fracture mechanical properties of tungsten alloys

28
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft INSTITUT FÜR MATERIALFORSCHUNG II www.kit.edu Fracture Mechanical Properties of Tungsten Alloys Daniel Rupp and Ermile Gaganidze Presentation at: CRPP-EPFL Fusion Technology Materials, ODGA/C110 March 22, 5232 Villigen PSI, Switzerland Contributors: S. Weygand R. Mönig M. Walter U. Bürkle

Upload: others

Post on 16-Oct-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fracture Mechanical Properties of Tungsten Alloys

KIT – Universität des Landes Baden-Württemberg undnationales Forschungszentrum in der Helmholtz-Gemeinschaft

INSTITUT FÜR MATERIALFORSCHUNG II

www.kit.edu

Fracture Mechanical Properties of Tungsten AlloysDaniel Rupp and Ermile Gaganidze

Presentation at: CRPP-EPFLFusion Technology Materials, ODGA/C110March 22, 5232 Villigen PSI, Switzerland

Contributors:S. WeygandR. MönigM. WalterU. Bürkle

Page 2: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II2 22.03.2010

CONTENT

Tungsten Alloys- Candidate Structural Material

Test Method for Mode I Fracture Toughness

Fracture Mechanical Properties of Tungsten Alloys

Polycrystalline Rolled Tungsten

Polycrystalline Rolled ODS Tungsten

MA + Hipped ODS Tungsten

Hipped Tungsten

Summary & Outlook

Page 3: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II3 22.03.2010

Structural Materials for Fusion Applications

good thermo-physical (thermal conductivity, thermal expansion coefficient, …) & mechanical properties (DBTT, toughness, ductility, strength, creep strength, …)

resistance to high energy neutron flux (irradiation-induced damage)

low neutron-induced activation (specific radioactivity, decay heat)

fusion relevant joining technologies (heat affected zone, proper PWHT, …)

compatibility with coolant, plasma (corrosion, erosion, oxidation)

Key Issues:

RAFM steelRAFM ODSW-alloy

Blanket Box Divertor

Thermal Load: 2.5 MW/m2

Operating Temperature: 250-550 °CIrradiation Dose: up to 150 dpa

Thermal Load: 10-15 MW/m2

Operating Temperature: up to 1300 °CIrradiation Dose: up to 50 dpa

Boccaccini et al., FZK-Nachrichten, 1/2004

Page 4: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II4 22.03.2010

Tungsten Alloys - Candidate Structural Materials

ADVANTAGES:

highest melting point of all metals Tm=3693Klowest vapour pressure Pv(Tm)=1.3 ×10−7Palow sputter yieldhigh thermal conductivitygood thermal shock resistancegood high temperature strengthlow-activating materialnearly zero tritium retention

DISADVANTAGES:

high hardnessinherent low fracture toughnesshigh DBTTlow recrystallisation temperature (RCT)sensitivity to fabrication detailssensitivity to impurities and alloying element"not matched" thermal expansion coefficient

Page 5: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II5 22.03.2010

Motivation

Fracture Mechanical (FM) properties of rolled polycrystalline tungsten alloys are expected to exhibit strong anisotropy due to

different grain shape/orientation with respect to the rolling direction (RD) pronounced fiber texture

Objective:Understanding of fracture behaviour of tungsten alloys by investigation of microstructure (grain size, texture etc.) and load rate dependence of the fracture toughness (KIC)

Microstructure belongs to the main controlling factors for fracture toughness and DBTT of tungsten alloys

Page 6: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II6 22.03.2010

Test Method for Mode I Fracture Toughness

Bend Specimen SE (B)

F/2 F/2

F

B2.1W 2.1W

W

a o

ASTM E399standard: B=0.5Walternative: B=0.25W÷W

Specimen LoadingDisplacement controlled

Specimen pre-crackingFatigue pre-crackingCompression fatigueComposite bendingRazor blade polishing

2

5.2,, ⎟⎟⎠

⎞⎜⎜⎝

σ>−

y

ICoo

KaaWB

smMPaK /75.255.0 ≤≤ &

Test RecordLoad - Load Line DisplacementLoad - Crack Opening Displacement

Page 7: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II7 22.03.2010

Three Point Bending Experimental Facility Universal Testing Machine INSTRON (RT-1600°C)

high vacuum furnace

ceramic rods

W -heater

bendfixture

Page 8: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II8 22.03.2010

Fracture mechanical investigation of polycrystalline rolled tungsten

Material (Plansee)unalloyed 99.98% pure polycrystalline W rods break down rolling with a degree of deformation of 65%

Anisotropy<110> fiber texture and elongated grains parallel to the rolling direction

Specimens6x4x27 mm with V shaped notch (3 mm)

FM specimen preparationIntroduction of sharp crack starter notches

razor blade polishing

compression fatigue

composite bending

x

EBSD pole figure

y

Specimens with three different orientations of the crack front with respect to the rolling direction

Page 9: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II9 22.03.2010

Microstructure of polycrystalline rolled tungsten

100 μmrolling

direction

High angle GB+ Low angle GB

TEM sample

sub-grain structure

D. Rupp et al, 17th Plansee Seminar, 2009

Page 10: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II10 22.03.2010

Temperature [°C]

Brittle-to-Ductile Transition of polycrystalline rolled tungsten

dK/dt = 0.5 MPa m1/2/sStrong influence of the anisotropic microstructure on the fracture toughness and DBTT

D. Rupp et al, 17th Plansee Seminar, 2009

Page 11: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II11 22.03.2010

Fracture behavior of polycrystalline rolled tungsten

type I type II type III

Type I & II: No significant change of the fracture morphology with increasing temperature up to 800°C. First local traces of ductile fracture at 950°C. Type III: Change of fracture behavior above 200°C

RT RT RT

350°C

Type I and II: Intergranular fracture, small amount of cleavage surfacesType III: Transgranular cleavage

950°C 950°C

Page 12: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II12 22.03.2010

Fracture behaviour of type III specimen

brittle fracture at RTstable crack growth above 275°C plastic yielding prior to stable crack growth at high T

D. Rupp et al, 17th Plansee Seminar, 2009

RT 275°C

Page 13: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II13 22.03.2010

In situ Fracture Experiments

In-situ 3-point bending test were performed in SEM at elevated temperatures

Insights into crack initiation and propagation

Fracture test at 350°C, type III specimen

D. Rupp et al, 17th Plansee Seminar, 2009

Page 14: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II14 22.03.2010

In situ Fracture Experiments

100 µm

competition between inter- and transgranular fracture

elongated grain boundaries become preferred crack paths with increasing T

stable crack growth

RD

Page 15: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II15 22.03.2010

Loading rate dependence

type I type II

0.05 MPa m1/2/s

0.5 MPa m1/2/s

5 MPa m1/2/s

0.05 MPa m1/2/s

0.5 MPa m1/2/s

5 MPa m1/2/s

Page 16: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II16 22.03.2010

⎟⎟⎠

⎞⎜⎜⎝

⎛−

∂∂

BDTB

BDT

TkE

tK exp~

Arrhenius-relationship:

- Loading rate dependence follows Arrhenius-relationship

- Activation energies in very good agreement with recently published results

- Transition controlled by mobility of screw dislocations

Activation energy

type I

type II

Page 17: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II17 22.03.2010

0.0 0.1 0.2 0.3 0.4 0.5

0

100

200

300

400

500

600

Load

(N)

Displacement (mm)

RT 500°C

PQ=184 N

PQ=389 N

Fracture mechanical properties of polycrystalline rolled W-1%La2O3

transcrystallinecleavage at RT

transversal (II RD) cracking at 500°C

RD

Specimens3x4x27mm with U shaped notch (1mm)razor blade polishingcompression fatigue pre-crack

KIC=11 MPam1/2

KQ=22 MPam1/2

Page 18: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II18 22.03.2010

Fracture mechanical characterization of W-2%Y

Material (N. Baluc, CRPP-EPFL)- W powder (99.9%); particle sizes 1-5 μm- Y powder (99.99%), particle sizes below 40 μm- W-2.0Y (in wt.%) manufactured by MA and HIPping- Y2O3 particles formation during HIPping

Specimen (N. Baluc, CRPP-EPFL)3x4x27 mm with V shaped notch (1mm)

FM specimen preparation (KIT)Introduction of sharp crack starter notches by means of a razor blade polishing - initial crack length 1040-1200 µm - notch final radius 20-25 µm

Page 19: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II19 22.03.2010

Fracture mechanical properties of W-2%Y

Load

(N)

Displacement (mm)Displacement (mm)

Load

(N)

RTloading rate 2µm/sPQ=108 NKIC=5.38 MPam1/2

1000°Cloading rate 2µm/sPQ=117 NKIC=5.28 MPam1/2

Rapid drop of the load at PQ in the entire temperature range⇒ no indication of the ductile fracture

Page 20: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II20 22.03.2010

Fractography of W-2%Y specimen (RT)

Page 21: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II21 22.03.2010

Fractography of W-2%Y specimen (1000 °C)

Page 22: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II22 22.03.2010

Fracture mechanical characterization of HIPped W

Material (N. Baluc, CRPP-EPFL)- W powder (99.9%); particle sizes 1-5 μm- HIPped at 1320°C

Specimen (N. Baluc, CRPP-EPFL)specimens 3x4x27 mm with V shaped notch (1mm)

FM specimen preparation (KIT)Introduction of sharp crack starter notches by means of a razor blade polishing - initial crack length 1100 µm - notch final radius 20-25 µm

Page 23: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II23 22.03.2010

Fracture mechanical properties of Hipped W

0.00 0.05 0.10 0.150

50

100

150

200

Forc

e (N

)

Displacement (mm)

RT 600°C 1000°C

unstable crack propagation below 600 °C ⇒ no indication of ductile behaviourcrack arrest events at 1000 °C

loading rate 1µm/s

Page 24: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II24 22.03.2010

Fractography of HIPped W (RT)

III

II

I I necking between particles, open pore structureII neck blunting, channel closureIII pore break down into discrete isolated poresE. Lassner and W.-D. Schubert, Kluwer Academic / Plenum Publishers, 1999

Page 25: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II25 22.03.2010

Fractography of HIPped W (600°C)

Fractography of HIPped W (1000°C)

Page 26: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II26 22.03.2010

Fracture toughness of W and W-2%Y alloys

0 200 400 600 800 10002

3

4

5

6

7

8 W

KIC

(MP

am1/

2 )

Temperature T (°C)

W 2wt.%Y

MA & HIPped W-2%Y:low, temperature independent fracture toughness

HIPped W:low, weakly temperature dependent fracture toughness

Page 27: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II27 22.03.2010

SummaryThe anisotropic microstructure of the polycrystalline rolled tungsten has a strong influence on the fracture behaviour

the largest fracture toughness and the lowest DBTT are observed for the longitudinal orientation when a crack propagates transverse to the RD through the elongated grains yielding a transgranular cleavagelower fracture toughnesses in the two transverse orientations are related to the propagation of a crack along weak GB yielding an intergranular fracturestrong loading rate dependence of the DBTT in the two transverse orientations. The apparent activation energies suggest that the brittle-to-ductile transition is controlled by the mobility of screw dislocations.

The anisotropic microstructure of polycrystalline rolled W-1%La2O3 has a strong influence on the fracture behaviour. At 500°C the observed propagation of a crack along the RD indicates presence of weak GB

Low, temperature independent fracture toughness for MA & HIPped W-2%Y isascribed to poorly consolidated matrix; islands of higher degree of consolidation

Low, weakly temperature dependent fracture toughness for HIPped W is ascribed to poorly consolidated matrix; onset of isolated grain growth

Page 28: Fracture Mechanical Properties of Tungsten Alloys

D. Rupp and E. Gaganidze Institut für Materialforschung II28 22.03.2010

Fracture mechanical and microstructural characterization of novel tungsten alloys

Investigation of upper shelf fracture toughness of tungsten alloys by using J-Integral and/or COD methodsEquipping the high vacuum furnace with an optical system for in-situ observation of crack initiation and growth Development and validation of alternative procedure for controlled pre-cracking of notched bend-bar specimens

OutlookOutlook