forjado colabora mt60 ingles 16/10/08 18:16 página 4 · forjado colabora mt60 ingles 16/10/08...

22

Upload: others

Post on 10-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4

Page 2: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 1

Page 3: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5

In Hiansa we are also testing composite slabs

with an MT-60 section in thicknesses of 1.0 and

1.2 mm. The new values of “m” and “k”

parameters significantly increase the allowable

overloads published in the charts.

Please refer to the Technical Department for

further information.

As indicated in the Eurocode 4 standard, the values in the

charts correspond to the most unfavorable type of slab,

revised downwards by the increase coefficients of the loads.

This means that the standard requires testing the section

with the least thickness in order to extrapolate the results

to greater thicknesses.

Evidently, the standard also contemplates the possibility of

testing slabs with various sheet thicknesses, thus avoiding

any mathematical extrapolation. Testing slabs with sheet

thicknesses of 1.0 mm or 1.2 mm provides different results

for “m” and “k” parameters.

The change of thickness in the sheet changes the section

surface area. If we use a straight line as a function of the

section surface area, a new straight line is obtained and

from there we obtain new, higher allowable load values.

At Hiansa S.A., we have preferred to comply strictly with

standards EC3 and EC4 when carrying out all our tests,

since we believe that sales aspects should never override

safety improvement parameters.

Page 4: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 8

Remco Gerben Schurmann’s recent thesis opens

new avenues for the study of composite slab

performance. As is true nearly always, it confirms

that slab collapse occurs due to bonding stress

(loss of adherence and consequent slipping

between the concrete and the steel sheet). The

allowable overloads published in the charts of

this catalog would undergo significant increase

on applying this new theoretical approach. Please

refer to the Technical Department for further

information.

The prestigious and well-known thesis by the German

investigator Remco Gerben Schurmann titled “Physical

behavior of the connections in composite slabs” has

recently opened new avenues of research into the

behavior of composite or supporting slabs. The

experimental tests show that the large majority of slab

collapses occur due to excess bonding moment, i.e., loss

of adherence between the metal sheet and the concrete.

This thesis is based on the verification that the stress

that causes slab collapse is equal to the sum of the

tangential stresses necessary to crush the drawings of

the section and push them towards the inclined plane of

the side. An increase in sheet thickness (drawing with

higher inertia) also increases the tangential stress

(bonding moment) necessary to crush the drawing

causing slipping between the two materials. By applying

this new theory to the study of the behavior of Hiansa

S.A. composite slabwork, we will obtain an improvement

of the values that appear in the charts.

Page 5: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 6

Introduction:

Composite slabs are the ideal construction solution for all constructionsites that require maximum technical and mechanical performanceas well as fast execution and guarantees. Given its top of the linecharacteristics, it can be used in all types of buildings (industrial,commercial, sports, residential). This solution provides significanteconomic benefits, especially if applied from the beginning of theproject: less average slab thickness is required, resulting in loadreduction and subsequent reduction in the dimensions of the bearingcomponents of the structure (columns, beams, foundations). Inaddition, the choice of this technology provides a solution for certaininevitable demands found in modern buildings, such as ducts foroffice computer services, the use of false cielings and improvedplanning of the various stages of execution.

Composite slabwork

Composite slabs are based on technology used to increase the bondingbetween shaped steel sheeting and concrete. This technology is alsoknown as supporting slabwork because of the mutual support suppliedby the materials used in the slabwork versus the stresses induced bythe work loads. The mechanical bonding of both components is carriedout by the identations in the sloped sides of the galvanized steelsection. Chemical adhesion alone would not be enough to guaranteethe performance of the composite slab as a combined structure.

Functions and advantages of the composite slab

Once put into place, the slab fulfils the following functions:-It acts as a work platform during the construction process,simultaneously providing safety and protection from falling objects.

-It replaces permanent wood forms as the base for concrete pouring.-It contributes to the stability of the framework if the structure is madeof metal, reducing the need for horizontal bracing.

-It bears the concrete loads under certain span and thicknessconditions. Over a certain limit of slenderness, it becomes necessaryto prop the sheet before pouring the concrete. The estimator isresponsible for making sure that the necessary intermediate propsare placed when indicated by the overloads chart.

- It facilitates movement across the floors during the execution of theslabs, since it does not require the prop densities needed in traditionalformworking.

- It collaborates with the concrete thanks to the deep-seated bondbetween both materials achieved by the drawings and identationsin the sheeting. The metal section completely or partially replacesthe traditional tension reinforcements of the slab. The use of additionalround tension bars is not contemplated in the charts included in thismanual: however, the estimator may foresee their use to increasethe fireproof qualities of the slab.

-The use of composite slabwork with connectors makes it possibleto form a combined beam. This implies a significant reduction in slabthickness, which reduces the weight of the metal section that bearsthe slab and the structure and foundations of the building in general.The economic advantages are evident, both as regards materialsand time of execution.

-The longitudinal ribs in the sheet section are used to house buildinginstallations and conduits.

-This construction system is very economical and greatly decreasesbuilding times.

Page 6: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 7

205 205

820

205 205

58,860

Characteristics:The MT-60 composite slab section (in reference to therib height of 60 mm) is specifically designed for use inlarge buildings with metal structures. It adapts perfectlyto various building types, such as:• Industrial buildings• Tertiary sector and office buildings• Large public buildings• Large shopping centers and storage buildings• Shopping and recreational centersThe characteristics of the MT-60 were developed withthe collaboration of the Structures Group from theDepartment of Continuous Mediums of the School forAdvanced Engineers in Seville, in cooperation with theAICIA – Association for Industrial Investigation andCooperation of Andalucia.

The experimental tests performed comply with requirementsof Eurocode 3 and Eurocode 4 regulations, the onlymandatory European short-term reference standards.The figures published in these tables refer to the allowablestatic overload and the reinforcement section for thenegative bending moment in the case of intermediatesupports. Rupture tests for slabs of different types haveprovided the characteristic “m” and “k” parameters thatdefine the straight line reference of the MT-60 slab. Thisline provides the allowable overload datum, dependingon the thicknesses of the steel sheet and slab.After obtaining these values and following the testinstructions described in EC4, these were verified bymandatory testing.

Negative momentreinforcement Anticrack reinforcement

Connectors(only in a combined beam)

Composite slab MT-60

Page 7: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 9

(2) The maximum tolerance of sheet length is 0 to prevent additional lengths that could result in sheet replacements that do not lean on their support correctly. On the otherhand, a tolerance of -3 mm is acceptable, as this allows for a small gap between consecutive sheets.

(3) The height of the drawing measured from the top of the rib side to the top side of the drawing.

Composite slab MT-60

GEOMETRICAL PARAMETERS

l (cm4)

60,38

75,47

90,56

Pc (kgf/m2)

8,49

10,55

12,66

Wi (cm3)

18,567

23,14

27,68

Xg (mm)

32,521

32,618

32,715

Ap (mm2/m)

1.081,85

1.352,15

1.622,45

Thickness (mm)

0,8

1,0

1,2

I = Inertia of the section per linear meter of slab. Pc = Weight of the sheet. Wi = Strength module per linear meter of slab. Xg = Distance from the mass center axis ofthe section to its base. Ap = Useful steel section per linear meter of slab.

CHARACTERISTICS VALUE

Material Steel

Reference DX51D 1.0226

Steel density (kg/m3) 7.850

Useful width (mm.) (e=0,8 mm. - e=1,0 mm. - e=1,2 mm.) 880

e=0,8 mm. 9,26

Weight of the sheet (kg/m2) e=1,0 mm. 11,97

e=1,2 mm. 14,36

e=0,8 mm. 7,59

Weight of the sheet (kg/ml) e=1,0 mm. 9,81

e=1,2 mm. 11,77

Elastic limit (N/mm2) (Re) >240

Maximum tensile strength (N/mm2) 345

Rupture elongation (ARo) 22%

Coating type (both sides) Z=Zinc

Coating appearance (both sides) N

Surface finish (both sides) A

Surface treatment (surface protection) C

0,8 mm. ±0,08 mm.

Thickness 1,0 mm. ±0,09 mm.

1,2 mm. ± 0,10 mm.

WidthBottom =0 mm.

Dimensional tolerances of the rolled sheet supply Top=+6 mm.

Length(2)Bottom= -3 mm.

Top = 0 mm.

e=0,8 mm.12 mm.

Flatness e=1,0 mm.

e=1,2 mm. 10 mm.

Height of the MT-76 section (including dovetail) 75,8 mm.

e=0,8 mm. 3,5 ± 0,1 mm.

Height of the side drawings of the MT-60 section(3) e=1,0 mm. 3,3 ± 0,1 mm.

e=1,2 mm. 3,1 ± 0,1 mm.

Page 8: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 10

Page 9: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 11

Concrete:• Characteristic compressive strength: fck = 300 daN/cm2

(30 N/mm2).• Partial safety coeficient for ultimate limit states: 1.50.• Density: 2400 kg/m3 (normal concrete).• Cracking: for the calculation of deformations, slab inertia

is considered an average between the slab inertia withnon-cracked concrete and cracked concrete, also takinginto account the equivalent homogeneized section aswell as the yield coefficient.

• Elastic limit of reinforcement steel: 400 MPa.• Partial safety coeficient for ultimate limit states for

reinforcement steel: 1.15.

SECTION DEAD LOAD + CONCRETE (Kg/m2)SLAB EDGE (cm) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

67 77 87 97 107 117 127 137 147 157 167 177 187 197 207 217

0.8 183 208 233 258 283 308 333 358 383 408 433 458 483 508 533 558

1.0 185 210 235 260 285 310 335 360 385 410 435 460 485 510 535 560

1.2 187 212 237 262 287 312 337 362 387 412 437 462 487 512 537 562

SHEETTHICKNESS

(mm)

USE OFSLAB CONCRETE

(dm3/m2)

Composite slab MT-60

Data necessary for the calculation of the slab:For an accurate calculation of the slabwork for the project,the design engineer must know the following data:• The distance between the supports and the number ofspans covered with a single sheet.• The design loads in the service stage (dead loads +use overload).• Thickness of the concrete slab.• Maximum allowable deflection.• Characteristic compressive strength of the concretebeing used “fck”.• Concrete density (normal or light).

Standards and certificates:Regardless of the thickness, Hiansa MT-60 sectionscomply with the following international standards:• Eurocode 4, Parts 1-1 and 1-2. Combined steel and

concrete structure projects.• Eurocode 3, Parts 1-1 and 1-3. Steel structure

projects.• EN 10131 Dimension tolerances for shapes and

masses.• EN 10130 Cold rolled low carbon steel flat products.

Technical delivery conditions.• NBE EA 95 Calculation of steel structures.• EN 10346 Hop-dip galvanised stainless steel coated

flat products.

Calculation hypothesis:The results in the allowable static overload charts, obtainedaccording to the procedure established by Standards EC4and EC3, begin with the calculation hypotheses:• The loads that affect the slabwork are distributed and

predominantly static.• The slab spans are located in the direction of the

sheeting ribs.• Elastic analysis is used to study the slabs in the service

stage while the plastic theory is used to test tensilebending.

• The cases under consideration include slabs on twosupports and continuous slab over 3 or more supports(more spans with a single sheet).

• The results of the charts refer to a composite slabwithout connectors, i.e., they do not include theperformance of a combined beam solution.

• The calculation hypotheses regarding the concrete arespecified in the “Concrete” section, and thosecorresponding to the MT-60 section are in the“Mechanical characteristics of the MT-60 section” chart.

• The elastic limit of the steel in the MT-60 section is320 MPa, and the partial safety coefficient for theultimate limit states of the section steel is 1.10.

• The calculation model uses the following limit states:in the execution stage bending represents the ultimatelimit state, and deformation represents the service limit.In the service stage, the ultimate limit states arerepresented by bending, bond stress, vertical shearstress, while the ultimate limit state is the deformation.

• Deflection criteria when the ribbed steel sheet acts asformwork: f<L/250 or f<20 mm, with L=free spanbetween supports. The calculation of these deformationstakes into account the weight of the sheet and freshconcrete but not the execution loads, since these aretemporary.

• Deflection criteria in the service stage: f<L/250 in anycase contemplated in the charts.

• Increase coefficient of the loads used in the calculations:- Increase coefficient of dead loads: 1.35.- Increase coefficient of dead loads: 1.35.- Increase coefficient of live loads: 1.50.

• The values of the “Charts of service loads for the MT-60 Section” have been calculated according to thespecifications of EC4 part 1.1 in the execution stageof the construction of the slab, and as a combined slabin the service stage. The charts refer to a generic typeof slab defined in the points above. The project estimatoris in charge of calculating the slab according to theparticularities of the loads in place, the materials usedand other characteristics of project. It should be notedthat the static overloads in the charts are the maximumallowable overload where the loads are the sum of thedead loads representing the sum of the dead loads andlive overloads acting on the slab. The dead load of slabin each case has already been taken into account inthe calculations.

Page 10: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 12

Need for propping:Propping is understood to be the placing of intermediatesupports to temporarily reduce the distance betweensupports during the concrete pouring and setting stages.Once the sheets are in place, a prop is placed in thecenter of the free span of the bay, if necessary. If twoprops are needed (significant free span), place the propsat 1/3 and 2/3 of the free span of the bay. The drawingillustrates how to place a prop correctly.

min 80 mm

L/2L/2

Anticrack reinforcement:Its main purpose is to contrast the shrinking stressgenerated by the drying of the concrete, preventing itfrom cracking. It also contributes to the distribution ofoccasional small loads acting on the slab. It should beplaced at a depth of 20 mm from the top side of theslab, and cover the surface entirely. Point 7.6.2 ofEurocode 4 Standard specifies the minimal section forthis reinforcement:• In construction without props, the section should beequal to or greater than 0.2% of the surface area of theconcrete section over the slab section.• In construction with props, the section should be equalto or greater than 0.4% of the surface area of the concretesection over the slab section.

Negative moment reinforcement:When the design of the slab is continuous, i.e., it consistsof intermediate supports, it is affected by negative bendingmoments. It is then necessary to place this type ofreinforcement, at a depth of 25 mm from the upper sideof the slab. The corrugated bars should be long enoughto cover a third of the span of each of the adjacent bays,as shown in the drawing. The minimal section forreinforcement required to contrast these negative bendingmoments is shown in detail in the corresponding charts.

Additional reinforcement:This reinforcement is placed in the ribs of the combinedslab to contribute to bearing the bending stress (positivebending moment) when live overload of the slab is nothigh enough. In these cases the corrugated round barsare placed in the lower area of the metal section: thisincreases the strength of the slab, and reduces thethickness of the sheet, maintaining constant slab thicknessand simultaneously increasing the fireproof qualities ofthe same. It should be noted that the static overloadvalues that appear in the MT-60 charts refer to a slabwithout any type of additional reinforcement.

0,30L 1 0,30L 2

L 1 L 2

Negative moment reinforcement

Page 11: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 13

Composite slab MT-60

Combined beam solution: Use of connectors andreinforcementsIn this construction solution, the composite slab sectionis thoroughly bonded to the metal structure by way ofconnectors. The slab becomes part of the bearingstructure of the building, and ceases to be a monolithicelement whose weight is supported by the beams andcolumns that it leans on. It works like a compressionlayer of the strengthened section, significantly increasingits strength. The sum of the strong sections of the metalbeam and slab are taken into account in the calculations.The decision as to what type of structure to adopt and

the corresponding calculation are the responsibility ofthe design engineer. The overload values in the chartsrefer to a slab without any additional tensionreinforcement. However, corrugated round steel barscan be included to take care of the various stressesaffecting the slab. There are various types ofreinforcements, with different features and functions. Inany event, we would use high bonding corrugated steelbars with an ideal elastic limit of 500/N/mm2 diameterfor this purpose.

Negativemoment

Metalstructure

Connector

Anticrackreinforcement

Additional einforcement

Compositeslab

Page 12: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 14

Concrete pouring:Concrete should be poured over the ribbed sheets usingtraditional methods of pumps and piping or buckets. Alloil, dirt, or tackiness remaining from the manufacturingprocess or any other harmful substance on the top faceof the section must be eliminated before starting theconcrete pouring stage. To obtain the final slab propertiesspecified in the project, this stage must be performedwith extreme care: avoiding excess deformation of theslab, separation of the aggregate or loss of grout. Asfar as possible, the concrete should be poured over theslab supporting beams, from the lowest height possible.The concrete pouring hose should have a handle foreasy, practical pouring, and the concrete should neverbe poured from higher than 30 cm. Material should notbe allowed to accumulate and should be distributedlengthwise along the ribs of the steel section, from thebeams to the bays. Wheelbarrows should use 30 mmthick boards placed over the mesh, and no more thanthree workers should coincide on the same slabworkareas at the same time.To guarantee that the slab works properly, the concreteshould be compacted properly around the connectors,the reinforcements and the edges of the sheeting. It isnot necessary to vibrate the concrete. In the eventof loss of grout and subsequent appearance of stainson the bottom of the section, we recommend cleaningwith a water hose before drying.

Making openings in the slabs:During construction it is generally necessary to makeopenings in the slab to house installations anddownspouts. The openings have to be laid out prior toconcrete pouring, using expanded polystyrene blocksor any other means of formwork. When the side of anopening is greater than peak to peak, it is necessary toreinforce the perimeter of the opening lengthwise andcrosswise.Generally speaking, the following holds true:• Openings of up to 300 mm per side do not require

reinforcement.• Openings with sides measuring between 300 and

700 mm long require reinforcement.• Openings with sides over 700 mm long require placing

of ancillary support structures on the sides. Theseopenings are opened by cutting the metal sectiononce the concrete has set. It is important not to drillthe slab with percussion equipment once it has set,since the vibration can affect the cooperation betweenthe steel sheet and the concrete, with subsequentloss of bonding and bearing capacity.

Fireproof qualities of composite slab:R (bearing capacity of composite slab in fire conditions)is 30 minutes according to Eurocode 4, Part 1.2. Thisinformation does not require verification, as long as thecomposite slab calculations have been made accordingto Eurocode 4, Part 1.1 specifications. If the projectrequires fireproof quality over 30 minutes, the designengineer can choose from various solutions:• To attach some sort of fireproof system to the bottom

of the slab. One possibility is to place a continuouscoating of equal thickness using fireproof mortar orpaint or to include false ceilings made of plaster orsome other material (making sure that the jointsbetween the elements are airtight).

• To add tension reinforcement to the slab: thusincreasing the bearing capacity of the slab in fireconditions (R criterion) but not thermal insulationcapacity (I). The insulation capacity continues todepend on the effective thickness of the slab and anyadditional protection along the bottom of the steelsection.

Types of finished edges:To speed up the construction of composite slabwork andto improve execution times, Hiansa S.A. has designedexclusive finished edges for galvanized steel. Althoughthese parts are not indispensable, they are very usefulfor substituting certain traditional, on-site formworkingprocedures:• Slab edge finish (R1).• Truss-shaped edge finish (R2).• Slab direction change edge finish (R3).

Truss-shapededge finish (R2)

Slab direction changeedge finish (R3)

Slab edgefinish (R1)

Page 13: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 15

Composite slab MT-60

Fastening the sheet for composite slabwork to themetal structure:The sheet can be fastened to a metal beam by screws,welding or nails. The diameter of the hole for fasteningwith a nail gun should be 4.5 mm.To fasten with self-threading screws, see figures F1 andF2; hole diameter should be 6.3 mm or 5.5 mm,depending on section thickness. This is not the mostrecommendable fastening method, since the sheet is toothin to house enough thread for the screw to work properly.However, the decision must be made by the engineerresponsible for the slab design and calculations. If thesolution chosen is bonding by welding,welding should use 20 mm diameter spots in each valley.The weld should be smeared and protected with rust-proof paint. If the slab has only one span (two supports),the section should be fastened to the beam at eachvalley. In the event of intermediate supports (more spanscovered with a single sheet), valleys can be fastenedalternately. It is recommendable to fasten the side overlap: the distance should be 1000 mm in a slab with morespans and 500 mm in a slab with a single span. Forcorrect installation, the sections should be fastened tothe structure as they are placed. At the end of the workday,it is convenient to check that no sheeting is loose or onlypartially fastened and to firmly hold down the sheets thathave not yet been placed, to prevent them from falling.We do not recommend working on the floors under orover the slab during installation.

Fastening slabs on non-metal structures:Normally, metal plates or strips are left embedded in thesupport; the composite slab sheets are fastened to thesesupports by nailing or welding, especially when theexpected driving force is considerably high. If these platesare not used, make sure that the distance between thefastening point for the sheet and the edge of the supportis enough to prevent it from slipping or breaking off. Thefragileness of the supporting material should also betaken into consideration.

15 mm mín

Ø 5,515 mm mín

15 mm mín

Ø 6,3

15 mm mín

FASTENING WITH SCREWS

F2

15 mm mín

15 mm mín

15

NAIL GUN FASTENING

F1

75 mm 75 mm

75 mm100 mm

DOUBLE SUPPORT

SUPPORT ON OTHER MATERIALS(BRICK OR CONCRETE BLOCK)

END SUPPORT

CONDITIONS FOR SUPPORTING SHEETING ON BEAMS

DOUBLE SUPPORT

STEEL OR CONCRETE SUPPORT

END SUPPORT

50 mm 50 mm50 mm

75 mm

Storage:To prevent the effects of wind, humidity, condensationand rain, it is recommendable to store galvanized steelmaterial in an area that is enclosed and as dry as possible.If the material has to be stored outdoors, the packagesshould be separated from the ground by chocks of differentheights: the resulting slope will favor water evacuation.

Page 14: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 16

Interpretation of the different shades in the chartsfor allowable overloads: diverse theoretical focusper prop introduction (during slab execution).The user of the overload charts for the composite slabwith MT-60 section may be surprised at seeing how, ata given moment, the concrete slab thickness increasesby 1 cm, and the allowable overload drops significantly.This variation corresponds to the entry in the area shadedin red in the charts. This is a result of the differenttheoretical results of the study and verification of anunshored structure versus a shored structure (asestablished in Eurocode 4 and Eurocode 3 standards).In the slab execution stage, deformation of a steel sheetwith no props is proportional to the dead load of theconcrete poured.Once the concrete has set, it presents a deflection (f0)and the sheet has an internal stress s0 correspondingto its deformation.When the slab is loaded (equally distributed Q load), themaximum bending moment occurs in the center of thespan (corresponding to Q load).This is the time to check the various stresses affectingthe slab (bending moment, shear, bonding): in nearlyall cases, the slab will break when it reaches its maximumbonding moment. It is correct to say that the load thathas caused the slipping between the steel sheet andthe concrete is equal to the sum of the dead load ofthe slab and the Q load applied.In shored structures, the intermediate prop divides thefree span between supports in two, and the deflection(f0’) is considerably lower than deflection f0 (recordedin the same slab without props). By approximation wecan say that deflection f0’ is equal to 0. During concretesetting, the sheet is not under stress, since the propbears the dead load of the concrete poured. Once theconcrete has set, if the prop is removed and Q load isapplied to the structure, all the stresses affecting theslab are verified. Once again, collapse occurs when theultimate limit state of the bonding moment is reached: in this case, Q load determines slab rupture. In theallowable overload charts it is not valid to add the deadload of the slab to the value recorded during the slabrupture test.

In sum, in an unshored structure it is valid to add theslab dead load to the recorded service overload becausethe structure has already taken on that load (the deadload) before setting: deflection f0 represents thedeformation corresponding to the internal stress of thesheet generated by concrete pouring.

UNSHORED CONSTRUCTION HARD CONCRETELoad equally distributed: Q

VRupture testing for UltimateLimit State: Qu bend. / Qushear / Qu bonding

Q · L2

8

F1 (P.P.) F1 (P.P.)

L/2 L/2

L

UNSHORED CONSTRUCTION FRESH CONCRETELoad: Section dead load + concrete

f1 (P.P.) << f0 (P.P.)f1 (P.P.)=0 (approximate)

Stress diagram:

σ 0’ << σ 0

F0 (P.P.)

L

UNSHORED CONSTRUCTION FRESH CONCRETELoad: Section dead load + concrete

f0(P.P.) >> f1 (P.P.)

σ 0 >> σ 0’ the sheet isprestressed during concretesetting, presentingdeflection (f0)

Internal tensionsteel sheet:

UNSHORED CONSTRUCTION HARD CONCRETELoad equally distributed: Q

Q design = (P.P:+ Q load)

Diagramof stresses:

M

M

M

P.P. · L2

8M =

σ0=

P.P. · L2

8Wxx

Internal tension tosteel sheet: σ0’=

Wxx

P.P. · (L/2)2

8

P.P. · (L/2)2

8M=

M =

Rupture testing for UltimateLimit State: Qu bend. / Qushear / Qu bonding

M

Stress diagram:

M= Qdesign · L2

8

Diagramof stresses:

Page 15: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 17

Load charts for the MT-60 section

Normal concreteThickness 0,8 mm

*These values correspond to the results found on the frontiers of the mathematical calculation model used. Especially in these cases, the design engineer must take special care consideringthe particular conditions of the project as regards the generic calculation hypotheses considered for the preparation of these charts. In particular, shear stresses should be verified, bearingin mind the real distribution of concentrated loads, linear loads and so on of the project

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

10

H (cm)

LUZ

(m)

SPA

N (

m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

TWO SUPPORTS STATIC OVERLOADS IN daN/m2

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

822 942 1063 1184 1306 1427 1549 1670 1791 1913 2034 2159 2281 2402 2524 2645

693 794 896 999 1101 1203 1305 1408 1510 1612 1715 1820 1923 2025 2128 1672

594 681 768 856 943 1031 1119 1206 1324 1414 1503 1102 1165 1228 1291 1354

517 592 668 744 820 920 998 718 771 824 878 898 950 1001 1052 1104

455 520 587 674 460 504 548 592 636 680 724 735 777 820 862 904

404 478 306 343 379 416 452 489 525 562 598 602 637 672 706 741

179 222 252 283 313 343 374 404 434 465 495 493 521 550 578 607

144 182 207 232 258 283 308 333 358 383 409 401 425 448 471 495

115 148 169 190 211 232 252 273 294 315 336 324 343 362 381 400

90 120 137 154 171 188 205 222 239 256 273 258 273 288 304 319

68 95 109 122 136 150 164 178 192 206 220 201 213 225 237 249

50 73 84 95 107 118 129 140 151 162 173 152 161 170 180 189

33 54 63 72 80 89 98 106 115 124 132 109 115 122 129 136

10

H (cm)

LUZ

(m)

SPA

N (

m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

THREE SUPPORTS STATIC OVERLOADS IN daN/m2

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1090 1251 1412 1573 1735 1873 1973 2071 2168 2263 2355 2446 2536 2623 2708 2792

918 1054 1190 1325 1461 1597 1733 1854 1939 2024 2106 2187 2266 2343 2418 2492

786 903 1019 1135 1251 1368 1484 1600 1717 1824 1898 1970 2040 2109 2177 2243

683 784 885 986 1087 1188 1289 1390 1491 1592 1693 1787 1850 1912 1972 2032

600 689 778 866 955 1044 1132 1221 1310 1399 1487 1576 1665 1743 1309 1373

533 612 690 769 848 927 1005 1084 1163 1242 1320 941 994 1048 1102 1156

477 548 618 689 759 830 900 971 658 704 749 795 840 886 931 977

431 495 558 622 685 749 479 518 557 595 634 673 711 750 788 827

392 449 507 565 340 372 405 438 471 504 537 569 602 635 668 701

358 411 231 258 286 314 342 370 398 426 453 481 509 537 565 593

329 170 193 217 240 264 288 311 335 358 382 406 429 453 476 500

121 141 161 181 201 220 240 260 280 300 320 340 360 380 399 419

99 116 133 149 166 182 199 216 232 249 266 282 299 316 332 349

80 94 108 121 135 149 163 177 190 204 218 232 246 259 273 287

63 74 86 97 108 119 131 142 153 165 176 187 198 210 221 232

48 57 66 75 84 93 102 111 120 129 138 147 156 165 175 184

10

H (cm)

LUZ

(m)

SPA

N (

m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

THREE SUPPORTSREINFORCEMENT SECTIONS ON INTERMEDIATE SUPPORTS IN CONTINUOUS SLABS cm2/ml, CORRESPONDING TO MAXIMUM ALLOWABLE LOAD

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2.51 2.48 2.46 2.44 2.43 2.42 2.41 2.41 2.40 2.40 2.39 2.39 2.38 2.34 2.30 2.26

2.55 2.52 2.50 2.49 2.47 2.46 2.46 2.45 2.44 2.44 2.43 2.43 2.43 2.42 2.42 2.42

2.60 2.57 2.55 2.53 2.52 2.51 2.50 2.49 2.48 2.48 2.47 2.47 2.47 2.46 2.46 2.46

2.65 2.61 2.59 2.57 2.56 2.55 2.54 2.53 2.52 2.52 2.51 2.51 2.51 2.50 2.50 2.50

2.69 2.66 2.64 2.62 2.60 2.59 2.58 2.57 2.57 2.56 2.55 2.55 2.55 2.54 2.54 2.54

2.74 2.70 2.68 2.66 2.64 2.63 2.62 2.61 2.61 2.60 2.59 2.59 2.59 2.58 2.58 2.58

2.79 2.75 2.72 2.70 2.69 2.67 2.66 2.66 2.65 2.64 2.64 2.63 2.63 2.62 2.62 2.62

2.83 2.80 2.77 2.75 2.73 2.72 2.71 2.70 2.69 2.68 2.68 2.67 2.67 2.66 2.66 2.66

2.88 2.84 2.81 2.79 2.77 2.76 2.75 2.74 2.73 2.72 2.72 2.71 2.71 2.70 2.70 2.70

2.93 2.89 2.86 2.83 2.82 2.80 2.79 2.78 2.77 2.76 2.76 2.75 2.75 2.74 2.74 2.74

2.98 2.93 2.90 2.88 2.86 2.84 2.83 2.82 2.81 2.81 2.80 2.79 2.79 2.78 2.78 2.78

3.03 2.98 2.95 2.92 2.90 2.89 2.87 2.86 2.85 2.85 2.84 2.83 2.83 2.82 2.82 2.82

3.07 3.03 2.99 2.97 2.95 2.93 2.92 2.91 2.90 2.89 2.88 2.87 2.87 2.86 2.86 2.86

3.12 3.07 3.04 3.01 2.99 2.97 2.96 2.95 2.94 2.93 2.92 2.92 2.91 2.90 2.90 2.90

3.17 3.12 3.08 3.06 3.03 3.02 3.00 2.99 2.98 2.97 2.96 2.96 2.95 2.94 2.94 2.94

3.22 3.17 3.13 3.10 3.08 3.06 3.04 3.03 3.02 3.01 3.00 3.00 2.99 2.99 2.98 2.98

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

Page 16: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 18

10

H (cm)

LUZ

(m)

SPA

N (

m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

FOUR SUPPORTS STATIC OVERLOADS IN daN/m2

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1023 1174 1325 1477 1628 1779 1931 2082 2233 2372 2470 2566 2659 2751 2841 2929

862 989 1117 1244 1372 1499 1627 1754 1882 2009 2137 2264 2378 2459 2539 2617

738 847 957 1066 1175 1284 1393 1503 1612 1721 1830 1939 2049 2158 2267 2357

641 736 831 926 1021 1115 1210 1305 1400 1495 1590 1684 1779 1874 1969 2064

564 647 730 814 897 980 1064 1147 1230 1314 1397 1480 1564 1647 1197 1255

501 575 649 723 797 871 945 1019 1093 1167 1241 856 905 954 1003 1052

449 515 581 647 714 780 846 912 595 637 678 719 760 802 843 884

405 465 525 585 644 704 431 465 500 535 570 605 640 674 709 744

368 423 477 531 302 332 361 391 420 449 479 508 537 567 596 625

337 387 203 228 252 277 302 327 351 376 401 425 450 475 500 524

310 147 168 189 209 230 251 272 292 313 334 354 375 396 417 437

103 120 138 155 172 189 207 224 241 258 276 293 310 327 344 362

83 97 111 125 140 154 168 182 196 211 225 239 253 267 282 296

65 76 88 99 111 122 134 145 157 168 180 192 203 215 226 238

49 58 67 76 85 95 104 113 122 131 140 150 159 168 177 186

35 42 49 56 63 70 77 84 91 98 105 112 119 127 134 141

FOUR SUPPORTSREINFORCEMENT SECTIONS ON INTERMEDIATE SUPPORTS IN CONTINUOUS SLABS cm2/ml, CORRESPONDING TO MAXIMUM ALLOWABLE LOAD

10

H (cm)

LUZ

(m)

LUZ

(m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1.82 1.81 1.80 1.80 1.79 1.79 1.78 1.78 1.78 1.78 1.77 1.77 1.77 1.77 1.77 1.77

1.85 1.84 1.83 1.83 1.82 1.82 1.81 1.81 1.81 1.81 1.80 1.80 1.80 1.80 1.80 1.80

1.89 1.87 1.87 1.86 1.85 1.85 1.84 1.84 1.84 1.84 1.83 1.83 1.83 1.83 1.83 1.83

1.92 1.91 1.90 1.89 1.88 1.88 1.87 1.87 1.87 1.87 1.86 1.86 1.86 1.86 1.86 1.86

1.95 1.94 1.93 1.92 1.91 1.91 1.90 1.90 1.90 1.90 1.89 1.89 1.89 1.89 1.89 1.88

1.98 1.97 1.96 1.95 1.94 1.94 1.93 1.93 1.93 1.93 1.92 1.92 1.92 1.92 1.92 1.91

2.02 2.00 1.99 1.98 1.98 1.97 1.97 1.96 1.96 1.96 1.95 1.95 1.95 1.95 1.95 1.94

2.05 2.03 2.02 2.01 2.01 2.00 2.00 1.99 1.99 1.98 1.98 1.98 1.98 1.98 1.97 1.97

2.08 2.07 2.05 2.04 2.04 2.03 2.03 2.02 2.02 2.01 2.01 2.01 2.01 2.01 2.00 2.00

2.12 2.10 2.09 2.08 2.07 2.06 2.06 2.05 2.05 2.04 2.04 2.04 2.04 2.04 2.03 2.03

2.15 2.13 2.12 2.11 2.10 2.09 2.09 2.08 2.08 2.07 2.07 2.07 2.07 2.06 2.06 2.06

2.18 2.16 2.15 2.14 2.13 2.12 2.12 2.11 2.11 2.10 2.10 2.10 2.10 2.09 2.09 2.09

2.21 2.20 2.18 2.17 2.16 2.15 2.15 2.14 2.14 2.13 2.13 2.13 2.13 2.12 2.12 2.12

2.25 2.23 2.21 2.20 2.19 2.18 2.18 2.17 2.17 2.16 2.16 2.16 2.16 2.15 2.15 2.15

2.28 2.26 2.24 2.23 2.22 2.22 2.21 2.20 2.20 2.19 2.19 2.19 2.19 2.18 2.18 2.18

2.32 2.29 2.28 2.26 2.25 2.25 2.24 2.23 2.23 2.23 2.22 2.22 2.22 2.21 2.21 2.21

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

*These values correspond to the results found on the frontiers of the mathematical calculation model used. Especially in these cases, the design engineer must take special care consideringthe particular conditions of the project as regards the generic calculation hypotheses considered for the preparation of these charts. In particular, shear stresses should be verified, bearingin mind the real distribution of concentrated loads, linear loads and so on of the project

Page 17: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 19

Load charts for the MT-60 section

Normal concreteThickness 1,0 mm

10

H (cm)

LUZ

(m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

989 1134 1280 1426 1573 1719 1865 2012 2158 2304 2451 2601 2747 2894 3040 3187

831 953 1076 1199 1321 1444 1567 1690 1813 1936 2059 2185 2308 2432 2555 2678

710 814 919 1024 1129 1234 1339 1444 1549 1654 1759 1867 1972 2078 2183 2288

616 705 796 887 978 1069 1160 1251 1342 1465 1558 1618 1224 1290 1356 1422

540 618 698 778 857 937 1043 1124 821 878 934 959 1013 1068 1123 1178

479 548 618 709 781 544 591 639 686 734 782 797 843 888 934 980

428 506 571 375 415 455 496 536 576 616 656 663 702 740 778 816

386 247 281 314 348 382 416 449 483 517 551 552 584 616 648 680

165 206 234 263 291 320 348 377 405 434 462 458 485 512 538 565

134 171 195 219 243 267 291 315 339 363 387 378 400 423 445 467

108 141 161 181 201 221 241 262 282 302 322 310 328 346 364 383

86 115 132 148 165 182 199 215 232 249 266 250 265 280 295 310

66 78 90 102 114 126 138 150 162 174 186 198 210 222 234 246

48 58 67 77 86 96 105 115 124 133 143 152 162 171 181 190

10

H (cm)

LUZ

(m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1312 1507 1692 1797 1900 2001 2101 2198 2294 2388 2480 2570 2658 2744 2829 2912

1102 1265 1429 1592 1704 1794 1882 1969 2054 2137 2219 2298 2377 2453 2528 2601

941 1080 1220 1359 1499 1621 1700 1778 1854 1928 2001 2072 2142 2210 2277 2342

815 935 1056 1177 1297 1418 1539 1616 1684 1751 1817 1881 1944 2005 2065 2123

714 820 925 1031 1137 1242 1348 1454 1539 1600 1659 1717 1774 1829 1883 1936

632 725 819 913 1006 1100 1193 1287 1380 1469 1523 1575 1626 1676 1725 1773

564 648 731 815 898 982 1065 1149 1232 1316 1399 1451 1497 1140 1198 1257

508 583 658 733 809 884 959 1034 1109 1184 1259 874 924 975 1025 1075

461 529 597 665 733 801 869 937 620 663 706 749 792 835 878 921

420 482 544 606 668 730 457 494 531 568 605 642 680 717 754 791

385 442 499 556 327 359 391 423 455 487 519 551 583 615 646 678

355 407 460 252 279 307 334 362 389 416 444 471 499 526 554 581

329 167 190 214 237 261 284 308 331 355 379 402 426 449 473 496

120 140 160 180 201 221 241 261 281 301 321 341 361 381 401 422

100 117 134 151 168 185 202 219 236 253 270 287 304 322 339 356

82 96 110 125 139 153 168 182 197 211 225 240 254 268 283 297

10

H (cm)

LUZ

(m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

3.12 3.07 3.03 3.01 2.99 2.97 2.90 2.81 2.73 2.66 2.59 2.54 2.48 2.44 2.39 2.35

3.17 3.12 3.08 3.05 3.03 3.01 3.00 2.99 2.98 2.94 2.87 2.80 2.74 2.69 2.64 2.59

3.22 3.16 3.13 3.10 3.07 3.06 3.04 3.03 3.02 3.01 3.00 3.00 2.99 2.95 2.89 2.84

3.27 3.21 3.17 3.14 3.12 3.10 3.08 3.07 3.06 3.05 3.04 3.04 3.03 3.02 3.02 3.01

3.32 3.26 3.22 3.19 3.16 3.14 3.13 3.11 3.10 3.09 3.08 3.08 3.07 3.07 3.06 3.06

3.37 3.31 3.26 3.23 3.21 3.19 3.17 3.16 3.14 3.13 3.13 3.12 3.11 3.11 3.10 3.10

3.42 3.35 3.31 3.28 3.25 3.23 3.21 3.20 3.19 3.18 3.17 3.16 3.15 3.15 3.14 3.14

3.47 3.40 3.36 3.32 3.29 3.27 3.26 3.24 3.23 3.22 3.21 3.20 3.19 3.19 3.18 3.18

3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.28 3.27 3.26 3.25 3.24 3.23 3.23 3.22 3.22

3.57 3.50 3.45 3.41 3.38 3.36 3.34 3.33 3.31 3.30 3.29 3.28 3.28 3.27 3.26 3.26

3.62 3.55 3.50 3.46 3.43 3.41 3.39 3.37 3.36 3.34 3.33 3.33 3.32 3.31 3.30 3.30

3.67 3.60 3.54 3.50 3.47 3.45 3.43 3.41 3.40 3.39 3.38 3.37 3.36 3.35 3.34 3.34

3.73 3.65 3.59 3.55 3.52 3.49 3.47 3.46 3.44 3.43 3.42 3.41 3.40 3.39 3.39 3.38

3.78 3.70 3.64 3.60 3.56 3.54 3.52 3.50 3.48 3.47 3.46 3.45 3.44 3.43 3.43 3.42

3.83 3.75 3.69 3.64 3.61 3.58 3.56 3.54 3.53 3.51 3.50 3.49 3.48 3.47 3.47 3.46

3.89 3.80 3.74 3.69 3.65 3.63 3.60 3.59 3.57 3.56 3.54 3.53 3.52 3.52 3.51 3.50

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

SPA

N (

m)

TWO SUPPORTS STATIC OVERLOADS IN daN/m2

SPA

N (

m)

THREE SUPPORTS STATIC OVERLOADS IN daN/m2

SPA

N (

m)

THREE SUPPORTSREINFORCEMENT SECTIONS ON INTERMEDIATE SUPPORTS IN CONTINUOUS SLABS cm2/ml, CORRESPONDING TO MAXIMUM ALLOWABLE LOAD

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

*These values correspond to the results found on the frontiers of the mathematical calculation model used. Especially in these cases, the design engineer must take special care consideringthe particular conditions of the project as regards the generic calculation hypotheses considered for the preparation of these charts. In particular, shear stresses should be verified, bearingin mind the real distribution of concentrated loads, linear loads and so on of the project

Page 18: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 20

10

H (cm)

LUZ

(m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1232 1414 1597 1779 1962 2096 2201 2303 2404 2503 2599 2694 2787 2878 2967 3054

1034 1188 1341 1494 1647 1801 1954 2064 2154 2241 2327 2412 2494 2574 2653 2730

883 1014 1145 1276 1407 1538 1668 1799 1930 2024 2101 2176 2250 2322 2392 2461

765 878 992 1105 1218 1331 1445 1558 1671 1785 1898 1977 2043 2108 2171 2233

670 770 869 968 1067 1167 1266 1365 1464 1564 1663 1762 1861 1924 1982 2037

594 681 769 857 945 1033 1121 1209 1296 1384 1472 1560 1648 1736 1817 1868

530 609 687 766 844 923 1001 1079 1158 1236 1315 1393 1472 1040 1093 1147

477 548 619 689 760 830 901 972 1042 1113 1183 794 839 885 931 976

433 497 561 625 689 753 817 881 559 598 637 676 715 754 793 832

395 453 512 570 628 687 410 443 476 510 543 576 610 643 676 710

362 416 469 523 291 319 348 376 405 433 462 490 519 547 576 604

334 383 433 222 246 270 294 319 343 367 392 416 440 465 489 513

309 145 165 186 207 227 248 268 289 310 330 351 372 392 413 434

102 120 137 155 172 189 207 224 242 259 277 294 311 329 346 364

83 98 112 127 141 156 171 185 200 214 229 244 258 273 287 302

66 78 90 102 114 126 139 151 163 175 187 199 211 223 235 247

10

H (cm)

LUZ

(m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2.24 2.22 2.21 2.20 2.19 2.18 2.18 2.17 2.17 2.16 2.14 2.10 2.06 2.02 1.98 1.95

2.28 2.26 2.24 2.23 2.22 2.21 2.21 2.20 2.20 2.19 2.19 2.19 2.18 2.18 2.18 2.15

2.31 2.29 2.27 2.26 2.25 2.24 2.24 2.23 2.23 2.22 2.22 2.22 2.21 2.21 2.21 2.21

2.34 2.32 2.31 2.29 2.28 2.28 2.27 2.26 2.26 2.25 2.25 2.25 2.24 2.24 2.24 2.24

2.38 2.36 2.34 2.33 2.31 2.31 2.30 2.29 2.29 2.28 2.28 2.28 2.27 2.27 2.27 2.27

2.41 2.39 2.37 2.36 2.35 2.34 2.33 2.32 2.32 2.31 2.31 2.31 2.30 2.30 2.30 2.30

2.45 2.42 2.40 2.39 2.38 2.37 2.36 2.35 2.35 2.34 2.34 2.34 2.33 2.33 2.33 2.33

2.48 2.45 2.44 2.42 2.41 2.40 2.39 2.39 2.38 2.37 2.37 2.37 2.36 2.36 2.36 2.36

2.51 2.49 2.47 2.45 2.44 2.43 2.42 2.42 2.41 2.41 2.40 2.40 2.39 2.39 2.39 2.39

2.55 2.52 2.50 2.48 2.47 2.46 2.45 2.45 2.44 2.44 2.43 2.43 2.42 2.42 2.42 2.42

2.58 2.55 2.53 2.52 2.50 2.49 2.48 2.48 2.47 2.47 2.46 2.46 2.45 2.45 2.45 2.44

2.62 2.59 2.57 2.55 2.54 2.52 2.52 2.51 2.50 2.50 2.49 2.49 2.48 2.48 2.48 2.47

2.65 2.62 2.60 2.58 2.57 2.56 2.55 2.54 2.53 2.53 2.52 2.52 2.51 2.51 2.51 2.50

2.69 2.66 2.63 2.61 2.60 2.59 2.58 2.57 2.56 2.56 2.55 2.55 2.54 2.54 2.54 2.53

2.72 2.69 2.66 2.65 2.63 2.62 2.61 2.60 2.59 2.59 2.58 2.58 2.57 2.57 2.57 2.56

2.76 2.72 2.70 2.68 2.66 2.65 2.64 2.63 2.62 2.62 2.61 2.61 2.60 2.60 2.60 2.59

SPA

N (

m)

FOUR SUPPORTS STATIC OVERLOADS IN daN/m2

FOUR SUPPORTSREINFORCEMENT SECTIONS ON INTERMEDIATE SUPPORTS IN CONTINUOUS SLABS cm2/ml, CORRESPONDING TO MAXIMUM ALLOWABLE LOAD

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

*These values correspond to the results found on the frontiers of the mathematical calculation model used. Especially in these cases, the design engineer must take special care consideringthe particular conditions of the project as regards the generic calculation hypotheses considered for the preparation of these charts. In particular, shear stresses should be verified, bearingin mind the real distribution of concentrated loads, linear loads and so on of the project

Page 19: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 21

Load charts for the MT-60 section

Normal concreteThickness 1,2 mm

10

H (cm)

LUZ

(m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1168 1325 1497 1668 1839 2011 2182 2353 2524 2696 2867 3074 3247 3421 3594 3767

982 1111 1255 1398 1542 1685 1829 1972 2116 2259 2403 2582 2728 2873 3019 3165

839 947 1069 1192 1314 1436 1559 1681 1803 1926 2048 2206 2330 2455 2579 2703

727 819 924 1030 1136 1241 1347 1453 1559 1664 1770 1912 2019 2127 2235 2342

638 716 809 901 993 1086 1178 1271 1363 1456 1145 1676 1283 1353 1422 1492

565 633 715 796 878 960 1041 1151 1235 906 965 1023 1082 1141 1199 1258

506 565 637 710 805 880 617 667 717 767 816 866 916 966 1016 1065

456 507 591 396 438 481 523 566 608 650 693 735 778 820 862 905

414 263 299 335 372 408 444 480 516 552 589 625 661 697 733 770

191 222 253 284 315 346 376 407 438 469 500 531 562 593 624 654

160 187 213 239 266 292 318 345 371 398 424 450 477 503 529 556

134 156 179 201 224 246 268 291 313 336 358 380 403 425 448 470

111 130 149 168 187 206 225 244 263 282 301 320 339 358 376 395

91 107 123 139 154 170 186 202 218 234 250 266 282 298 314 330

73 86 99 113 126 139 153 166 179 192 206 219 232 246 259 272

57 68 79 90 101 112 123 133 144 155 166 177 188 199 210 221

10

H (cm)

LUZ

(m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1535 1717 1823 1927 2029 2130 2228 2325 2420 2513 2604 2693 2780 2866 2950 3031

1286 1477 1638 1730 1821 1910 1998 2084 2168 2251 2331 2410 2488 2563 2637 2710

1095 1258 1420 1566 1648 1728 1806 1883 1958 2032 2104 2175 2244 2311 2377 2442

946 1087 1227 1367 1501 1573 1644 1713 1781 1847 1912 1976 2038 2098 2157 2215

827 950 1073 1195 1318 1441 1505 1567 1629 1689 1747 1805 1861 1915 1969 2021

731 839 947 1056 1164 1272 1381 1441 1497 1551 1605 1657 1707 1757 1805 1852

651 748 844 941 1037 1134 1230 1327 1382 1431 1480 1527 1573 1618 1662 1705

585 672 758 845 932 1018 1105 1192 1278 1325 1370 1413 1455 1496 1536 1575

529 608 686 764 843 921 999 1078 1156 1231 1272 1311 1350 1035 1089 1142

482 553 624 695 767 838 909 981 1052 1123 757 803 850 896 942 989

441 506 571 636 702 767 832 897 575 615 656 696 736 776 816 857

405 465 525 585 645 705 428 463 498 533 568 603 638 673 708 743

375 430 485 541 309 339 370 400 430 461 491 522 552 582 613 643

348 399 450 239 266 292 319 345 371 398 424 450 477 503 530 556

324 159 182 205 228 251 273 296 319 342 365 388 410 433 456 479

115 135 155 174 194 214 233 253 273 292 312 332 352 371 391 411

10

H (cm)

LUZ

(m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

3.77 3.69 3.63 3.54 3.35 3.20 3.07 2.96 2.87 2.79 2.71 2.65 2.59 2.53 2.48 2.44

3.82 3.74 3.68 3.64 3.61 3.55 3.40 3.28 3.17 3.08 3.00 2.93 2.86 2.80 2.74 2.69

3.88 3.79 3.73 3.69 3.65 3.62 3.60 3.58 3.49 3.38 3.29 3.21 3.13 3.07 3.00 2.95

3.93 3.84 3.78 3.73 3.70 3.67 3.64 3.63 3.61 3.60 3.58 3.49 3.41 3.33 3.27 3.20

3.99 3.89 3.83 3.78 3.74 3.71 3.69 3.67 3.65 3.64 3.63 3.61 3.61 3.60 3.53 3.46

4.04 3.94 3.88 3.83 3.79 3.76 3.73 3.71 3.70 3.68 3.67 3.66 3.65 3.64 3.63 3.62

4.09 3.99 3.92 3.87 3.83 3.80 3.78 3.76 3.74 3.72 3.71 3.70 3.69 3.68 3.67 3.66

4.15 4.05 3.97 3.92 3.88 3.85 3.82 3.80 3.78 3.77 3.75 3.74 3.73 3.72 3.71 3.71

4.21 4.10 4.02 3.97 3.93 3.89 3.87 3.84 3.82 3.81 3.80 3.78 3.77 3.76 3.75 3.75

4.26 4.15 4.07 4.02 3.97 3.94 3.91 3.89 3.87 3.85 3.84 3.83 3.81 3.80 3.80 3.79

4.32 4.20 4.12 4.06 4.02 3.98 3.96 3.93 3.91 3.89 3.88 3.87 3.86 3.85 3.84 3.83

4.37 4.25 4.17 4.11 4.07 4.03 4.00 3.98 3.96 3.94 3.92 3.91 3.90 3.89 3.88 3.87

4.43 4.31 4.22 4.16 4.11 4.08 4.05 4.02 4.00 3.98 3.97 3.95 3.94 3.93 3.92 3.91

4.49 4.36 4.27 4.21 4.16 4.12 4.09 4.06 4.04 4.02 4.01 3.99 3.98 3.97 3.96 3.95

4.55 4.41 4.32 4.26 4.21 4.17 4.14 4.11 4.09 4.07 4.05 4.04 4.02 4.01 4.00 3.99

4.61 4.47 4.37 4.31 4.25 4.21 4.18 4.15 4.13 4.11 4.09 4.08 4.07 4.06 4.05 4.04

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

SPA

N (

m)

TWO SUPPORTS STATIC OVERLOADS IN daN/m2

SPA

N (

m)

THREE SUPPORTS STATIC OVERLOADS IN daN/m2

SPA

N (

m)

THREE SUPPORTSSECTION DES ARMATURES SUR APPUIS INTERMÉDIAIRES DANS DALLES CONTINUES, cm2/ml, CORRESPONDANT À LA CHARGE MAXIMALE ADMISSIBLE

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

*These values correspond to the results found on the frontiers of the mathematical calculation model used. Especially in these cases, the design engineer must take special care consideringthe particular conditions of the project as regards the generic calculation hypotheses considered for the preparation of these charts. In particular, shear stresses should be verified, bearingin mind the real distribution of concentrated loads, linear loads and so on of the project

Page 20: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 22

10

H (cm)

LUZ

(m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1440 1654 1867 2017 2125 2230 2334 2435 2535 2633 2729 2823 2915 3005 3093 3179

1207 1386 1565 1744 1908 2002 2094 2184 2273 2360 2445 2528 2610 2689 2767 2844

1028 1181 1333 1486 1638 1791 1894 1975 2054 2132 2208 2283 2356 2427 2497 2565

888 1020 1152 1284 1415 1547 1679 1810 1870 1940 2008 2075 2141 2205 2267 2328

777 892 1007 1122 1237 1353 1468 1583 1698 1775 1837 1897 1956 2014 2071 2126

686 788 890 991 1093 1195 1296 1398 1500 1602 1688 1743 1797 1849 1901 1950

612 702 793 884 974 1065 1156 1246 1337 1427 1518 1608 1657 1705 1752 1797

550 631 712 794 875 957 1038 1119 1201 1282 1364 1445 1526 1577 1620 1661

497 571 644 718 792 865 939 1013 1086 1160 1233 1307 1381 942 990 1039

453 520 587 654 721 788 855 922 989 1056 685 727 769 811 853 895

414 476 537 598 660 721 782 844 517 554 590 626 663 699 735 772

381 438 494 550 607 663 382 414 445 476 508 539 570 602 633 665

352 405 457 509 273 300 328 355 382 409 436 463 490 517 544 571

327 375 424 210 233 256 280 303 326 350 373 396 420 443 466 490

305 137 157 177 197 217 237 257 277 297 317 337 357 377 397 417

98 115 132 149 166 183 200 217 234 251 268 285 302 319 336 353

10

H (cm)

LUZ

(m)

2,00

2,20

2,40

2,60

2,80

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

4,60

4,80

5,00

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2.68 2.65 2.63 2.61 2.60 2.59 2.52 2.44 2.36 2.30 2.24 2.19 2.14 2.10 2.06 2.02

2.72 2.69 2.66 2.64 2.63 2.62 2.61 2.60 2.59 2.54 2.48 2.42 2.36 2.31 2.27 2.23

2.75 2.72 2.69 2.68 2.66 2.65 2.64 2.63 2.62 2.62 2.61 2.61 2.59 2.53 2.48 2.44

2.79 2.75 2.73 2.71 2.69 2.68 2.67 2.66 2.65 2.65 2.64 2.64 2.63 2.63 2.63 2.62

2.82 2.79 2.76 2.74 2.72 2.71 2.70 2.69 2.68 2.68 2.67 2.67 2.66 2.66 2.66 2.65

2.86 2.82 2.79 2.77 2.76 2.74 2.73 2.72 2.72 2.71 2.70 2.70 2.69 2.69 2.69 2.68

2.90 2.86 2.83 2.81 2.79 2.78 2.76 2.75 2.75 2.74 2.73 2.73 2.72 2.72 2.72 2.71

2.93 2.89 2.86 2.84 2.82 2.81 2.80 2.79 2.78 2.77 2.76 2.76 2.75 2.75 2.75 2.74

2.97 2.93 2.89 2.87 2.85 2.84 2.83 2.82 2.81 2.80 2.79 2.79 2.78 2.78 2.78 2.77

3.00 2.96 2.93 2.90 2.89 2.87 2.86 2.85 2.84 2.83 2.83 2.82 2.81 2.81 2.81 2.80

3.04 2.99 2.96 2.94 2.92 2.90 2.89 2.88 2.87 2.86 2.86 2.85 2.84 2.84 2.84 2.83

3.08 3.03 3.00 2.97 2.95 2.94 2.92 2.91 2.90 2.89 2.89 2.88 2.88 2.87 2.87 2.86

3.11 3.06 3.03 3.00 2.98 2.97 2.95 2.94 2.93 2.92 2.92 2.91 2.91 2.90 2.90 2.89

3.15 3.10 3.06 3.04 3.02 3.00 2.99 2.97 2.96 2.96 2.95 2.94 2.94 2.93 2.93 2.92

3.19 3.13 3.10 3.07 3.05 3.03 3.02 3.01 3.00 2.99 2.98 2.97 2.97 2.96 2.96 2.95

3.22 3.17 3.13 3.10 3.08 3.06 3.05 3.04 3.03 3.02 3.01 3.00 3.00 2.99 2.99 2.98

SPA

N (

m)

FOUR SUPPORTS STATIC OVERLOADS IN daN/m2

FOUR SUPPORTSREINFORCEMENT SECTIONS ON INTERMEDIATE SUPPORTS IN CONTINUOUS SLABS cm2/ml, CORRESPONDING TO MAXIMUM ALLOWABLE LOAD

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

Restrictions: Props = place 1 prop in the center of the bay. Deflection ≤L/250

*These values correspond to the results found on the frontiers of the mathematical calculation model used. Especially in these cases, the design engineer must take special care consideringthe particular conditions of the project as regards the generic calculation hypotheses considered for the preparation of these charts. In particular, shear stresses should be verified, bearingin mind the real distribution of concentrated loads, linear loads and so on of the project

Page 21: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 23

Page 22: FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 4 · FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 5 In Hiansa we are also testing composite slabs with an MT-60 section

FORJADO COLABORA MT60 INGLES 16/10/08 18:16 Página 24

Hiansa S.A. is producing the MT-100, a new composite slab sectionin order to provide design engineers and estimators with suitableconstruction solutions. This product features a significant rib height(100 mm), and is hot-dipped galvanized zinc on both sides. The MT-100 is currently undergoing experimental testing to comply with theEurocode. As soon as the product is certified, the allowable overloadsand mechanical and geometrical characteristics of the section will bepublished in the corresponding monograph brochure on the MT-100.

N E W N E S S