fundamentals of ldos: part ibjose-silva-martinez/courses... · jose silva‐martinez 14...

31
Jose SilvaMartinez 0 Fundamentals of LDOs: Part Ib Jose Silva-Martinez Department of ECE Texas A&M University May 2017

Upload: others

Post on 24-Jun-2020

18 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 0

Fundamentals of LDOs: Part Ib

Jose Silva-Martinez

Department of ECE

Texas A&M University

May 2017

Page 2: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 1

Outline• Introduction and Motivation• Design Issues

o System Architecture and Challengeso Loop Bandwidth and StabilityoNoise and PSRo Transient ResponseoDigital LDOs

• Summary and Future Work

Page 3: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 2

Power Management is everywhere

Mobile DevicesMedicalImaging

Sensing and Biometrics

Automotive

AvionicsWearables

Page 4: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 3

Power Management: Wireless Phones

Page 5: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 4

Power Management: Automotive

Page 6: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 5

Power Management: Automotive

Page 7: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 6

Power Management: Automotive

Page 8: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 7

Power Management: Automotive

Page 9: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 8

Applications of LDOs

Power Management of typical cell phone

INTEGRATED PMU

BATTERY CHARGINGUNIT AND CONTROL

3.1V….4.6V

LDO2 LDOn

RF High Voltage

Analog OscillatorsAnalog

LDO1

2.5 V 2.8 V2.8 V

BUCK 1.8 V Digital

Boost10-20 V

LED drivers

LDO1.5 V RF Low

voltage

Page 10: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 9

Typical Biasing Schemeover 10 LDOs could be needed in large SOCs

Switching Regulator Battery LDO

Regulator

Unregulated 3.1-4.6 V

Regulated noisy 2 V

2V 1.85V 1.85V

Ideal Real

Post regulated 1.85V

Circuit Blocks

Insufficient Filtering (PSR)Switching noise10KHz to 3MHz

1. Increasing switching frequencies in SMPS2. Limited PSR of LDOs at high frequencies

Page 11: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 10

Understanding Linear Regulators

+-

Error Amp Rf1

Rf2Cout

Z load

Vout

VinVref

Iout

Vout

The LDO is “just” a multi‐stage amplifier, usually three stages! Large DC loop gain is needed to minimize 

the error voltage

Gm_in stands for Vin transconductance gain

_

In principle the problem is not quite complex, but the practical requirements are very demanding:

While output current can be >100mA, it is highly desirable to maintain amplifier’s quiescent current in the range of A. (David versus Goliath)

The system must be stable for all current loading conditions { standby till full load}

Excellent voltage accuracy under all possible loading conditions (outstanding load regulation)

Must tolerate large Vin variations while maintaining accurate output (large rejection to supply variations and supply noise)

Very fast reaction to maintain the glitches within 100mV when the loading changes between standby and full loading (Quasi glitch free topology)

Page 12: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 11

Understanding Linear Regulators

1st stage

Vout

Vout

VRef

Vout

Vin

MP

2nd stage

ZLR1

R2

Gm2Gm1

I L

1st stage

Vout

Vout

VRef

VOut

Vin

MP

2nd stage

ZLR1

R2

Gm2Gm1

Current Budget <1A <1A >100mA

David vs Goliath: Load current is larger than pre‐amplifier 

current by 4‐5 orders of magnitude. Width of MP is in the range of 10,000 m 

while transistors in preamp are in the order of 10m or less.

Gm2/CP is quite small; pole at low‐medium frequency.

Fast charging of capacitors at the gate of the pass transistor is difficult: IB2/CP . 

Vout

VRef

VOut

VinMP

ZLR1

R2

Gm1 Gm2

Page 13: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 12

Stability Issues

Gain (dB)

f

P1

RHP zero

Load dependentmovement of P2

0

>50

4 poles and a RHP zero. Two most relevant poles move a lot due to load variationsRHP zero is another fact that limits system stabilityESR helps, adding a LHP zero

Page 14: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 13

Typical loop transfer function: Cap-less LDO

Gain variations can be >10dB for min‐max load variations Dominant Pole at the output of second stage changes by (close to) a decade. Output pole also changes by a decade.  Stability is more critical for minimum loading case

Page 15: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 14

Understanding Linear Regulators

David vs Goliath: continuation The loop shows at least 4 poles in the case of a 3‐stage loop. Although the pole at the output of Gm1 can be placed beyond loop’s unity gain 

frequency, the other poles may clash each other. CP changes a lot with load current variations due to miller effects Pole at the output varies a lot due to rdsp variations with load current variations  ESR will a zero that helps with loop stabilization RHP zero complicates further loop’s frequency compensation

VoutVin

VOut

MP

RLR1

R2

Gm1 Gm2

r01 C01r02 CP

Ci1CoutBreak

the loop

rdsp

XXXX Re

ImComplex

Plane

ESRzero

Dominant poles

RHPzero

Non-Dominant poles

Page 16: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 15

Feedback Network

• Medium frequency zero for improving stability• Zero frequency < pole frequency• RF2 << RF1

)//(1

1)()(

211

11

21

2

FFF

FF

FF

F

S

X

RRCsRCs

RRR

sVsv

)//(1

211 FFFf RRC

p 11

1

FFf RC

z

Page 17: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 16

Understanding Linear Regulators

Noise present in the reference voltage is not attenuated by loop gain. 

Actually Vref noise (as well as input referred noise of Gm1) is amplified!

Since current flowing through the gate of the input stage is quite small, then RC filtering is advisable for noise reduction on vn, provided that KT/C is smaller than the integrated noise produced by vn2

Input referred noise of Gm2 is shaped by the gain of the first stage and noise of MP is shaped by first and second amplifiers; overall output referred spot noise is then computed as:

Noisy Voltage reference

Page 18: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 17

Understanding Linear Regulators: PSR

David vs Goliath: continuation Vin supply is noisy and is coming from a power efficient (yet noisy) switching regulator. The loop must be able to reject the power supply noise, often more than 50dB. Supply noise that appears at the output of the first stage is critical. Noise leakage due to Gm2 may not be very critical. However noise due to Mp may dominate system’s PSR performance.

High gain in the first two stages definitely helps reducing PSR noise Reducing leakage paths is especially effective; e.g. making vgsP=0 for power 

supply noise; Vin noise will be injected through rdsP only.

Assuming that each amplification stage shows the supply noise leakage depicted in the figure, then

Page 19: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 18

Power supply noise: where does it comes from?

2

1 2 1 2

1 1

11

m dsout

fbds ds eddm ds

fb fb L fb fb

e

g rVRr r Av g r sR R Z R R

gsdd

gs p

Cv

C C

High Frequency noise contribution is mainly due to pass transistor

(1 )

gs

gs p

dOL m dd

CC C

i g v

IL

rds

MP Vout

Rfb1

EA-

+

Vref 2

Cgs

CP

3

Rfb2

4

VDD+vdd

Cout

1

Page 20: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 19

Transient response main issue

0mA Full loadFull load 0mA

Slow and slew rate limited Path

Gate voltage of the pass transistor must be manipulated as quick as possible.Copy VDD noise into the gate of the pass transistor to make Vsg=0; then id=gmvgs=0.

More creative solutions are needed to minimize the effects of Rds! Wider bandwidth and more loop gain helps, but remember David‐Goliath limitations

Page 21: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 20

Linear Regulators: Transient Response

The load changes from full load to standby conditions in less than 1 sec

Worst case variations: 0Imax and Imax0 in 100nsecs.

Glitches should not exceed 100mV Worst case conditions when loading is 

modeled as a current source Pass transistor is in deep subthreshold 

region when IL=0 Gate voltage should instantaneously 

change by around 1V

Large output compensation capacitor helps, but an additional pin per capacitor is needed.

External Cap‐less solution is more attractive but large glitches result when going from 0Imax

>1.5VDeep triode region

Page 22: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 21

+-

Error Amp

vgMp

Rf1

Rf2Cout

I load

Vout

vin

VrefID

Cout I load

Vout

ID

Vin

Pass transistor

If the load changes from standby to full load conditions, then Instantaneous current is taken from the capacitor; slope is given by Iload/Cout. 

Iload/Cout.=100mA/1F= 100mV/Sec;   ID must be close to Iload after 1 SecIload/Cout.=100mA/100pF= 100mV/nSec;   ID must be close to Iload after 0.1nSec

Gate capacitance will exceed 10pF; the second stage of error amp must provide current in the range of Iout2 0.5*10‐11/10‐10 =50mA for moving the gate voltage by 500mV in 0.1sSec! 

But this is David! Adaptive schemes, class AB (or even class B) solutions, etc.

Linear Regulators: Transient Response

Page 23: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 22

Cf detects output variations (differentiation) and it indicates how strong the variation is. A fast Class‐B current amplifier increases the current to the levels required to manipulate 

Vg into the proper direction. Static power must be minimized but high current must be delivered: Class AB operation, 

but very close to class B Loop helps with frequency stabilization since a 2nd loop with 2 poles and 1 LHP zero is 

added.

+-

Error Amp Vg

Mp

Rf1

Rf2

Coutiload

Vout

Vin

Vref

iD

Current amplifier

Cf

ifAi if

0Zini C

CG

DifferentiatoroutZ

Load steps force the instantaneous current to flow through or into Cout.

Cf samples the load current variation (in parallel with Cout), then the fast path react immediately if the current amplifier is fast

Linear Regulators: Transient Response

Page 24: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 23

Compensation Circuitry

M1

Cout

(on-chip load

capacitance

0-100 pF)

Rf

Cf

Mf1Mf2

Rf2

Rf1

ME

Vout

ME

M0eM0eM1

M2M2

M4

M5 M6

Mp

Vref

Vfb

Cf2

Vfb

Error Amplifier

IB1 IB2

Cf3

Circuit Realization: Cap-less LDO

Very symmetric 1st stage due to M2;  Fully differential to single ended stage with good PSRR Glitch compensation due to Cf, Rf and other circuitry “Current‐amplifier gain” = Gmf2Rf

Cf3 compensates for parasitic capacitors at gate of Mf1

R. Milliken, TCAS‐I, 2017

Page 25: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 24

Fast path response: Magnitude and Phase

Magnitude and phase response of the current amplifier  Frequency is limited by 

pole at the input of the integrator; positive feedback helps increasing this frequency

Decent performance up to 500KHz.

Main pole can be moved to higher frequencies if needed

2nd pole is not an issue

Page 26: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 25

Loop response: Magnitude and Phase

Loop response Check loop 

stability for zero bias current;

In standyconditions, load current should be zero to maximize power savings

Use phase margin as well as gain margin figures

ROOT LOCUS!

Page 27: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 26

Loop response: Magnitude and Phase

Z1Z2 Pdom

P3

P2P4P6P5

Z3

S-plane

=1

=1

Re

Im 

Z1Z2Pdom

P4 P6P5 Z3

S-plane

Re

Im

mA50I:FmA25I:EmA10I:D

mA1I:CA100I:B

A1I:A

out

out

out

out

out

out

A P3

C

DEF

B

A P2

C

DEF

B

Design Issues: Be careful with the pole‐zero constellations; consider zero and full loading Root locus is quite useful

Several poles before zero could be catastrophic RHP zero attracts poles  Consider the very worst case

Open loop: Pole‐zero constellation     Closed loop: Poles movement as function of 

C1R1

+Verror

-

Vref

Vout

V01

gm1 Verror C2R2

V02

gm2 V01 C4R3

Vout

gm3 V01

CL

RESR

ZL

C3

Undesired!desirable!

Page 28: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 27

Last lesson: Make it as real as possible

Design Issues: IL is in the range {0 – 150mA} DC current in standby should be under 1A High power efficiency, low drop‐out voltage; e.g. Vin‐Vout < 200mV Fast transient response; peak voltages under transient < 100mV Stable under all conditions Small voltage variations when load current changes from 0 up tp Ilmax Minimize the external components: Cap‐less solutions

+

Page 29: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 28

Digital LDO: Y. Okuma, et.al., CICC‐2010

Page 30: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 29

Digital LDO: Wen‐Jie Tsou, ISSCC‐2017

Page 31: Fundamentals of LDOs: Part Ibjose-silva-martinez/courses... · Jose Silva‐Martinez 14 Understanding Linear Regulators David vs Goliath: continuation The loop shows at least 4 poles

Jose Silva‐Martinez 30