

Page 33: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 32

Unbalance in Frequency Response: pole-zero pair

id1

IB

M1 M1

v1

id2

iout

id1 0.5gmvd 1/gmp’CX

Vx

gmR0

1/R0C0

VX

gmpvx

CO

Vo

-0.5gmvd

Ro

d

00

0md

00

0m

'

mp

0

'

mp

mp

0 VCSR1

Rg5.0V

CSR1

Rg5.0

g

CS1

g

g

V

Vout

AV1

AV2

OPONO RRR MP’ MP

d

00

0m

'

mp

0

'

mp

mp

0 VCSR1

Rg5.0

g

CS1

g

g

1V

𝑠 = 𝑗𝜔

Differential

Single ended

Page 34: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 33

Issue Find the best possible values for Wn, Ln, Wp, Lp, IB, Wb, Lb

id1

IB

M1 M1

v1

id2

ioutVX

M2 M2

v2

Main Specs: 7 unknowns, how many equations?

Fundamental equations: Example

Small Signal Transconductance

Av

CLoad

GBW

Phase margin

Slew-rate

Noise level

CMRR (deals with the tail current)

Minimize power

Noise due to the tail current is not very relevant in this case!

Notice that Noise and PSRR properties held until the frequency the parasitic pole is negligible

Page 35: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 34

element 0:m1 0:m2 0:m3 0:m4

model 0:nmos 0:nmos 0:pmos 0:pmos

id 50.8791u 49.1209u -50.8791u -52.3328u

ibs -1.3599f -1.3599f 0. 0.

ibd -6.0353f -4.5000f 5.9294f 9.0000f

vgs 1.0467 1.0467 -988.2359m -988.2359m

vds 1.5585 1.0467 -988.2359m -1.5000

vbs -453.2843m -453.2843m 0. 0.

vth 935.7189m 937.3317m -796.3484m -795.0981m

vdsat 85.8964m 84.6227m -153.0961m -154.1901m

beta 10.5141m 10.4579m 3.4418m 3.4921m

gam eff 615.7505m 617.1949m 441.0793m 439.6443m

gm 917.2562u 898.5322u 530.5610u 542.4369u

gds 3.1829u 3.6270u 3.1005u 2.6071u

gmb 241.1968u 236.4976u 124.0201u 126.5817u

cdtot 168.5315f 174.6577f 190.8988f 179.7177f

cgtot 763.3385f 763.1155f 797.8187f 798.3587f

cstot 786.8845f 786.8845f 872.1273f 872.1273f

cbtot 253.8979f 261.0102f 304.0716f 292.1262f

cgs 660.5874f 660.5874f 707.1273f 707.1273f

cgd 71.8408f 71.2364f 71.2593f 71.9114f

Design Example: Check your operating point and parameters!

Page 36: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 35

Design of Operational Amplifiers for High-

Performance ADCs

Part III: Amplifiers for Pipeline ADCs

Jose Silva-Martinez

Department of ECE

Texas A&M University

[email protected]

Page 37: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 36

SR Function of an OTA Based SC Circuit

For input voltage swing is less than 𝑽𝒅𝒔,𝒔𝒂𝒕, the input transistors operate as a diff pair.

For input voltages higher than 𝑽𝒅𝒔,𝒔𝒂𝒕, the input transistors operate in slew-mode: ON or OFF.

The OTA delivers constant amount of current at its output (during slew phase) delivering a quasi-constant current.

vi+

vo+vo-

vi-

VDD

M1 M2

io+io-

vi+-vi-

io+io-

-VDS-SAT VDS-SAT

IBIB

2IB

2IB

Linear

Region

Slew

Region

Slew

Region

Page 38: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 37

The initial Vx voltage at amplifier input would be even larger when 𝑽𝒄𝟏,𝟐 𝒕𝟎 andthe input voltage 𝑽𝒊(𝒕𝟎+) have opposite polarity. Slew effects may appear even forsmall signals

This leads to the larger slewing time.

C2

C1

vo

vi-

+

C2

C1

vo

vi

-

+

vx

IB

vx

ix

Time

Slew Region

IB /C1

t0

Linear Settling

VX

0

t1

VX (t0+)

VDS,SAT

𝑉𝑥(𝑡0+) = 𝑉𝑖(𝑡0+) − 𝑉𝑐1 𝑡0

If the capacitors are Pre-charged

Slew-Rate: OTA Based SC Circuit

Unloaded switched-capacitor circuit: Step Response

𝑉𝑥 𝑡 = 𝑉𝑥 𝑡0+ −𝐼𝐵𝐶1

. 𝑡 − 𝑡0+

Page 39: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 38

SR is a function of the capacitor’s initial conditions as well as input signal:

Increasing bias current reduces Tslew : POWER HUNGRY SOLUTION

𝑇𝑠𝑙𝑒𝑤 = 𝑉𝑥 𝑡0+ − 𝑉𝑑𝑠_𝑠𝑎𝑡𝐶1𝐼𝐵

1 +𝐶𝑃 + 𝐶𝐿 1 +

𝐶1 + 𝐶𝑃𝐶2

𝐶1

Time

Slew Region

Ix /C1+Cp

t0

VX

0

t1

VX (t0+)

VDS,SAT

Linear Settling

Larger Initial

Voltage

Smaller (Dis)charging CurentC2

C1

vo

vi

-

+

C2

C1

vo

vi

-

+

vx

IB

vx

CP

CL CL

CP

ix

𝑉𝑥 𝑡0+ =𝐶1 𝑉𝑖 𝑡0+ − 𝑉𝑐1 𝑡0 − 𝐶𝑃𝑉𝐶𝑃 𝑡0

𝐶1 + 𝐶𝑃 +𝐶2𝐶𝐿𝐶2 +𝐶𝐿

+

𝐶2𝐶𝐿𝐶2 +𝐶𝐿

𝑉𝐶𝐿 𝑡0 − 𝑉𝑐2 𝑡0

𝐶1 + 𝐶𝑃 +𝐶2𝐶𝐿𝐶2 +𝐶𝐿

Slew-Rate: OTA Based SC Circuit

Loaded switched-capacitor circuit: Step ResponseNaderi, TCAS-I, Nov. 2018

Page 40: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 39

SR Function of an OTA Based SC Circuit

Different slewing-time of the Class A residue amplifier based on the initial stored-voltage

on the load capacitor: a) VREF+ b) Common-mode Voltage c) VREF-

The more demand for voltage slewing swing at the output causes larger voltage step atthe input of the RA during its linear region.

The 0.25% settling time for each case is 0.8 nsecs, 1.25 nsecs and 1.75 nsecs,respectively.

The worst-case condition increases the settling time by more than a factor of 2.

Page 41: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 40

OTAs for high speed SC circuits • Folded-Cascode OTA:

eff_L

TAIL

C

ISR

For SR, the current

efficiency is 50 %

Vin-

Vin+

VBN

VBP

Vout-

VCMFB

VBN

VBP

Vout+

VCMFB

VSS

VDD

TAILI2

TAILITAILI

M1 M1

M3VBIASM2 M2

M3

M4

M5

M3

M4

M5eff_L

m

C

gGBW

1

33

3

SBGS

mnd

CC

g

2ITAIL2ITAIL

J. Adut, et.al., TCAS-I, 2006

Potential solutions

Page 42: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 41

Vin-

Vin+

VBN

VBP

Vout-

VCMFB

VBN

VBP

Vout+

VCMFB

VSS

VDD

M1 M1

M2 M2

M3

M4

M5

M3

M4

M5

M7 M7

N : 1 1 : N

N1

I4 TAIL

N1

NI2 TAIL

N1

NI2 TAIL

Current-mirror-cascode

OTA: 2 parasitic poles

eff_L

TAIL

C

I

N

NSR

1

2

For SR, current efficiency is >50%

(Better than folded-cascode OTA if N>1)

eff_L

m

C

NgGBW

1

3

7

1

1

GS

mnd

C

g

N

OTAs for high speed SC circuits

Potential solutions

Page 43: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 42

OTAs for high speed SC circuits

Vin-

Vin+

VBN

VBP

Vout-

VCMFB

VBN

VBP

Vout+

VCMFB

VSS

VDD

M1P

M2 M2

M3

M4

M5

M3

M4

M5

3

I4 TAIL

3

I4 TAIL

3

I4 TAIL

VDD

M1N

3

I4 TAIL

VSS

M1N

M1P

• Double Diff pair

OTA: 2 parasitic

poles + 1 Zero

eff_L

TAIL

C

ISR

3

4

For SR, the current efficiency is 66 %

(In practice better than FC- OTA)

N

Pm

P

Nmm s

g

s

gG

11

11

44

4

CSBGS

mnd

C

g

Potential solutions

Page 44: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 43

Multi-Path OTA

Vin-

Vin+

VBN

VBP

Vout-

VCMFB

VBN

VBP

Vout+

VCMFB

VSS

VDD

1 : N

1 : M

N : 1

M : 1

NM1

I8 TAIL

1NM

I1NM2 TAIL

1NM

I1NM2 TAIL

M1 M1 M1 M1

M6M6

M7M7

M2 M2

M3

M4

M5

M3

M4

M5

12

1

21

1

1

1

11111

PN

m

NN

m

N

mm

ss

Mg

ss

Ng

s

gG

NMC

g

GS

mnd

16

6

eff_L

TAIL

C

I

NM

NMSR

2

1

1

J. Adut and et.al., TCAS-I, 2006

Page 45: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 44

Step Response: SR, poles and zeros

0 1 2 3 4 5 6 7 8

Time (nsecs)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Outp

ut

vo

ltag

e (V

)

Folded-cascode

Complementary

Current mirror

3-path

5 6 7 8

Time (nsecs)

0.485

0.490

0.495

0.500

0.505

Outp

ut

vo

ltag

e (V

) 3-path

Complementary

Folded-cascode

Current-mirror

Parameter F-Cascode Current mirror 2 diff pairs 3-path OTA

DC gain [dB] 55.9 56 60.6 60.4

Ts[0.1%] [ns] 5.3 4.9 4.7 4.2

Settling error [%] 1.15 0.75 0.95 0.42

Ideal output

Page 46: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 4545

How to enhance efficiency? Recycle idle currents by actively using idle devices → RFC

Power Inefficiency Current sink devices conduct most current, but are idle as far as signal is concerned

Current sink devices contribute significant noise at the output

Folded Cascode Best suited single-stage amplifier for high speed and low voltage operation

Not as power efficient as the telescopic; half efficiency!

Vin-Vin+ Vout+

GND

Vbp1

Vbp2

Vbn2

VDD

M1 M2

M5 M6

M7 M8

M9 M10

M0

IT

IT/2IT/2

Vbp2

Vbn2

Vout-

VCMFB VCMFB

Vbn1 ITIT

M3 M4

Recycling Folded Cascode (RFC)

Architecture

Vin-Vin+Vout+

GND

Vbp1

Vbp2

Vbn2

VDD

M1a M2a

M5 M6

M7 M8

M9 M10

M0

IT

I T (K

-1)/

4

I T (K

-1)/

4

Vbp2

Vbn2

Vout-

VCMFB VCMFB

M3b M4bM3a

M1b M2b

M4a

1 : KK : 1

K I

T/4

K I

T/4

I T/4

Page 47: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 4646

RFC Characteristics

Transconductance and Output Impedance

FC

RFC

“The Recycling Folded Cascode: A General Enhancement of the Folded Cascode Amplifier,” R. S.

Assaad, et.al., IEEE Journal of Solid-State Circuits, pp. 2535-2542, September 2009.

Page 48: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 4747

RFC Characteristics

Phase Margin and pulse response

GBWFC

GBWRFC

At GBWFC (K=3)

-5.5 deg, but RFC uses half power

At GBWRFC (K=3)

-9.9 deg, but FC uses twice power

FC

RFC

Page 49: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 4848

RFC Experimental Results

Slew Rate Input

1Vpp, 5MHz

Slew Rate

FC = 42.15 V/µs

RFC1 = 77.79 V/µs

RFC2 = 48.12 V/µs

Phase Margin

Even at large step no

observable overshoot which

indicate good phase margin

The Recycling Folded Cascode shows

improved Slew Rate

FC

RFC1

RFC2

Page 50: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 4949

RFC Experimental Results

Distortion Input

Two tones around 1MHz (100kHz separation), 1Vpp

IM3

FC = 61.7dB

RFC1 = 66.1dB

RFC2 = 61.6dB

Distortion Source

Primarily gain variations with swing, as SR results

indicate amplifiers can track up to 13, 30 and 15MHz

respectively

Results support this as difference in IM3 between

amplifiers matches their gain differences at input

frequencies

max

sinin m in in

m

Vout SRSR f A f t f

t A

2 2

2

FC

RFC1

RFC2

Page 51: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 50

Class AB-B Circuit

• Slew-Rate Boosting Employing an Auxiliary Class-B Amplifier C2

C1

vo

vi vx-

+

Pre-ampClass-B

Class

AB

CL

CP

-

+

Technique based onthe generation of highdynamic current ondemand.

The proposed concept relies:

Monitoring the amplifier’s input stage, employing a low-power single-stage ultra-fastpreamplifier,

Preamplifier output is used to drive a class-B amplifier (almost class-C) that generatesup to three times the current delivered by the main amplifier.

“Operational Transconductance Amplifier with Class B Slew-Rate Boosting for Fast High-

Performance Switched-Capacitor Circuits,” M. Naderi, et.al., IEEE TCAS-I, pp. 3769-3779,

November 2018.

Page 52: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 51

Proposed Core Amplifier

Main Amplifier: Pseudo Class-AB Amplifier

Class AB Output stage to provide large loading current,

The minimum transconductance requirement can be satisfied by delivering enoughcurrent at the input stage; 1.5mA and additional (2nd stage) gain when resistive loaded,

Modest dc-current would be set as the output stage current in the order to provideadditional DC-gain available by this architecture; 0.5mA,

Large output swing

M1

M7

M9

M11

VDD

Vin+

Vout+

CMFBM13

M5

M3VB1

VB2

R1

VB3

CB

RB

M2

M8

M10

M12

Vin-

Vout-

CMFBM14

M6

M4

R2

VB3

CB

RBIB1IB3

IB2

IB3

IB2

CZRZCZ RZ

Page 53: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 52

High speed resistive loaded Pre-Amp amplify error signal by around 15dB.

The resistive load is utilized in the Pre-Amp in the order to provide the less parasitic andhigher bandwidth.

The VBP and VBN voltages are properly set.

MP1, MP2, MN1, and MN2, can provide up to five times of the main amplifier current

The input capacitance of the pre-amp is around 15 fF; 65fF due to main amplifier.

M1

MP1

MN1

CB

Vin+

Vout+

R

VBN

CB

RB

IB

VBP

RB

M2

MP2

MN2

CB

Vin-

Vout-

R

VBN

CB

RB

VBP

RB

VDD

Slew-rate booster circuit operation with 16 mVhysteresis.

20% main amp power

Proposed Auxiliary Amplifier

Auxiliary Amplifier: Class-B Amplifier

Page 54: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 53

Simulation Results

Pulsed output current components for a switched-capacitive integrator:

The class-B amplifier takes less 300 psecs to deliver/sink more than 1.7 mA andaround 700 psecs for 1% settling;

Main amplifier delivers around 0.7 mA and settles (1%) in around 1500 psecs.

Differential output current for thestandalone amplifier and amplifier withauxiliary amplifier enabled:

The peak current of enhanced architecturesurpasses the one of the conventional one.

The slew time: 400 psecs for the proposedamplifier vs. 1050 psecs required for theconventional architecture.

Page 55: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 54

Measurement Results

Simplified (single-ended) version of theamplifier’s characterization setup

C1 = 16Cu

R/16

C2 = Cu

R

CL

On Chip

vo

Cin_buffer

vi

Buffer Pre-Amp

Class-BBuffer

Main

Amplifier

Chip Micrograph: TSMC 40nm Technology

A fully-differential test setup used to characterize the performance of the amplifiers inthe 4.5-bit/stage pipelined stage prototype.

C1 and C2 were set to 880 fF and 55 fF, respectively, to resemble the operation of acapacitive amplifier of 16 V/V.

The capacitor values were based on the maximum total allowed input referred noiselimit to satisfy the thermal noise requirement for the first 4.5-bit residue amplifier for a12-bit pipelined ADC.

Page 56: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 55

Measurement Results

But the results are better. The buffer masks a bit the results.

Measurement results for a large inputstep voltage:

Conventional solution (Yellow)

Proposed Solution (Blue)

A 62.5 mVpp input step voltagewas applied to generate a 1Vppoutput step variation.

The proposed architecture shows a0.8 nsecs shorter slew time (45%smaller than the amplifier withoutSR boosting)

28% smaller setting time than theconventional solution

Step Response Test:

Page 57: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 56

Measurement Results

Under similar conditions, theproposed architecture surpasses thelinearity of the conventional amplifierby more than 10 dB for large signals

The penalty is 20% more power.

Measured spectrums for a 500 MHz tone forthe standalone amplifier.

- 8.41 dB

- 53.66 dB

- 8.53 dB

- 64.26 dB

Measured spectrums: 500 MHz tonewith SR boosting SR technique enabled.

Page 58: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 57

Measurement Results

ADC: Measured spectra with sinusoidal input at

24.95 MHz before and after gain calibrationMeasured DNL and INL after gain

calibration

Naderi et.al., TCAS-I, Sept 2019

A 27.7 fJ/conv-step at Nyquist 500 MS/s 12-Bit Pipelined ADC with Slew Boosted Amplifiers and Sub-ADC Forecasting

Page 59: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 58

Conventional (Nyquist) ADC

A/D

Data

Out

Vin

SQNR=6.02*n+1.76

Page 60: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 59

)s(H

)s(HSTF

1 )s(HNTF

1

1

DAC

Vin

ss

FT

1

H(s) A/D

Data

Out

Vin

Quantization

Noise

Feedback

DAC

H(s) A/DDout

VDAC

NTF =Dout

Qn

STF =Dout

Vin

ff0

0 dB

ff0

OBG

Fundamentals of Oversampled A/D Conversion

Control Theory: Feedback and properties

Page 61: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 60

Power distribution

Q

4b

Z -1/2Z -1/2

DoutVin

Ab

1

Ab

2

Af2

Af1

ω2

sω3

sAf3

ω1

s

g1

Power dominated by analog blocks

*Data from CTΣ∆M that appear on: B. Murmann, "ADC Performance Survey 1997-2014," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.

Carlos Briseno-Vidrios 60

Page 62: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 61

High Gain Broadband Amplifiers

Two Stage ‘Typical’ configuration

maximizes gain of the initial stages => Better Q control

Output pole ~ 4*GBW

Overall noise limited by input devices

Rf reduces (degenerate) noise due to NMOS current mirrors

Limitations:

• Parasitic poles result in additional loop delay/excess phase in the

filter (could be > 10 deg at 500MHz)

•Limits loop stability and affects the overall performance

Pbias

VDD

VSS

Vinp

cmbias

M1 M2

M9 M8

M6

Vinm

M3 M4

Pbias

cmbias

Voutm

M7

M5

Voutm

Rf

Cc Rc Rc Cc

Rf

Page 63: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 62

Page 64: Fundamentals on Electronics Part 2: A Design Oriented ...Jose Silva-Martinez 3 3 Pipeline Cell (sub-ADC and MDAC)-1-2-2-1M C 1 C 2 A MUX-V R V R V R /4 V IN-V R /4 V OUT Sub-ADC MDAC

Jose Silva-Martinez 63

Final remarks

63

• modulators are a bit different

• Resistive terminated circuits: Cascade of amplification stages

• Unfortunately we do not have time cover this topic

• Questions?