from reaction networks to information flow

31
From Reaction Networks to Information Flow Using Modular Response Analysis to Track Information in Signalling Networks Pascal Schulthess Charit´ e – Universit¨ atsmedizin Berlin October 15, 2010

Upload: pascal-schulthess

Post on 09-Jan-2017

19 views

Category:

Science


2 download

TRANSCRIPT

Page 1: From reaction networks to information flow

From Reaction Networks to Information Flow

Using Modular Response Analysis to Track Information inSignalling Networks

Pascal Schulthess

Charite – Universitatsmedizin Berlin

October 15, 2010

Page 2: From reaction networks to information flow

Reaction networks → information flow?

MRA▶▶▶

Oda and Kitano (2006) Weinberg (2006)

2 / 1

Page 3: From reaction networks to information flow

Reaction networks → information flow?

B

A Ap

Bp

MRA▶▶▶ Ap

Bp

3 / 1

Page 4: From reaction networks to information flow

The dynamic behaviour of a biochemical reaction system isdetermined by

d

dt

c(t) =Nv(c(t))with

c ∈ Rm concentration vector

N ∈ Rm×n stoichiometric matrix

v ∈ Rn reaction rate vector.

4 / 1

Page 5: From reaction networks to information flow

Example – System

ESE

S

P

1

3

2

d

dt

c(t) =Nv(c(t))

d

dt

���������

S(t)E(t)

ES(t)P (t)

���������=���������

−1 0 1−1 1 01 −1 00 1 −1

���������

�������k+1ES(t) − k−1E(t)S(t)k+2E(t)P (t) − k−2ES(t)k+3S(t) − k−3P (t)

�������

5 / 1

Page 6: From reaction networks to information flow

Example – System

ESE

S

P

1

3

2

d

dt

c(t) =Nv(c(t))

d

dt

���������

S(t)E(t)

ES(t)P (t)

���������=���������

−1 0 1−1 1 01 −1 00 1 −1

���������

�������k+1ES(t) − k−1E(t)S(t)k+2E(t)P (t) − k−2ES(t)k+3S(t) − k−3P (t)

�������with

m0 = 26 / 1

Page 7: From reaction networks to information flow

Conservation Analysis

If conservation relations exist,one can separate N by

N = � NR

N0� ESE

S

P

(1) (2)

with

NR ∈ Rm0×n linearly independent metabolites

N0 ∈ R(m−m0)×n linearly dependent metabolites

andm0 = rank(N).

7 / 1

Page 8: From reaction networks to information flow

Conservation Analysis

From the separation it followsthat

N = � I⇤0�NR = ⇤NR

ESE

S

P

(1) (2)

from which the conservation relations can be determined as

� = � −⇤0 I �with

⇤ ∈ Rm×m0 link matrix

� ∈ R(m−m0)×m0 conservation matrix.

8 / 1

Page 9: From reaction networks to information flow

Conservation Analysis

In practice, one has to solve NT�T = 0 which is gettingnumerically expensive with increasing system size.Thus,

PNTQ = LU

where U is partitioned such that

U = � I M0 0

�from which ⇤, NR and � follow to

⇤ = � IMT � , NR = ⇤+N and � = � −MT I � ,

respectively.

9 / 1

Page 10: From reaction networks to information flow

Modular Response Analysis

The unscaled elasticity coe�cient matrix

✏ = �v(c(t))�c(t)

�����������cgives the sensitivities of all local reaction ratesto perturbations in all species concentrations.The dependencies among species are describedby the (reduced) Jacobian matrix which isdefined as

J = N✏

JR = NR✏⇤.

B

Ap

Bp

vB > 0

vAp> 0

vBp< 0

10 / 1

Page 11: From reaction networks to information flow

Modular Response Analysis

After rescaling ✏� ✏ such that

✏ = ✏ c(t)v(c(t))

�����������c with 0 < ✏ < 1the local and global response matrices follow to

r =NR✏⇤

andR = r−1,

respectively.

11 / 1

Page 12: From reaction networks to information flow

Modular Response Analysis – Example

r =�������−1 2 00 −1 −31 0 −1

�������B

A

C

12 / 1

Page 13: From reaction networks to information flow

Modular Response Analysis – Example

r =�������−1 2 00 −1 −31 0 −1

�������B

A

C

13 / 1

Page 14: From reaction networks to information flow

Modular Response Analysis – Example

r =�������−1 2 00 −1 −31 0 −1

�������B

A

C

14 / 1

Page 15: From reaction networks to information flow

Modular Response Analysis – Example

r =�������−1 2 00 −1 −31 0 −1

�������B

A

C

15 / 1

Page 16: From reaction networks to information flow

Modular Response Analysis – Example

r =�������−1 2 00 −1 −31 0 −1

�������B

A

C

16 / 1

Page 17: From reaction networks to information flow

Modular Response Analysis

r =�������−1 2 00 −1 −31 0 −1

�������B

A

C

The influence between species in r and R can be categorised by(k, l)-th entry < 0 inactivation of k by l(k, l)-th entry > 0 activation of k by l(k, l)-th entry = 0 no (direct) influence between k by l

withk, l ∈ {1,2, ...,m0}

17 / 1

Page 18: From reaction networks to information flow

Wnt model

Wnt

Dshi

Dsha

GSK3

Axin

APC

APC•Axin

APC•Axin•GSK3 APCp•Axin

p•GSK3 ß-catenin•APC

p•Axin

p•GSK3

ß-cateninp•APC

p•Axin

p•GSK3

ß-cateninp

ß-catenin•APC

TCF

ß-catenin ß-catenin•TCF

DestructionCore Cycle

TranscriptionalActivation

Wntsignaling

Non-Axin dependentproteolysis

Axin dependentproteolysis

Axin turnover

18 / 1

Page 19: From reaction networks to information flow

Elasticity sampling

1. calculate ✏

2. store signs of ✏ = �v(c(t))�c(t) c(t)

v(c(t))3. sample � ✏ � randomly between 0 and 1

4. restore signs of ✏

5. calculate r for each sample

6. observe sign changes between samples

7. plot

19 / 1

Page 20: From reaction networks to information flow

Local interactions of the reduced model

Dshi

GSK3

Axin

APC TCF

APCp•Axin

p•GSK3 ß-catenin•APC

p•Axin

p•GSK3

ß-catenin•APC ß-catenin

ß-cateninp•APC

p•Axin

p•GSK3

ß-cateninp

20 / 1

Page 21: From reaction networks to information flow

Local interactions of the reduced model

Dshi GSK3

Axin

APC TCF

APCp•Axinp•GSK3 ß-catenin•APCp•Axinp•GSK3

ß-catenin•APC ß-catenin

⇒ Input inhibits output

21 / 1

Page 22: From reaction networks to information flow

Local interactions of the reduced model

Dshi GSK3

Axin

APC TCF

APCp•Axinp•GSK3 ß-catenin•APCp•Axinp•GSK3

ß-catenin•APC ß-catenin

⇒ Input activates output

22 / 1

Page 23: From reaction networks to information flow

Local interactions of the reduced model

Dshi GSK3

Axin

APC TCF

APCp•Axinp•GSK3 ß-catenin•APCp•Axinp•GSK3

ß-catenin•APC ß-catenin

⇒ Input activates output

23 / 1

Page 24: From reaction networks to information flow

Local interactions of the reduced model

Dshi GSK3

Axin

APC TCF

APCp•Axinp•GSK3 ß-catenin•APCp•Axinp•GSK3

ß-catenin•APC ß-catenin

⇒ Input inhibits output

24 / 1

Page 25: From reaction networks to information flow

Local interactions of the reduced model

Dshi GSK3

Axin

APC TCF

APCp•Axinp•GSK3 ß-catenin•APCp•Axinp•GSK3

ß-catenin•APC ß-catenin

⇒ Input inhibits output

25 / 1

Page 26: From reaction networks to information flow

Local interactions of the reduced model

Dshi GSK3

Axin

APC TCF

APCp•Axinp•GSK3 ß-catenin•APCp•Axinp•GSK3

ß-catenin•APC ß-catenin

⇒ Input activates output

26 / 1

Page 27: From reaction networks to information flow

Local interactions of the reduced model

Dshi

GSK3

Axin

APC TCF

APCp•Axin

p•GSK3 ß-catenin•APC

p•Axin

p•GSK3

ß-catenin•APC ß-catenin

E↵ect of Dshi on TCF varies with the use of local interactions.⇒ global interactions

R(Dshi,TCF) ≤ 0⇒ Wnt stimulus has no negative e↵ect on transcription

27 / 1

Page 28: From reaction networks to information flow

Elasticity sampling applied to 4 models

ESE

S

P

1

3

2

Figure: Example: 4 species,3 reactions

Wnt

Dshi

Dsha

GSK3

Axin

APC

APC•Axin

APC•Axin•GSK3 APCp•Axin

p•GSK3 ß-catenin•APC

p•Axin

p•GSK3

ß-cateninp•APC

p•Axin

p•GSK3

ß-cateninp

ß-catenin•APC

TCF

ß-catenin ß-catenin•TCF

Figure: Wnt: 15 species,17 reactions

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x28

x29

x30

x31

x32

x33

x34

x35

x36

x37

x38

x39

x40

x41

x42

x43

x44

x45

x46

x47

x48

x49

x50

x51

x52

x53

x54

x55

x56

x57

x58

x59

x60

x61

x62

x63

x64

x65

x66

x67

x68

x69

x70

x71

x72

x73

x74x75

x76

x77

x78

x79

x80

x81

x82

x83

x84

x85

x86

x87

x88

x89

x90

x91

x92

x93

x94

x99

x100x103

Figure: Schoberl: 97 species,148 reactions

Figure: Reactome: 6232 species,3652 reactions

28 / 1

Page 29: From reaction networks to information flow

Sign distribution after 1000 samples

0.1

1ExampleWntMapkReactome

always zero always positive always negative positive or negative0

0.0018

Fra

ction

s

29 / 1

Page 30: From reaction networks to information flow

Summary

Conservation and modular response analysis

� e↵ective algorithm based on sparse matrix operations

� transform reaction networks to interaction networks

Sampling experiments

� large definiteness (99%) of interactions

Even without knowing the reaction network in detail, itsinformation flow can be calculated.

30 / 1

Page 31: From reaction networks to information flow

Acknowledgements

Group of Systems Biology of Molecular Networks

� Nils Bluthgen

� Raphaela Fritsche

� Pawel Durek

� Anja Sieber

� Nadine Schmidt

� Franziska Witzel

� Bertram Klinger

� Jorn Schmiedel

Funding

31 / 1