acero forjado

67
ACERO 1. INTRODUCCIÓN A traves de la historia el hombre a tratado de mejorar las materias primas, añadiendo materiales tanto orgánicos como inorgánicos, para obtener los resultados ideales para las diversas construcciones.Dado el caso de que los materiales mas usados en la construcción no se encuentran en la naturaleza en estado puro, por lo que para su empleo hay que someterlos a una serie de operaciones metalúrgicas cuyo fin es separar el metal de las impurezas u otros minerales que lo acompañen. Pero esto no basta para alcanzar las condiciones optimas, entonces para que los metales tengan buenos resultados, se someten a ciertos tratamientos con el fin de hacer una aleación que reúna una serie de propiedades que los hagan aptos para adoptar sus formas futuras y ser capaces de soportar los esfuerzos a los que van a estar sometidos. El acero como material indispensable de refuerzo en las construcciones, es una aleación de hierro y carbono, en proporciones variables, y pueden llegar hasta el 2% de carbono, con el fin de mejorar algunas de sus propiedades, puede contener también otros elementos. Una de sus características es admitir el temple, con lo que aumenta su dureza y su flexibilidad. En las décadas recientes, los ingenieros y arquitectos han estado pidiendo continuamente aceros cada vez mas resientes, con propiedades de resistencia a la corrección; aceros mas soldables y otros requisitos. La investigación llevada a cabo por la industria del acero durante este periodo ha conducido a la obtención de varios grupos de nuevos aceros que satisfacen muchos de los requisitos y existe ahora una amplia variedad cubierta gracias a las normas y especificaciones actuales. El acero es una aleación de hierro con carbono en una proporción que oscila entre 0,03 y 2%. Se suele

Upload: marco-alex-calla-huarachi

Post on 24-Apr-2015

85 views

Category:

Documents


11 download

TRANSCRIPT

Page 1: ACERO FORJADO

ACERO

1. INTRODUCCIÓN

A traves de la historia el hombre a tratado de mejorar las materias primas, añadiendo materiales tanto orgánicos como inorgánicos, para obtener los resultados ideales para las diversas construcciones.Dado el caso de que los materiales mas usados en la construcción no se encuentran en la naturaleza en estado puro, por lo que para su empleo hay que someterlos a una serie de operaciones metalúrgicas cuyo fin es separar el metal de las impurezas u otros minerales que lo acompañen. Pero esto no basta para alcanzar las condiciones optimas, entonces para que los metales tengan buenos resultados, se someten a ciertos tratamientos con el fin de hacer una aleación que reúna una serie de propiedades que los hagan aptos para adoptar sus formas futuras y ser capaces de soportar los esfuerzos a los que van a estar sometidos. El acero como material indispensable de refuerzo en las construcciones, es una aleación de hierro y carbono, en proporciones variables, y pueden llegar hasta el 2% de carbono, con el fin de mejorar algunas de sus propiedades, puede contener también otros elementos. Una de sus características es admitir el temple, con lo que aumenta su dureza y su flexibilidad.

En las décadas recientes, los ingenieros y arquitectos han estado pidiendo continuamente aceros cada vez mas resientes, con propiedades de resistencia a la corrección; aceros mas soldables y otros requisitos. La investigación llevada a cabo por la industria del acero durante este periodo ha conducido a la obtención de varios grupos de nuevos aceros que satisfacen muchos de los requisitos y existe ahora una amplia variedad cubierta gracias a las normas y especificaciones actuales. El acero es una aleación de hierro con carbono en una proporción que oscila entre 0,03 y 2%. Se suele componer de otros elementos, ya inmersos en el material del que se obtienen. Pero se le pueden añadir otros materiales para mejorar su dureza, maleabilidad u otras propiedades.

Las propiedades físicas de los aceros y su comportamiento a distintas temperaturas dependen sobre todo de la cantidad de carbono y de su distribución. Antes del tratamiento térmico, la mayoría de los aceros son una mezcla de tres sustancias, ferrita, perlita, cementita. La ferrita, blanda y dúctil, es hierro con pequeñas cantidades de carbono y otros elementos en disolución. La cementita es un compuesto de hierro con el 7% de carbono aproximadamente, es de gran dureza y muy quebradiza. La perlita es una mezcla de ferrita y cementita, con una composición específica y una estructura características, sus propiedades físicas con intermedias entre las de sus dos componentes. La resistencia y dureza de un acero que no ha sido tratado térmicamente depende de las proporciones de estos tres ingredientes. Cuanto mayor es el contenido en carbono de un acero, menor es la cantidad de ferrita y mayor la de perlita: cuando el acero tiene un 0,8% de carbono, está por compuesto de perlita. El acero con cantidades de carbono aún mayores es una mezcla de perlita y cementita.

Page 2: ACERO FORJADO

2. OBJETIVOS.

OBJETIVO GENERAL :

Crear criterios ingenieriles con respecto a los procesamientos, clasificación y aplicaciones del acero.

OBJETIVOS ESPECÍFICOS :

Tener claro el proceso de formación del acero su origen sus propiedades, etc.

Identificar detalladamente sus usos y aplicaciones a la minería.

3. MARCO TEORICO.

HISTORIA DEL ACERO.

Durante toda la Edad Media y El Renacimiento el acero era producido en pequeñas cantidades por corporaciones de artesanos que guardaban en secreto el método de fabricación. El primer proceso de obtención industrial del acero fue ideado por el relojero inglés B.Huntsman en 1740; el proceso se llamó “al crisol”, porque consistía en cementar (es decir, enriquecer en contenido de carbono ) el hierro con carbón vegetal y fundir sucesivamente en un crisol el producto obtenido. La fundición se conocía en Europa ya en el siglo XIV, como producto secundario de los hornos altos de producción de hierro; en un principio sólo se utilizó como sustitutivo del bronce. Antes de que pudiera emplearse en gran escala en la producción del acero, fue necesario que el inglés H. Cort inventase en 1874 un procedimiento de afina, en el que se producía el hierro en un horno de reverbero alimentado con carbón mineral; el carbón era quemado sobre una parrilla cuya solera estaba constituida por una capa que contenía óxido de hierro. Durante el proceso, llamado “pudelado”, la fundición era removida a mano con unas largas varillas de hierro, y luego comprimida en una prensa; el lingote resultante se laminaba al calor. Con tales procedimientos la producción de hierro fundido dejó de estar supeditada al consumo de carbón vegetal, solucionando el gravísimo problema que representaba para muchos países europeos el incremento de la tala de bosques.

El acero producido al crisol era de óptima calidad, pero el coste de producción era muy superior al fabricado por pudelado. Ambos métodos fueron abandonados al introducirse los procedimientos modernos de producción en gran escala de Bessemer y de Tomas.

Page 3: ACERO FORJADO

El proceso Bessemer, ideado en 1856 por Henry Bessemer, consiste en obtener directamente acero mediante el afino de la fundición, introduciendo una corriente de aire en un aparato, actualmente llamado “convertidor” y entonces, por su forma, “pera de Bessemer”. En él, el calor que mantiene líquida la colada lo suministra la reacción exotérmica de oxidación del Si.Dado que el convertidor (la cuba de afino ) está revestido de sílice (ácida), el proceso es idóneo para una función de estas características. En el mismo período se patentaba en América un proceso análogo, el de William Kelly. En 1877, el inglés Sydney Gilchrist Thomas tuvo la idea de sustituir el revestimiento ácido del convertidor Bessemer por un revestimiento básico (dolomía), lo que permitía obtener escorias básicas; por consiguiente, se podía convertir fundición fosforosa en aceros. Entre 1860 y 1865 el francés Pierre Martín y los alemanes Wilhelm y Friedrich Siemens desarrollaron un tipo de horno alimentado por gas, denominado posteriormente “horno Martín-Siemens”. Este tipo de horno permite obtener acero fundiendo en la solera grandes cantidades de chatarra de hierro y fundición o bien fundición y minerales. W. Siemens, entre 1878 y 1879, efectuó los primeros intentos de obtener acero a partir de chatarra de fundición de hierro en hornos de arco eléctrico. En 1898, E. Stassano instaló en Roma un horno de arco eléctrico para fabricar acero directamente del mineral, horno en que la colada era calentada por irradiación. Casi simultáneamente, en 1900, el francés P. T. L. Héroult, en América, iniciaba sus ensayos para obtener acero en un horno también de arco, siguiendo un procedimiento muy similar al Martín-Siemens.

Los procesos Bessemer, Thomas, Martín-Siemens y más tarde los de acerería eléctrica inauguran la edad del acero, desplazando rápidamente a la madera como material estructural en las obras de ingeniería civil, y después al hierro fundido con materia prima de la construcción de raíles, barcos, cañones, etc.

Grabado que muestra el trabajo en una fragua en la Edad Media.

DEFINICIÓN.

Page 4: ACERO FORJADO

La etimología de la palabra acero nos lleva al latín aciarĭum, que proviene de acĭes (“filo”). Por eso, el término todavía se utiliza para referirse a las armas blancas como la espada, y al temple y corte de éstas.

El acero es una aleación de hierro con pequeñas cantidades de otros elementos, es decir, hierro combinado con un 1% aproximadamente de carbono, y que hecho ascua y sumergido en agua fría adquiere por el temple gran dureza y elasticidad. Hay aceros especiales que contienen además, en pequeñísima proporción, cromo, níquel, titanio, volframio o vanadio. Se caracteriza por su gran resistencia, contrariamente a lo que ocurre con el hierro. Este resiste muy poco la def0rmacion plástica, por estar constituida solo con cristales de ferrita; cuando se alea con carbono, se forman estructuras cristalinas diferentes, que permiten un gran incremento de su resistencia. Ésta cualidad del acero y la abundancia de hierro le colocan en un lugar preeminente, constituyendo el material básico del S.XX. Un 92% de todo el acero es simple acero al carbono; el resto es acero aleado: aleaciones de hierro con carbono y otros elementos tales como magnesio, níquel, cromo, molibdeno y vanadio.

CLASIFICACION DE ACERO:

Los aceros se clasifican en cinco grupos principales: aceros al carbono, aceros aleados, aceros de baja aleación ultra resistente, aceros inoxidables y aceros de herramientas.

ACEROS AL CARBONO: El 90% de los aceros son aceros al carbono. Estos aceros contienen una cantidad diversa de carbono, menos de un 1,65% de manganeso, un 0,6% de silicio y un 0,6% de cobre. Con este tipo de acero se fabrican maquinas, carrocerías de automóvil, estructuras de construcción, pasadores de pelo, etc.

ACEROS ALEADOS: Estos aceros están compuestos por una proporción determinada de vanadio, molibdeno y otros elementos; además de cantidades mayores de manganeso, silicio y cobre que los aceros al carbono. Estos aceros se emplean para fabricar engranajes, ejes, cuchillos, etc.

ACEROS DE BAJA ALEACIÓN ULTRA RESISTENTES: Es la familia de aceros mas reciente de las cinco. Estos aceros son más baratos que los aceros convencionales debido a que contienen menor cantidad de materiales costosos de aleación. Sin embargo, se les da un tratamiento especial que hace que su resistencia sea mucho mayor que la del acero al carbono. Este material se emplea para la fabricación de vagones porque al ser más resistente, sus paredes son más delgadas, con lo que la capacidad de carga es mayor. Además, al pesar menos, también se pueden cargar con un mayor peso. También se emplea para la fabricación de estructuras de edificios.

Según el porcentaje de carbono, los aceros se clasifican en:

Page 5: ACERO FORJADO

De bajo carbono: % < 0.3 De medio carbono: 0.3 < % < 0.7 De alto carbono: 0.7< % < 1.7%

Desde el punto de vista de su composición, los aceros se pueden clasificar en dos grandes grupos:

Los efectos principales de algunos de los elementos más comunes son:

MATERIAL DE ALEACIÓN

PROPIEDADES CONFERIDAS AL ACERO

ALUMINIO Empleado en pequeñas cantidades, actúa como un desoxidante para el acero fundido y produce un Acero de Grano Fino.

BORO Aumenta la templabilidad (la profundidad a la cual un acero puede ser endurecido).

CROMO Aumenta la profundidad del endurecimiento y mejora la resistencia al desgaste y corrosión.

COBRE Mejora significativamente la resistencia a la corrosión atmosférica.

MANGANESO Elemento básico en todos los aceros comerciales. Actúa como un desoxidante y también neutraliza los efectos nocivos del azufre, facilitando la laminación, moldeo y otras operaciones de trabajo en caliente. Aumenta también la penetración de temple y contribuye a su resistencia y dureza.

MOLIBDENO Mediante el aumento de la penetración de temple, mejora las propiedades del tratamiento térmico. Aumenta también la dureza y resistencia a altas temperaturas.

NIQUEL Mejora las propiedades del tratamiento térmico reduciendo la temperatura de endurecimiento y distorsión al ser templado. Al emplearse conjuntamente con el Cromo, aumenta la dureza y la resistencia al desgaste.

SILICIO Se emplea como desoxidante y actúa como endurecedor en el acero de aleación.

AZUFRE Normalmente es una impureza y se mantiene a un bajo nivel. Sin embargo, alguna veces se agrega intencionalmente en grandes cantidades (0,06 a 0,30%) para aumentar la maquinabilidad (habilidad para ser trabajado mediante cortes) de los aceros de aleación y al carbono.

TITANIO Se emplea como un desoxidante y para inhibir el crecimiento granular. Aumenta también la resistencia a altas temperaturas.

TUNGSTENO Se emplea en muchos aceros de aleación para

Page 6: ACERO FORJADO

herramientas, impartiéndoles una gran resistencia al desgaste y dureza a altas temperaturas.

VANADIO Imparte dureza y ayuda en la formación de granos de tamaño fino. Aumenta la resistencia a los impactos (resistencia a las fracturas por impacto) y también la resistencia a la fatiga.

CARBONO Aumenta la dureza y fragilidad.Mayor resistencia al desgaste.

En resumen, los efectos de los elementos de aleación son:

Mayor resistencia y dureza. Mayor resistencia a los impactos. Aumento de la resistencia al desgaste. Aumento de la resistencia a la corrosión. Mejoramiento de maquinabilidad. Dureza al rojo (altas temperaturas). Aumento de la profundidad a la cual el acero puede ser endurecido

(penetración de temple)

ACEROS INOXIDABLES: Estos aceros contienen cromo, níquel, y otros elementos de aleación que los mantiene brillantes y resistentes a la oxidación. Algunos aceros inoxidables son muy duros y otros muy resistentes, manteniendo esa resistencia durante mucho tiempo a temperaturas extremas. Debido a su brillo, los arquitectos lo emplean mucho con fines decorativos. También se emplean mucho para tuberías, depósitos de petróleo y productos químicos por su resistencia a la oxidación y para la fabricación de instrumentos quirúrgicos o sustitución de huesos porque resiste a la acción de los fluidos corporales. Además se usa para la fabricación de útiles de cocina, como pucheros, gracias a que no oscurece alimentos y es fácil de limpiar.

ACEROS DE HERRAMIENTAS: Estos aceros se emplean para fabricar herramientas y cabezales de corte y modelado de maquinas. Contiene wolframio, molibdeno y otros elementos de aleación que le proporcionan una alta resistencia, dureza y durabilidad.

ACABADOS

Page 7: ACERO FORJADO

Existen distintos tipos de acabados para el acero, por lo tanto tiene una salida al mercado de gran variedad de formas y de tamaños, como varillas, tubos, raíles de ferrocarril o perfiles en H o en T. Estas formas se obtienen en las instalaciones siderúrgicas laminado los lingotes calientes o modelándolos de algún otro modo. El acabado del acero mejora también su calidad al refinar su estructura cristalina y aumentar su resistencia.

El método principal de trabajar el acero se conoce como laminado en caliente. En este proceso, el lingote colado se calienta al rojo vivo en un horno denominado foso de termodifusión y a continuación se hace pasar entre una serie de rodillos metálicos colocados en pares que lo aplastan hasta darle la forma y tamaño deseados. La distancia entre los rodillos va disminuyendo a medida que se reduce el espesor del acero.

El primer par de rodillos por el que pasa el lingote se conoce como tren de desbaste o de eliminación de asperezas. Después del tren de devaste, el acero pasa a trenes de laminado en bruto y a los trenes de acabado que lo reducen a láminas con la sección transversal correcta. Los rodillos para producir raíles o ríeles de ferrocarril o perfiles en H, en T o en L tienen estrías para proporcionar la forma adecuada.

Los procesos de fabricación modernos requieren gran cantidad de chapa de acero delgada. Los trenes o rodillos de laminado continuo producen tiras y láminas con anchuras de hasta 2,5m. Estos laminadores procesan con rapidez la chapa de acero antes de que se enfríe y no pueda ser trabaja. Las planchas de acero caliente de más de 10 cm de espesor se pasan por una serie de cilindros que reducen progresivamente su espesor hasta unos 0,1 cm y aumentan su longitud de 4 a 370 metros. Los trenes de laminado continuo están equipados con una serie de accesorios como rodillos de borde, aparatos de decapado o eliminación y dispositivos para enrollar de modo automático la chapa cuando llega al final del tren.

Page 8: ACERO FORJADO

El sistema de colada continua, en cambio, produce una plancha continua de acero con un espesor inferior a 5 cm, lo que elimina la necesidad de trenes de desbaste y laminado en bruto.

TIPOS DE ACEROS.

Acero aleado o especial: Acero al que se han añadido elementos no presentes en los aceros al carbono o en que el contenido en magnesio o silicio se aumenta más allá de la proporción en que se halla en los aceros al carbono.

Acero autotemplado: Acero que adquiere el temple por simple enfriamiento en el aire, sin necesidad de sumergirlo en aceite o en agua. Este efecto, que conduce a la formación de una estructura martensitica muy dura, se produce añadiendo constituyentes de aleación que retardan la transformación de la austenita en perlita.

Acero calmado o reposado: Acero que ha sido completamente desoxidado antes de colarlo, mediante la adición de manganeso, silicio o aluminio. Con este procedimiento se obtienen lingotes perfectos, ya que casi no hay producción de gases durante la solidificación, lo que impide que se formen sopladuras.

Acero de construcción: Acero con bajo contenido de carbono y adiciones de cromo, níquel, molibdeno y vanadio.

Acero de rodamientos: Acero de gran dureza y elevada resistencia al desgaste; se obtiene a partir de aleaciones del 1% de carbono y del 2% de cromo, a las que se somete a un proceso de temple y revenido. Se emplea en la construcción de rodamientos a bolas y en general, para la fabricación de mecanismos sujetos al desgaste por fricción.

Acero dulce: Denominación general para todos los aceros no aleados, obtenidos en estado fundido.

Acero duro: Es el que una vez templado presenta un 90% de martensita. Su resistencia por tracción es de 70kg/mm2 y su alargamiento de un 15%. Se emplea en la fabricación de herramientas de corte, armas y utillaje, carriles, etc. En aplicaciones de choque se prefiere una gradación de dureza desde la superficie al centro, o sea, una sección exterior resistente y dura y un núcleo más blando y tenaz.

Acero efervescente: Acero que no ha sido desoxidado por completo antes de verterlo en los moldes. Contiene gran cantidad de sopladuras, pero no grietas.

Acero fritado: El que se obtiene fritando una mezcla de hierro pulverizado y grafito, o también por carburación completa de una masa de hierro fritado.

Page 9: ACERO FORJADO

Acero fundido o de herramientas: Tipo especial de acero que se obtiene por fusión al crisol. Sus propiedades principales son:

1) resistencia a la abrasión2) resistencia al calor3) resistencia al choque4) resistencia al cambio de forma o a la distorsión al templado 5) aptitud para el corte

Contienen de 0,6 a 1,6% de carbono y grandes proporciones de metales de aleación: tungsteno, cromo, molibdeno, etc.

Acero indeformable: El que no experimenta prácticamente deformación geométrica tanto en caliente (materias para trabajo en caliente) como en curso de tratamiento térmico de temple (piezas que no pueden ser mecanizadas después del templado endurecedor)

Acero inoxidable: Acero resistente a la corrosión, de una gran variedad de composición, pero que siempre contiene un elevado porcentaje de cromo (8-25%). Se usa cuando es absolutamente imprescindible evitar la corrosión de las piezas. Se destina sobre todo a instrumentos de cirugía y aparatos sujetos a la acción de productos químicos o del agua del mar (alambiques, válvulas, paletas de turbina, cojinetes de bolas, etc.)

Acero magnético: Aquel con el que se fabrican los imanes permanentes. Debe tener un gran magnetismo remanente y gran fuerza coercitiva. Los aceros de esta clase, tratándose aplicaciones ordinarias, contienen altos porcentajes de tungsteno (hasta el 10%) o cobalto (hasta el 35%).Para aparatos de calidad se emplean aceros de cromo-cobalto o de aluminio-níquel (carstita, coercita ).

Acero no magnético: Tipo de acero que contiene aproximadamente un 12% de manganeso y carece de propiedades magnéticas.

Acero moldeado: Acero de cualquier clase al que se da forma mediante el relleno del molde cuando el metal esta todavía liquido. Al solidificar no trabajado mecánicamente.

Acero para muelles: Acero que posee alto grado de elasticidad y elevada resistencia a la rotura. Aunque para aplicaciones corrientes puede emplearse el acero duro, cuando se trata de muelles que han de soportar fuertes cargas y frecuentes esfuerzos de fatiga se emplean aceros al sicilio con temple en agua o en aceite y revenido.

Acero pudelado: Acero no aleado obtenido en estado pastoso.

Page 10: ACERO FORJADO

Acero rápido: Acero especial que posee gran resistencia al choque y a la abrasión. Los más usados son los aceros tungsteno, al molibdeno y al cobalto, que se emplean en la fabricación de herramientas corte.

Acero refractario: Tipo especial de acero capaz de soportar agentes corrosivos a alta temperatura.

Acero suave: Acero dúctil y tenaz, de bajo contenido de carbono. También se obtiene este tipo de acero, fácil de trabajar en frió, aumentando el porcentaje de fósforo (aumentando un 0,15%) y de azufre (hasta un 0,2%). Tiene una carga de rotura por tracción de unos 40 kg/mm2, con un alargamiento de un 25%.

Aceros comunes: Los obtenidos en convertidor o en horno Siemens básico.

Aceros finos: Los obtenidos en horno Siemens ácido, eléctrico, de inducción o crisol.

Aceros forjados: Los aceros que han sufrido una modificación en su forma y su estructura interna ante la acción de un trabajo mecánico realizado a una temperatura superior a la de recristalización.

PROCESAMIENTOS DEL ACERO INOXIDABLE.

PROCESO DE CRISOL ABIERTO

Cualquier proceso de producción de acero a partir de arrabio consiste en quemar el exceso de carbono y otras impurezas presentes en el hierro. Una dificultad para la fabricación del acero es su elevado punto de fusión, 1.400 ºC, que impide utilizar combustibles y hornos convencionales. Para superar la dificultad se desarrolló el horno de crisol abierto, que funciona a altas temperaturas gracias al precalentado regenerativo del combustible gaseoso y el aire empleados para la combustión. En el precalentado regenerativo los gases que escapan del horno se hacen pasar por una serie de cámaras llenas de ladrillos, a los que ceden la mayor parte de su calor. A continuación se invierte el flujo a través del horno, y el combustible y el aire pasan a través de las cámaras y son calentados por los ladrillos. Con este método, los hornos de crisol abierto alcanzan temperaturas de hasta 1.650 ºC.

El horno propiamente dicho suele ser un crisol de ladrillo plano y rectangular de unos 6 × 10 m, con un techo de unos 2,5 m de altura. Una serie de puertas da a una planta de trabajo situada delante del crisol. Todo el crisol y la planta de trabajo están situados a una altura determinada por encima del suelo, y el espacio situado bajo el crisol lo ocupan las cámaras de regeneración de calor del horno. Un horno del tamaño indicado produce unas 100 toneladas de acero cada 11 horas.

Page 11: ACERO FORJADO

El horno se carga con una mezcla de arrabio (fundido o frío), chatarra de acero y mineral de hierro, que proporciona oxígeno adicional. Se añade caliza como fundente y fluorita para hacer que la escoria sea más fluida. Las proporciones de la carga varían mucho, pero una carga típica podría consistir en 60.000 Kg. de chatarra de acero, 11.000 kg de arrabio frío, 45.000 Kg. de arrabio fundido, 12.000 Kg. de caliza, 1.000 kg de mineral de hierro y 200 Kg. de fluorita. Una vez cargado el horno, se enciende, y las llamas oscilan de un lado a otro del crisol a medida que el operario invierte su dirección para regenerar el calor.

Desde el punto de vista químico la acción del horno de crisol abierto consiste en reducir por oxidación el contenido de carbono de la carga y eliminar impurezas como silicio, fósforo, manganeso y azufre, que se combinan con la caliza y forman la escoria. Estas reacciones tienen lugar mientras el metal del horno se encuentra a la temperatura de fusión, y el horno se mantiene entre 1.550 y 1.650 ºC durante varias horas hasta que el metal fundido tenga el contenido de carbono deseado. Un operario experto puede juzgar el contenido de carbono del metal a partir de su aspecto, pero por lo general se prueba la fundición extrayendo una pequeña cantidad de metal del horno, enfriándola y sometiéndola a examen físico o análisis químico. Cuando el contenido en carbono de la fundición alcanza el nivel deseado, se sangra el horno a través de un orificio situado en la parte trasera. El acero fundido fluye por un canal corto hasta una gran cuchara situada a ras de suelo, por debajo del horno. Desde la cuchara se vierte el acero en moldes de hierro colado para formar lingotes, que suelen tener una sección cuadrada de unos 50 cm de lado, y una longitud de 1,5 m. Estos lingotes —la materia prima para todas las formas de fabricación del acero— pesan algo menos de 3 toneladas. Recientemente se han puesto en práctica métodos para procesar el acero de forma continua sin tener que pasar por el proceso de fabricación de lingotes.

PROCESO BÁSICO DE OXÍGENO

 El proceso más antiguo para fabricar acero en grandes cantidades es el proceso Bessemer, que empleaba un horno de gran altura en forma de pera, denominado convertidor Bessemer, que podía inclinarse en sentido lateral para la carga y el vertido. Al hacer pasar grandes cantidades de aire a través del metal fundido, el oxígeno del aire se combinaba químicamente con las impurezas y las eliminaba.

En el proceso básico de oxígeno, el acero también se refina en un horno en forma de pera que se puede inclinar en sentido lateral. Sin embargo, el aire se sustituye por un chorro de oxígeno casi puro a alta presión. Cuando el horno se ha cargado y colocado en posición vertical, se hace descender en su interior una lanza de oxígeno. La punta de la lanza, refrigerada por agua, suele estar situada a unos 2 m por encima de la carga, aunque esta distancia se puede variar según interese. A continuación se inyectan en el horno miles de metros cúbicos de oxígeno a velocidades supersónicas. El oxígeno se combina con el carbono y otros elementos no deseados e inicia una reacción de agitación que quema con rapidez las impurezas del arrabio y lo transforma en acero. El

Page 12: ACERO FORJADO

proceso de refinado tarda 50 minutos o menos, y es posible fabricar unas 275 toneladas de acero en una hora.

ACERO DE HORNO ELÉCTRICO

 En algunos hornos el calor para fundir y refinar el acero procede de la electricidad y no de la combustión de gas. Como las condiciones de refinado de estos hornos se pueden regular más estrictamente que las de los hornos de crisol abierto o los hornos básicos de oxígeno, los hornos eléctricos son sobre todo útiles para producir acero inoxidable y aceros aleados que deben ser fabricados según unas especificaciones muy exigentes. El refinado se produce en una cámara hermética, donde la temperatura y otras condiciones se controlan de forma rigurosa mediante dispositivos automáticos. En las primeras fases de este proceso de refinado se inyecta oxígeno de alta pureza a través de una lanza, lo que aumenta la temperatura del horno y disminuye el tiempo necesario para producir el acero. La cantidad de oxígeno que entra en el horno puede regularse con precisión en todo momento, lo que evita reacciones de oxidación no deseadas.

En la mayoría de los casos, la carga está formada casi exclusivamente por material de chatarra. Antes de poder utilizarla, la chatarra debe ser analizada y clasificada, porque su contenido en aleaciones afecta a la composición del metal refinado. También se añaden otros materiales, como pequeñas cantidades de mineral de hierro y cal seca, para contribuir a eliminar el carbono y otras impurezas. Los elementos adicionales para la aleación se introducen con la carga o después, cuando se vierte a la cuchara el acero refinado.

Una vez cargado el horno se hacen descender unos electrodos hasta la superficie del metal. La corriente eléctrica fluye por uno de los electrodos, forma un arco eléctrico hasta la carga metálica, recorre el metal y vuelve a formar un arco hasta el siguiente electrodo. La resistencia del metal al flujo de corriente genera calor, que —junto con el producido por el arco eléctrico— funde el metal con rapidez. Hay otros tipos de horno eléctrico donde se emplea una espiral para generar calor.

TRATAMIENTO TÉRMICO DEL ACERO

 El proceso básico para endurecer el acero mediante tratamiento térmico consiste en calentar el metal hasta una temperatura a la que se forma austenita, generalmente entre los 750 y 850 ºC, y después enfriarlo con rapidez sumergiéndolo en agua o aceite. Estos tratamientos de endurecimiento, que forman martensita, crean grandes tensiones internas en el metal, que se eliminan mediante el temple o el recocido, que consiste en volver a calentar el acero hasta una temperatura menor. El temple reduce la dureza y resistencia y aumenta la ductilidad y la tenacidad.

El objetivo fundamental del proceso de tratamiento térmico es controlar la cantidad, tamaño, forma y distribución de las partículas de cementita contenidas en la ferrita, que a su vez determinan las propiedades físicas del acero.

Page 13: ACERO FORJADO

Hay muchas variaciones del proceso básico. Los ingenieros metalúrgicos han descubierto que el cambio de austenita a martensita se produce en la última fase del enfriamiento, y que la transformación se ve acompañada de un cambio de volumen que puede agrietar el metal si el enfriamiento es demasiado rápido. Se han desarrollado tres procesos relativamente nuevos para evitar el agrietamiento. En el templado prolongado, el acero se retira del baño de enfriamiento cuando ha alcanzado la temperatura en la que empieza a formarse la martensita, y a continuación se enfría despacio en el aire. En el martemplado, el acero se retira del baño en el mismo momento que el templado prolongado y se coloca en un baño de temperatura constante hasta que alcanza una temperatura uniforme en toda su sección transversal. Después se deja enfriar el acero en aire a lo largo del rango de temperaturas de formación de la martensita, que en la mayoría de los aceros va desde unos 300 ºC hasta la temperatura ambiente. En el austemplado, el acero se enfría en un baño de metal o sal mantenido de forma constante a la temperatura en que se produce el cambio estructural deseado, y se conserva en ese baño hasta que el cambio es completo, antes de pasar al enfriado final.

Hay también otros métodos de tratamiento térmico para endurecer el acero. En la cementación, las superficies de las piezas de acero terminadas se endurecen al calentarlas con compuestos de carbono o nitrógeno. Estos compuestos reaccionan con el acero y aumentan su contenido de carbono o forman nitruros en su capa superficial. En la carburización la pieza se calienta cuando se mantiene rodeada de carbón vegetal, coque o de gases de carbono como metano o monóxido de carbono. La cianurización consiste en endurecer el metal en un baño de sales de cianuro fundidas para formar carburos y nitruros. La nitrurización se emplea para endurecer aceros de composición especial mediante su calentamiento en amoníaco gaseoso para formar nitruros de aleación.

CARACTERÍSTICAS DE LOS ACEROS INOXIDABLES

La resistencia a la corrosión de los aceros inoxidables es debida a una delgada película de óxido de cromo que se forma en la superficie del acero; como consecuencia del agregado de los elementos cromo, níquel, molibdeno, titanio, niobio y otros se producen distintos tipos de acero inoxidable, cada uno con diferentes propiedades.

A pesar de ser sumamente delgada ésta película invisible fuertemente adherida al metal, lo protege contra los distintos tipos de corrosión, renovándose inmediatamente cuando es dañada por abrasión, corte, maquinado, etc. Aunque la mínima cantidad de cromo necesaria para conferir esta resistencia superior a la corrosión depende de los agentes de corrosión, el Instituto Estadounidense de Hierro y Acero ha elegido el 10 por ciento de cromo como la línea divisoria entre aceros aleados y aceros inoxidables, mientras que otros establecen ese límite entre el 10,5% y el 11%.

Las propiedades y composiciones de los aceros inoxidables se mantuvieron en secreto por los países beligerantes mientras duró la primera guerra mundial. Posteriormente, a partir de las pocas aleaciones experimentadas en 1920 y de un

Page 14: ACERO FORJADO

limitado número de grados comercialmente disponibles en 1930, la familia de los aceros inoxidables ha crecido en forma impresionante.

En la actualidad se cuenta con un gran número de tipos y grados de acero inoxidable en diversas presentaciones, y con una gran variedad de acabados, dimensiones, tratamientos, etc. Atendiendo a la estructura predominante de cada tipo, los aceros pueden ser clasificados en tres grupos:

*Austeníticos *Martensíticos *Ferriticos

CLASIFICACION DE LOS ACEROS INOXIDABLES

Los aceros inoxidables no son indestructibles, sin embargo con una selección cuidadosa, sometiéndolos a procesos de transformación adecuados y realizando una limpieza periódica, algún integrante de la familia de los aceros inoxidables resistirá las condiciones corrosivas y de servicio más severas.

Serie 400- Los Aceros Inoxidables Martensíticos:

Son la primera rama de los aceros inoxidables, llamados simplemente al Cromo y fueron los primeros desarrollados industrialmente (aplicados en cuchillería). Tienen un contenido de Carbono relativamente alto de 0.2 a 1.2% y de Cromo de 12 a 18%.Los tipos más comunes son el AISI 410, 420 y 431Las propiedades básicas son: Elevada dureza (se puede incrementar por tratamiento térmico) y gran facilidad de maquinado, resistencia a la corrosión moderada.Principales aplicaciones: Ejes, flechas, instrumental quirúrgico y cuchillería.

Serie 400- Aceros Inoxidables Ferríticos:

También se consideran simplemente al Cromo, su contenido varia de 12 a 18%, pero el contenido de Carbono es bajo <0.2%.Los tipos más comunes son el AISI 430, 409 y 434Las propiedades básicas son: Buena resistencia a la corrosión. La dureza no es muy alta y no pueden incrementarla por tratamiento térmico.

Principales aplicaciones: Equipo y utensilios domésticos y en aplicaciones arquitectónicas y decorativas.

Serie 300- Los Aceros Inoxidables Austeníticos:

Page 15: ACERO FORJADO

Son los más utilizados por su amplia variedad de propiedades, se obtienen agregando Níquel a la aleación, por lo que la estructura cristalina del material se transforma en austenita y de aquí adquieren el nombre. El contenido de Cromo varía de 16 a 28%, el de Níquel de 3.5 a 22% y el de Molibdeno 1.5 a 6%.Los tipos más comunes son el AISI 304, 304L, 316, 316L, 310 y 317.Las propiedades básicas son: Excelente resistencia a la corrosión, excelente factor de higiene - limpieza, fáciles de transformar, excelente soldabilidad, no se endurecen por tratamiento térmico, se pueden utilizar tanto a temperaturas criogénicas como a elevadas temperaturas.Principales aplicaciones: Utensilios y equipo para uso doméstico, hospitalario y en la industria alimentaria, tanques, tuberías, etc.

ACERO INOXIDABLE AISI 316 CON ADICION DE MOLIBDENO

Análisis Químico

C Si Mn Cr Ni Mo0,08 1,00 2,00 17,00 12,00 2,50

Tratamientos Térmicos

Templado: 1100°C enfriamiento en agua o aire.

ACERO INOXIDABLE AISI 410 MARTENSITICO

Análisis Químico

c Cr Mn S0,10 13,00 1,00 1,00

5. DESARROLLO DEL TEMA.

ORIGEN PROCESO DE FORMACIÓN.

El acero se obtiene eliminando las impurezas del arrabio, producto de fundición de los altos hornos, y añadiendo después las cantidades adecuadas de carbono y otros elementos. La principal dificultad para la fabricación del acero es su elevado punto de fusión, 1.400 ºC, que impide utilizar combustibles y hornos convencionales. En 1855, Henry Bessemer desarrolló el horno o convertidor que lleva su nombre y en el que el proceso de refinado del arrabio se lleva a cabo mediante chorros de aire a presión que se inyectan a través del metal fundido. En el proceso Siemens-Martin, o de crisol abierto, se calientan previamente el gas combustible y el aire por un procedimiento regenerativo que permite alcanzar temperaturas de hasta 1.650 ºC.

Page 16: ACERO FORJADO

El acero se obtiene a partir del producto de alto horno, el arrabio líquido, en los convertidores o en otros hornos que trabajan con carga líquida dentro de la misma instalación industrial. El arrabio, lingote de horno alto o lingote de hierro, pues de estas maneras suele denominarse, es frágil y poco resistente. Su composición, que es distinta según la procedencia del mineral de hierro, está constituida por un elevado tanto por ciento de carbono (4-5%) y otras impurezas como azufre, fósforo, silicio, manganeso, etc. Se transforma en acero mediante un proceso de descarburación y regulación de las otras impurezas. Existen, además, otros procedimientos que permiten obtener directamente acero partiendo del mineral sin pasar por el arrabio. Aunque su desarrollo ha sido y es muy limitado, se pueden citar como métodos más importantes: Hoganäs, Norsk-Staal, Krupp-Renn, afino sólido, etc. El procedimiento de la forja catalana respondía a este último tipo de obtención: el hierro se reducía con carbón vegetal formando fundición, la cual, en la parte más caliente del horno, se transformaba en acero.

PROCESO DE PRODUCCION Y OBTENCION DEL HIERRO:

El acero se fabrica partiendo de la fundición o hierro colado; éste es muy impuro, pues contiene excesiva cantidad de carbono, silicio, fósforo y azufre, elementos que perjudican considerablemente la resistencia del acero y reducen el campo de sus aplicaciones.

La fabricación verdadera del acero se inició hacia 1856, cuando se introdujo en la siderurgia el empleo del convertidor Bessemer, consistente en un recipiente de gran capacidad y de forma de pera, de paredes de hierro y fondo provisto de numerosos orificios, a través de los cuales se hacía llegar una potente corriente de aire, que removía con violencia la masa de hierro colado fundido que llenaba el convertidor.

La reacción entre el oxígeno del aire y los componentes de la fundición era violentísima y tal el calor desarrollado dentro del convertidor que la masa de la fundición se mantenía líquida por sí misma. En la reacción indicada se combinaba la mayor parte del carbono, fósforo y azufre con el oxígeno del aire insuflado, pero no se eliminaba el silicio, lo que constituía un grave inconveniente, razón por la cual no podían utilizarse los minerales de hierro ricos en aquél.

Por otra parte, el primitivo convertidor Bessemer sólo podía utilizarse un re-ducido número de veces, pues la fundición líquida y a elevada temperatura atacaba las paredes de hierro del aparato, Estos inconvenientes fueron subsanados por el oficinista británico Thomas, quien logró afinar el hierro colado revistiendo las paredes internas del convertidor Bessemer con una mezcla de greda y dolomita pulverizada (carbonato de calcio y magnesio), y al mismo tiempo agregaba a la fundición un poco de cal viva, insuflando aire comprimido caliente por el fondo del aparato. El silicio y gran parte del manganeso contenidos en la fundición se queman con rapidez y el óxido de manganeso que se forma se combina con el silicio; el silicato manganoso funde con dificultad y flota sobre la masa incandescente líquida

Page 17: ACERO FORJADO

en forma de escoria, el carbonato arde a su vez y el fósforo se combina con la cal del revestimiento del convertidor y se forma fosfato cálcico básico, el cual flota también en forma de escoria (escories Thomas) sobre la masa líquida, y de la cual se separa con las escorias restantes. Posteriormente mejoraron el procedimiento de afinación del acero Martín, francés, y Siemens, alemán; que introdujeron en la siderurgia los hornos de sus respectivos nombres. En estos hornos, calentaba la fundición o hierro fundido en una atmósfera de gases de gasógeno y se le mezclan chatarra de acero viejo o de hierro dulce. Al alemán Krupp se le debe el método Industrial de obtención de aceros al crisol, que consiste en refundir el acero Martín-Siemens dentro de grandes crisoles fabricados con una mezcla de arcilla, grafito, coque y carbón vegetal en polvo, donde el acero se aflna y purifica más aún. Así se obtiene el acero fundido, empleado en la fabricación de herramientas de corte.

Más modernos aún son los aceros eléctricos, obtenidos en hornos eléctricos, en éstos se afina el acero obtenido en los hornos Martín-SiemenS, y se le recarbura con carbono puro o aglomerados de limaduras de hierro y carbón vegetal. Las propiedades del acero se modifican con relativa facilidad, calentándolo a temperatura próxima a 1.000 °C y sumergiéndolo con rapidez en agua, aceite o mercurio fríos (temple) se aumenta su elasticidad; si, por el contrario, se le calienta a elevada temperatura y se le deja enfriar lentamente (recocido) se obtiene acero menos elástico pero más tenaz y resistente al choque. El acero es una aleación de hierro y carbono, esto, es, un carburo de hierro, por eso no existe de él un tipo único; sus propiedades (tenacidad, elasticidad, etc.) varían según el contenido de carbono y la clase empleada en su fabricación (martensita, perlita, ferrita o hierro puro; también influye en él, el método seguido en su fabricación. Existen aceros duros, rápidos (resistentes a la lima), etc, el acero es de gran importancia a causa de las múltiples aplicaciones que recibe. Se pueden modificar sus propiedades aleándolo con otros metales; de este modo se obtienen los aceros especiales.

El acero líquido se elabora a partir del mineral (procedimiento de fundición) o de chatarras (procedimiento eléctrico).

A continuación, el acero líquido se solidifica por moldeo en una máquina de colada continua.

A la salida, se obtienen los SEMI-PRODUCTOS: barras de sección rectangular (desbastes) o cuadrada (tochos o palanquillas), que son las piezas en bruto de las formas finales.

Por último, las piezas en bruto se transforman en PRODUCTOS TERMINADOS mediante el laminado, y algunos de ellos se someten a tratamiento térmico. Más de la mitad de las planchas laminadas en caliente son relaminadas en frío y eventualmente reciben un revestimiento de protección anticorrosión.

Page 18: ACERO FORJADO

FÁBRICA DE AGLOMERACIÓN:

Para preparar el mineral de hierro: Éste se tritura y calibra en granos que se aglomeran (se aglutinan) entre ellos. El aglomerado así obtenido se compacta, cargándolo después en el alto horno junto con el coque. El coque es un potente combustible, que se obtiene como residuo sólido de la destilación de la hulla (una clase de carbón muy rico en carbono).

Page 19: ACERO FORJADO

ALTO HORNO:

Se extrae el hierro de su mineral. El mineral y el coque sólidos se introducen por la parte superior del horno. El aire caliente (1200°C) inyectado en la base produce la combustión del coque (carbono casi puro). El óxido de carbono así formado reduce los óxidos de hierro, es decir, extrae su oxígeno, aislando el hierro de ese modo. El calor desprendido por la combustión funde el hierro y la ganga en una masa líquida en que la ganga, de menor densidad, flota sobre una mezcla a base de hierro, denominada "fundición". Los residuos formados por la ganga fundida (escorias) son aprovechados por otras industrias: construcción de carreteras, fabricación de cementos...

CONVERTIDOR DE OXÍGENO:

Aquí se convierte la fundición en acero. La fundición en fusión se vierte sobre un lecho de chatarra. Se queman los elementos indeseables (carbono y residuos) contenidos en la fundición, inyectando oxígeno puro. Se recuperan los residuos (escoria de acero). Se obtiene acero líquido "bruto", que se vierte en una cuchara. Se denomina acero bruto porque, en esa etapa, está todavía inacabado.

COQUERÍA:

El coque es un combustible obtenido mediante dostilación (gasificación de los componentes no deseados) de la hulla en el horno de la fábrica de coque. El coque es carbono casi en estado puro, dotada de una estructura porosa y resistente a la rotura. Al arder en el alto horno, el coque aporta el calor necesario para le fusión des mineral y los gases necesarios para su reducción.

PROCEDIMIENTO ELÉCTRICO:

La materia prima introducida en el horno puede incluir desde material en bruto (por ejemplo, piezas de maquinaria) debidamente seleccionado, hasta chatarra entregada en forma preparada, clasificada, triturada y calibrada con un contenido mínimo de hierro del 92%. La chatarra se funden en un horno eléctrico.

Page 20: ACERO FORJADO

El ACERO LIQUIDO:

Obtenido de esa manera, se somete a continuación a las mismas operaciones de afinado y de matización que en el procedimiento de fundición. La chatarra procede de envases desechados, edificaciones, maquinaria y vehículos desguazados o desechos de fundición o acero recuperados en la planta siderúrgica o de sus clientes transformadores. Cada matiz de acero requiere una elección rigurosa de la materia prima, especialmente en función de las "impurezas" que un metal determinado u otro mineral contenido en la chatarra pueda representar para un matiz.

ESTACIÓN DE AFINO:

Afino (descarburación) y adiciones químicas Las operaciones se producen en un recipiente al vacío, haciendo que gire el acero entre la cuchara y el recipiente con la ayuda de un gas inerte (argón). Se inyecta oxígeno a fin de activar la descarburación y calentar el metal. Este procedimiento permite una gran precisión en el ajuste de la composición química del acero ("matización").

COLADA CONTINUA MOLDEO DE PIEZAS EN BRUTO (semiprocesados):

Aquí: moldeo de un desbaste. El acero fundido se vierte en continuo en un molde sin fondo. Al atravesar este molde, comienza a solidificarse en contacto con las paredes refrigeradas por agua. El metal moldeado baja, guiado por un conjunto de rodillos, y continúa enfriándose. Al llegar a la salida, está solidificado hasta el núcleo. En ese momento se corta inmediatamente en las longitudes deseadas.

MÉTODOS DE REFINAMIENTO:

Los materiales básicos para la fabricación de lingotes de acero es material férrico coque y caliza. El coque se quema como un combustible para calentar el horno; cuando se quema el coque, este emite monóxido de carbono que se combina con los óxidos férricos, reduciéndolos a hierro metálico, esta es la reacción química básica en el horno de la explosión; tiene la ecuación: Fe2O3+3CO = 3CO2+2Fe. La caliza en el cargo del horno se usa como una fuente adicional de monóxido de carbono y como un flujo para combinar con el sílice infusible, para formar el silicato de calcio fusible. Sin la caliza, se formarían silicatos férricos, con una perdida resultante de hierro metálico. Los silicatos del calcio mas otras impurezas forman una escoria que flota en sima del metal fundido al fondo del horno.

Page 21: ACERO FORJADO

Los lingotes de hierro ordinario son producidos por hornos de la explosión que contiene hierro aproximadamente en un 92%, carbono 3% o 4%, silicón 0.5% a 3%, manganeso 0.25% a 2.5%, fósforo 0.04% a 2%, y un rastro de azufre. Un horno de la explosión típico consiste en una cáscara de acero cilíndrica lineada con un terco que es cualquier sustancia no metálica como ladrillo refractario. La cáscara se adelgaza a la cima y el fondo es mas ancho a un cuarto de la distancia del fondo. La porción mas baja del horno se llamo antalage de alto horno, el cual esta provisto por varias aperturas tubulares o tulleres, donde la explosión aérea es forzada. Un agujero en la parte inferior del fondo del horno, es el encargado de evacuar las escorias, o impurezas que van a afectar las características del acero.

La cima del horno esta a aproximadamente a 27 metros, contiene aberturas para el escape de los gases y un par de depósitos redondos de alimentación, estos se controlan a través de válvulas campanudas, con las que se adecua la introducción de la carga al horno.

Un desarrollo importante en tecnología de horno de explosión, es el uso de hornos presurizados los cuales se introducieron después de la segunda guerra mundial. Estos consisten en acumulación de gases, y luego su pronta liberación, pero además de eso esta técnica hace posible la mejor combustión del coque y rendimiento mas alto del lingote de acero, además de ello el rendimiento aumenta en un 25%. También es indispensable para acelerar el proceso implementar al conjunto aire y oxigeno.

Cualquier escoria que pueda fluir del horno con el metal, se desnata fuera del horno, antes de que el fluido se introduzca en el recipiente.

En resumen el refinamiento consististe, el evacuar del acero a producir, todas la impurezas que puedan afectar a este. Se comienza con la evacuación de vapores o gases dañinos, y luego con las escorias, para así tener un acero de la calidad que uno desea.

ALEACIONES:

Debido a que las aleaciones han venido ganando un gran campo de acción en la Ingeniería, podíamos conocer las propiedades que caracterizan a cada tipo de aleación. La resistencia no es la única característica que nos permite decidir si el elemento tendrá un desempeño óptimo. Un desempeño satisfactorio depende también de la densidad, la resistencia a la corrosión y los efectos de la temperatura, así como también de las propiedades eléctricas y magnéticas. Como ejemplo consideremos algunas partes para las cuales son especialmente apropiadas ciertas aleaciones.

Page 22: ACERO FORJADO

Elementos aleantes del acero y mejoras obtenidas con la aleación

Las clasificaciones normalizadas de aceros como la AISI, ASTM y UNS, establecen valores mínimos o máximos para cada tipo de elemento. Estos elementos se agregan para obtener unas características determinadas como templabilidad, resistencia mecánica, dureza, tenacidad, resistencia al desgaste, soldabilidad o maquinabilidad.[21] A continuación se listan algunos de los efectos de los elementos aleantes en el acero:[22] [23]

Aluminio: se usa en algunos aceros de nitruración al Cr-Al-Mo de alta dureza en concentraciones cercanas al 1% y en porcentajes inferiores al 0,008% como desoxidante en aceros de alta aleación.

Boro: en muy pequeñas cantidades (del 0,001 al 0,006%) aumenta la templabilidad sin reducir la maquinabilidad, pues se combina con el carbono para formar carburos proporcionando un revestimiento duro. Es usado en aceros de baja aleación en aplicaciones como cuchillas de arado y alambres de alta ductilidad y dureza superficial. Utilizado también como trampa de nitrógeno, especialmente en aceros para trefilación, para obtener valores de N menores a 80 ppm.

Cobalto: muy endurecedor. Disminuye la templabilidad. Mejora la resistencia y la dureza en caliente. Es un elemento poco habitual en los aceros. Aumenta las propiedades magnéticas de los aceros. Se usa en los aceros rápidos para herramientas y en aceros refractarios.

Cromo: Forma carburos muy duros y comunica al acero mayor dureza, resistencia y tenacidad a cualquier temperatura. Solo o aleado con otros elementos, mejora la resistencia a la corrosión. Aumenta la profundidad de penetración del endurecimiento por tratamiento termoquímico como la carburación o la nitruración. Se usa en aceros inoxidables, aceros para herramientas y refractarios. También se utiliza en revestimientos embellecedores o recubrimientos duros de gran resistencia al desgaste, como émbolos, ejes, etc.

Molibdeno: es un elemento habitual del acero y aumenta mucho la profundidad de endurecimiento de acero, así como su tenacidad. Los aceros inoxidables austeníticos contienen molibdeno para mejorar la resistencia a la corrosión.

Nitrógeno: se agrega a algunos aceros para promover la formación de austenita.

Níquel: Es el principal formador de austenita, que aumenta la tenacidad y resistencia al impacto. El níquel se utiliza mucho para producir acero inoxidable, porque aumenta la resistencia a la corrosión.

Page 23: ACERO FORJADO

Plomo: el plomo no se combina con el acero, se encuentra en él en forma de pequeñísimos glóbulos, como si estuviese emulsionado, lo que favorece la fácil mecanización por arranque de viruta, (torneado, cepillado, taladrado, etc.) ya que el plomo es un buen lubricante de corte, el porcentaje oscila entre 0,15% y 0,30% debiendo limitarse el contenido de carbono a valores inferiores al 0,5% debido a que dificulta el templado y disminuye la tenacidad en caliente. Se añade a algunos aceros para mejorar mucho la maquinabilidad.

Silicio: aumenta moderadamente la templabilidad. Se usa como elemento desoxidante. Aumenta la resistencia de los aceros bajos en carbono.

Titanio: se usa para estabilizar y desoxidar el acero, mantiene estables las propiedades del acero a alta temperatura.

Tungsteno: también conocido como wolframio. Forma con el hierro carburos muy complejos estables y durísimos, soportando bien altas temperaturas. En porcentajes del 14 al 18 %, proporciona aceros rápidos con los que es posible triplicar la velocidad de corte de los aceros al carbono para herramientas.

Vanadio: posee una enérgica acción desoxidante y forma carburos complejos con el hierro, que proporcionan al acero una buena resistencia a la fatiga, tracción y poder cortante en los aceros para herramientas.

Nótese la tonalidad del vertido

Impurezas en el acero:

Se denomina impurezas a todos los elementos indeseables en la composición de los aceros. Se encuentran en los aceros y también en las fundiciones como consecuencia de que están presentes en los minerales o los combustibles. Se procura eliminarlas o reducir su contenido debido a que son perjudiciales para las propiedades de la aleación. En los casos en los que eliminarlas resulte imposible o sea demasiado costoso, se admite su presencia en cantidades mínimas.

Page 24: ACERO FORJADO

Azufre: límite máximo aproximado: 0,04%. El azufre con el hierro forma sulfuro, el que, conjuntamente con la austenita, da lugar a un eutéctico cuyo punto de fusión es bajo y que, por lo tanto, aparece en bordes de grano. Cuando los lingotes de acero colado deben ser laminados en caliente, dicho eutéctico se encuentra en estado líquido, lo que provoca el desgranamiento del material.

Se controla la presencia de sulfuro mediante el agregado de manganeso. El manganeso tiene mayor afinidad por el azufre que el hierro por lo que en lugar de FeS se forma MnS que tiene alto punto de fusión y buenas propiedades plásticas. El contenido de Mn debe ser aproximadamente cinco veces la concentración de S para que se produzca la reacción. El resultado final, una vez eliminados los gases causantes, es una fundición menos porosa, y por lo tanto de mayor calidad.

Aunque se considera un elemento perjudicial, su presencia es positiva para mejorar la maquinabilidad en los procesos de mecanizado. Cuando el porcentaje de azufre es alto puede causar poros en la soldadura.

Fósforo: límite máximo aproximado: 0,04%. El fósforo resulta perjudicial, ya sea al disolverse en la ferrita, pues disminuye la ductilidad, como también por formar FeP (fosfuro de hierro). El fosfuro de hierro, junto con la austenita y la cementita, forma un eutéctico ternario denominado esteadita, el que es sumamente frágil y posee punto de fusión relativamente bajo, por lo cual aparece en bordes de grano, transmitiéndole al material su fragilidad.

Aunque se considera un elemento perjudicial en los aceros, porque reduce la ductilidad y la tenacidad, haciéndolo quebradizo, a veces se agrega para aumentar la resistencia a la tensión y mejorar la maquinabilidad.

Aleaciones de aluminio: partes de aviones (alta resistencia en la relación con su peso)

Aleaciones de magnesio: fundiciones para aviones (compite con el aluminio)

Aleaciones de cobre: alambres eléctricos (alta conductividad) Aleaciones de níquel: partes para turbinas de gas (alta resistencia a

temperaturas elevadas).

Encontramos que más del 95% en peso de los metales de ingeniería, utilizados en los Estados Unidos cada año son aleaciones basadas en aluminio, magnesio, cobre hierro y níquel. De hecho, más del 85% es de la familia basada en el hierro y, a pesar de que los porcentajes para las aleaciones de magnesio y níquel son pequeños, estas tienen gran importancia y sería conveniente conocer algunas de las características principales de algunos tipos de aleaciones.

Page 25: ACERO FORJADO

ALEACIONES MARTENSITICAS:

Contienen de 12 a 20% de cromo con cantidades controladas de carbono y otros aditivos. El tipo 410 es un miembro característico de este grupo. Esas aleaciones se pueden endurecer mediante el tratamiento térmico, con un aumento en la resistencia a la tracción de 550 a 1380 Mpa (80000 a 200000 lbf / in2 ). La resistencia a la corrosión es inferior a la de los aceros inoxidables austeniticos y los aceros martensíticos se utilizan en general en ambientes ligeramente corrosivos (atmosférico, agua dulce y materiales orgánicos).

ALEACIONES INOXIDABLES VACIADAS:

Se utilizan mucho en bombas, válvulas y accesorios. Esas aleaciones vaciadas se designan según el sistema de Alloy Casting lnstitute (ACI). Todas las aleaciones resistentes a la corrosión tienen la letra C más otra letra (A aN) que denota el contenido creciente de níquel. Los números indican el contenido máximo de carbono. Aunque se puede hacer una comparación aproximada entre los tipos ACl y Los AISI, las composiciones no son idénticas y los análisis no se pueden utilizar en forma intercambiable. Las técnicas de fundición requieren un rebalanceo de Las composiciones químicas forjadas. Sin embargo, ¡a resistencia a la corrosión no se ve afectada por esos cambios de composición. Los miembros característicos de este grupo son CF- similar al acero inoxidable tipo 304; CF-8M, similar al tipo 316 CD-4M Cu, que tiene una resistencia mecánica al ácido nítrico, al sulfúrico y al fosfórico.

Además de los grados °C, hay una serie de grados resistentes al calor de aleaciones vaciadas ACl, que se identifican por su similitud con los grados de resistencia a la corrosión, excepto que la primera letra es H en vez de C. Es preciso mencionar también los aceros inoxidables de endurecimiento por precipitación (PH), que se pueden endurecer por medio de tratamientos térmicos a temperaturas moderadas. Muy fuertes y duros a las temperaturas elevadas, estos aceros tienen sólo una resistencia moderada a la corrosión.

Un acero PH usual que contiene 17% Cr, 7% Ni 1.1% Al tiene una resistencia elevada, buenas propiedades ante la fatiga y buena resistencia al desgaste. Un número elevado de estos aceros, con composiciones variables, se encuentran disponibles comercialmente. En forma esencial contienen cromo y níquel con agentes agregados de aleación como cobre aluminio, berilio, molibdeno, nitrógeno y fósforo.

Page 26: ACERO FORJADO

ALEACIONES MEDIAS :

Un grupo de aleaciones en su mayor parte patentadas, con una resistencia ligeramente mejor a la corrosión que la de los aceros inoxidables se denominan aleaciones medias. Uno de ¡os miembros más populares de este grupo es la aleación 20, producida por ciertas compañías con diversos nombres comerciales. La aleación 20 se desarrollo originalmente para satisfacer la necesidad de un material con una resistencia al ácido sulfúrico superior a la de los aceros inoxidables. Otros miembros del grupo de aleaciones medias son incoloy 825 y Hastelloy G-3. El lncoloy 825 forjado tiene 40% Ni, 21%Cr, 3% Mo y 2.25% Cu.

El Hastelloy 0-3 contiene 44% Ni, 22% Cr, 6.5% Mo y como máximo 0.05% C. Estas aleaciones tienen una aplicación muy amplia en los sistemas de ácido sulfúrico. Debido a su alto contenido de níquel y molibdeno tienen mayor tolerancia a la contaminación por el ion cloruro que los aceros inoxidables estándares. El contenido de níquel disminuye el riesgo de fractura debido a la corrosión por esfuerzo. El molibdeno mejora la resistencia a la corrosión por grieta y a las picaduras.

ALEACIONES ALTAS:

El grupo de materiales que se denominan aleaciones altas contienen porcentajes relativamente grandes de níquel. El Hastelloy B-2 contiene 61% Ni, y 28% Mo. Existen en la forma forjada y vaciada. El endurecimiento por trabajo presenta ciertas dificultades de fabricación y el maquinado es un poco más difícil que para el acero inoxidable del tipo 316. Se pueden utilizar métodos tradicionales de soldadura. La aleación tiene una resistencia desacostumbrada alta a todas las concentraciones de ácido clorhídrico. Las sales y los ácidos oxidantes corroen con rapidez el Hastelloy B-2; pero los álcalis y las soluciones alcalinas provocan pocos daños en él. El Coloriste 2 tiene 63% Ni y 32% Mol y se asemeja al Hastelloy B-2. Existe sólo en forma vaciada, principalmente en válvulas y bombas. Se trata de una aleación dura, muy resistente a os choques mecánicos y térmicos. Se puede labrar con herramientas de punta de carburo y soldar con técnicas de arco metálico.

La Hastelloy 0-276 es una aleación basada en níquel que contiene cromo (15.5%), molibdeno (15.5%) y tungsteno (3%) como principales elementos de aleación. Solo se puede conseguir en la forma forjada. Esta aleación es una modificación baja en impurezas del Hastelloy C, que se puede conseguir en forma fundida. El bajo nivel de impurezas reduce substancialmente el riesgo de la corrosión en la precipitación de las superficies límites de los granos en las zonas afectadas por el calor de la soldadura. Esta aleación es resistente a las soluciones de cloruro fuertemente oxidaste, como el cloro húmedo y las soluciones de hipoclorito. Es una de las pocas aleaciones que son totalmente resistentes al agua de mar.

Page 27: ACERO FORJADO

Hastelloy C-4 es una variación reciente, que es casi totalmente inmune a la corrosión ínter granular en las zonas afectadas por el calor de la soldadura.

Chlorimet 3 es una aleación que se consigue sólo en la forma fundida y es similar al Hastelloy C en su contenido de aleación y en resistencia a la corrosión.

lnconel 600 basado en 80% Ni. 16% Cr, 7% Fe, se debe mencionar también como aleación alta. No contiene molibdeno. El grado resistente a la corrosión se recomienda cara ambientes reductores-oxidantes, sobre todo a temperaturas elevadas. Cuando se calienta en el aíre, la aleación resiste la oxidación hasta 1100°C. La aleación es sobresaliente en su resistencia a la corrosión por gases cuando estos últimos están esencialmente libres de azufre.

Las aleaciones que se han citado son los ejemplos característicos de gran número de aleaciones altas patentadas de empleo en la industria química.

ACEROS DE BAJA ALEACIÓN Y ALTA RESISTENCIA.

Existen un gran número de aceros de alta resistencia, y baja aleación cubiertos por las normas ASTM bajo varios números. Además de contener carbono y manganeso, la resistencia de estos aceros se debe a que se usan como elementos de aleación al columbio, vanadio, cromo, silicio, cobre, níquel y otros. Estos aceros tienen límites de fluencia tan bajos como 42,000 psi (2,940 kg/cm2) y tan altos como 65,000 psi (4,550 kg/cm2). Estos aceros tienen mucha mayor resistencia a la corrosión que los aceros simples al carbón. En este grupo se incluyen el A529, A242, A440, A441, A572 y A588.

ACEROS ALEADOS TÉRMICAMENTE TRATADOS PARA LA CONSTRUCCIÓN:

Estos aceros contienen elementos de aleación en mayor cantidad que los de baja aleación y alta resistencia y además se tratan térmicamente (por revenido y templado), para obtener aceros tenaces y resistentes. Se enlistan en las normas ASTM con la designación A514 y tienen limites de fluencia de 90,000 a 100,000 psi (6,300 a 7,030 kg/cm2) dependiendo del espesor.

Se dice que existen por ahora más de 200 tipos de acero en el mercado cuyo límite de fluencia está por encima de los 36,000 psi. La industria del acero experimenta con tipos cuyos esfuerzos de fluencia varían de 200,000 a 300,000 psi y esto es sólo el principio. Muchos investigadores de la industria piensan que al final de la década de los 70 se tengan en disponibilidad aceros de 500,000 psi de límite de fluencia. La fuerza teórica que liga o vincula átomos de hierro se ha estimado que está por encima de los 4000,000 psi.2

Page 28: ACERO FORJADO

Aun cuando el precio del acero se incrementa con el aumento de su lí-mite de fluencia, este incremento no es linealmente proporcional y puede resultar económica la utilización de estos aceros, a pesar de su costo, si el uso de ellos se realiza diseñándolos a sus máximos esfuerzos permisibles, a máxima eficiencia, sobre todo en piezas de tensión o tirantes, en vigas con patines impedidos de pandeo, columnas cortas (o de baja relación de esbeltez). Otra aplicación de estos aceros es frecuente en la llamada construcción híbrida, en donde se usan dos o más aceros de diferentes resistencias, los más débiles se colocan en donde los esfuerzos son bajos y los más resistentes en donde los esfuerzos son mayores.

Otros factores que pueden conducir al uso de aceros de alta resistencia, son los siguientes:

Superior resistencia a la corrosión. Posible ahorro en costo de flete, montaje y cimentación, por su me-

nor peso. Uso de vigas poco aperaltadas (poca altura) que permiten entrepisos

menores. Posible ahorro en materiales de recubrimiento incombustible, ya que

pueden utilizarse miembros más pequeños.

El primer pensamiento de la mayoría de los ingenieros al elegir el tipo de acero, es el costo directo de los elementos. Una comparación de costo puede hacerse fácilmente, pero la economía por el grado de acero a usar no se puede obtener a menos que se involucren: el peso, las dimensiones, deflexiones, costos de mantenimiento, fabricación, etc; hacer una comparación general exacta de los aceros es probablemente imposible la menos que se tenga un tipo específico de obra a considerar.

ACEROS ESTRUCTURALES:

El acero al carbono es el más común, barato y aplicable de los metales que se emplean en la industria. Tienen una ductilidad excelente, lo que permite que se utilice en muchas operaciones de formado en frío. El acero también se puede soldar con facilidad.

Los grados de acero que se emplean comúnmente en las industrias de procesos químicos tienen una resistencia a la tracción dentro de 50000 a 70000 lbf / in2 con buena ductibilidad. Es posible alcanzar niveles de resistencia todavía mas altos con trabajo en frió, con aleaciones y con tratamiento térmico.

Los aceros de alta resistencia se utilizan mucho en proyectos de ingeniería civil. Los nuevos aceros, por lo general, los introducen sus fabricantes con marca registrada; pero un breve examen de sus composiciones, tratamiento térmico y propiedades suele permitir relacionarlos con otros materiales ya existentes.

Page 29: ACERO FORJADO

Las clasificaciones generales permiten agrupar los aceros estructurales disponibles en la actualidad en cuatro categorías principales, algunas de las cuales tienen subdivisiones. Los aceros que utilizan el carbono como elemento principal en la aleación se llaman aceros estructurales al carbono.

Dos subcategorías de pueden agruparse dentro de la clasificación general de aceros. Los aceros con bajo contenido de aleación. Los aceros con bajo contenido de aleación tienen cantidades moderadas de uno o más elementos de aleación , aparte del carbono para desarrollar resistencias más altas que las de los aceros comunes al carbono. Los aceros al columbio vanadio son metales de elevada resistencia al límite de fluencia producidos con la adición de pequeñas cantidades de estos elementos a los aceros de bajo contenido de carbono.

En el mercado hay dos clases de aceros al carbono con tratamiento térmico para usos en la construcción. Los aceros al carbono con tratamiento térmico están disponibles bien en su condición estándar o enfriados y templados; su endurecimiento se logra a base del contenido de carbono. Los aceros de aleación con tratamiento térmico para construcción son aceros enfriados y templados que contienen cantidades moderadas de elementos de aleación además del carbono.

Otra categoría general, marenvejecido, son los aceros de bajo contenido de carbono en aleación con alto contenido de níquel. Estas aleaciones se someten a tratamiento térmico para madurar la estructura de hierro-níquel. Los aceros marenvejecidos tienen una característica particular debido a que son los primeros aceros de grado para construcción que en esencia, están libres de carbono. Su alta resistencia depende de por completo de otros elementos de aleación. Esta clase de acero posiblemente ha abierto la puerta al desarrollo de toda una nueva serie de aceros libres de carbono.

La comparación de la composición química en cuanto a carbono y otros elementos de aleación, pueden utilizarse para distinguir entre sí los aceros estructurales. La mayoría de los aceros estructurales, excepto los aceros martensíticos, contienen carbono en cantidades entre 0.10 y 0.28%. Los aceros más antiguos tienen pocos elementos de aleación y suelen clasificarse como aceros al carbono. Los aceros que contienen cantidades moderadas de elementos de aleación como los aceros martensíticos con 18% de níquel, se designan aceros con alto contenido de aleación. Las composiciones químicas específicas de los aceros estructurales clasificados se indican en las especificaciones de la ASTM. Las composiciones químicas típicas de otros aceros estructurales pueden obtenerse con los fabricantes.

En ocasiones se utiliza un sistema de numeración básica para describir el contenido de carbono y de aleación de los aceros. En el sistema de numeración del American Iron and Steel lnstitute (AlSl) para aceros con bajo contenido de aleación, los dos primeros indican el contenido de aleación y los dos últimos indican el contenido nominal de carbono en fracciones de 0.01%.

Page 30: ACERO FORJADO

También están especificados: 0.40 a 0.60% Mn ( manganeso ), 0.040% P (fósforo) máximo. 0.040% S (azufre) máximo. 0.20 a 0.35% Si (silicio).

El tratamiento térmico puede utilizarse como otro medio de clasificación. Los antiguos aceros estructurales al carbono y los aceros de alta resistencia y bajo contenido de aleación no tienen tratamiento térmico específico, pero sus propiedades se controlan por el proceso de laminación en caliente. Los aceros para construcción y los aceros al carbono térmicamente tratados, recurren a un proceso de enfriamiento y templado para desarrollar sus propiedades de alta resistencia. Los aceros ASTM A514 se someten a tratamiento térmico con enfriamiento por inmersión en agua o aceite a no menos de 1650 °F, y luego, templado a no menos de 1100° F. Los aceros al carbono térmicamente tratados se someten a una secuencia similar de enfriamiento y temple: austenización, enfriamiento con agua, y luego, temple a temperaturas entre 1000° y 1300 °F.

Él tratamiento térmico típico para los aceros marenvejecidos comprende el recocido a 1500 °F durante una hora, enfriamiento con aire a la temperatura ambiente y maduración a 900 °F durante tres horas. El tratamiento de maduración para los aceros martensíticos puede variarse para obtener diferentes grados de resistencia

FLUJOS DE MATERIA DEL PROCESO DE FABRICACIÓN DEL ACERO:

Para producir una tonelada de acero virgen se necesitan 1500kg de ganga de hierro, 225kg de piedra caliza y 750kg de carbón (en forma de coque).

La obtención del acero pasa por la eliminación de las impurezas que se encuentran en el arrabio o en las chatarras, y por el control, dentro de unos límites especificados según el tipo de acero, de los contenidos de los elementos que influyen en sus propiedades.

Las reacciones químicas que se producen durante el proceso de fabricación del acero requieren temperaturas superiores a los 1000ºC para poder eliminar las sustancias perjudiciales, bien en forma gaseosa o bien trasladándolas del baño a la escoria

Por cada tonelada de bloque de acero fabricado se generan: 145kg de escoria, 230kg de escoria granulada, aproximadamente 150 000 litros de agua residual y alrededor de 2 toneladas de emisiones gaseosas (incluyendo CO2, óxidos sulfurosos y óxidos de nitrógeno).

Page 31: ACERO FORJADO

Elemento Forma de eliminación Reacción química

Carbono Al combinarse con el oxígeno se quema dando lugar a CO y CO2 gaseoso que se elimina a través de los humos.

Manganeso Se oxida y pasa a la escoria. Combinado con sílice da lugar a silicatos.

Silicio Se oxida y pasa a la escoria. Forma silicatos.

Fósforo En una primera fase se oxida y pasa a la escoria. En presencia de carbono y altas temperaturas puede revertir al baño. Para fijarlo a la escoria se añade cal formándose fosfato de calcio.

Azufre Su eliminación debe realizarse mediante el aporte de cal, pasando a la escoria en forma de sulfuro de calcio. La presencia de manganeso favorece la desulfuración.

Perfil medioambiental del acero:

Ene r g i a 19 MJ / kg producto

M a t e r i as p r i m as Ganga de hierro 1500 kg / t productoPiedra caliza 225 kg / t productoCarbón (en forma de coque) 750 kg / t producto

E m isi ones Escoria 145 kg / t productoEscoria granulada 230 kg / t producto Agua residual

150000 l / t producto Emisiones gaseosas (incluyendo dióxido de carbono, óxidos de azufre y óxidos de nitrógeno) 2 t / t producto

[DESGLOSE] :Dióxido de carbono (CO2) 1,950 t / t productoÓxido de nitrógeno (NOx) 0,003 t / t productoÓxido de sulfúrico (SO2) 0,004 t / t producto

Page 32: ACERO FORJADO

Metano (CH4) 0,626 kg / t productoComponentes orgánicos volátiles (COVtot) 0,234 kg / t productoPolvo 15,000 kg / t productoMetales pesados 0,037 kg / t producto

(Pb,Cd,Hg,As,Cr,Cu,Ni,Se,Zn,V)

Los valores del desglose de las emisiones gaseosas de la tabla 5.2 han sido obtenidos a partir de las estadísticas de emisiones de la industria de hierro y acero del Reino Unido en el año 1997 y la producción de acero de dicha industria ese año (datos publicados por el gobierno del Reino Unido y actualizados según los factores de conversión indicados por el mismo).

PROPIEDADES MECANICAS.

Deformaciones Elásticas y deformaciones plásticas.

El número de deformaciones elásticas que un metal puede soportar es pequeño, puestos que durante la deformación elástica los átomos del metal son desplazados de su posición original, pero no hasta el extremo de que tomen nuevas posiciones fijas. De esta forma cuando la fuerza que origina los desplazamientos cesa, los átomos vuelven a sus posiciones originales. En cambio durante la deformación plástica, los átomos son desplazados de forma permanente de sus posiciones originales y toman nuevas posiciones.

Deformaciones plásticas de metales policristalinos

Los bordes de granos fortalecen a los metales y aleaciones al actuar como barreras contra el movimiento de las dislocaciones, excepto a altas temperaturas, donde pasan a ser zonas de debilidad. Para la mayoría de las aplicaciones donde la resistencia es importante, se hace deseable un tamaño de grano fino.

Page 33: ACERO FORJADO

Durante la deformación plástica de los metales, las dislocaciones que se mueven a lo largo de un plano de deslizamiento particular no pueden ir directamente desde un grano a otro en línea de recta. Las líneas de deslizamiento cambian en la dirección en los bordes de grano.Así cada grano tiene su propio conjunto de dislocaciones en sus propios planos de deslizamiento preferidos, que tienen diferentes orientaciones de las de los granos colindantes.

Efectos de la deformación plástica sobre la forma de los granos y de la distribución de las deformaciones.

Bajo la deformación plástica en frío los granos sufren cizallamiento relativo unos con respecto a otros mediante la generación, movimiento y redistribución de dislocaciones. En el laminado en frío al incrementarse este, se observa que los granos sufren un proceso de alargamiento en la dirección del laminado como consecuencia del movimiento de las dislocaciones. Aparecen en el proceso de laminado, también una concentración de dislocaciones, ya que en una misma celda entra ahora una cantidad mayor de granos que han sufrido un proceso de alargamiento, que en la celda antes del laminado.

Efecto de la deformación plástica en frío en el incremento de la dureza del acero.

Las nuevas dislocaciones que se crean por la deformación en frió deben interaccionar con las ya existentes. Como la densidad de las dislocaciones aumenta con la deformación, se hace cada vez más difícil el movimiento de las dislocaciones a través del “bosque de dislocaciones” y, por consiguiente el trabajo sobre el metal se endurece a medida que aumenta la deformación en frío.

Recocido

Page 34: ACERO FORJADO

Si se calienta el metal a una temperatura suficientemente alta durante bastante tiempo, la estructura del material trabajado en frío sufrirá una serie de cambios llamados: recuperación, recristalización y crecimiento granular. El

tratamiento de

recalentamiento es llamado recocido.

Page 35: ACERO FORJADO

Cuando un acero es trabajado en frío con intensidad, la mayoría de la energía gastada en una deformación plástica queda almacenada en el metal en forma de dislocaciones y otras imperfecciones tales como defectos puntuales.Durante la recuperación se le entrega al acero suficiente energía térmica para permitir que las dislocaciones se reordenen por sí mismas en configuración de energía más baja.Durante la recuperación, la resistencia del metal trabajado en frío se ve disminuidaLigeramente, pero su ductilidad aumenta generalmente de modo significativo.

Fractura de metales.

La fractura dúctil del acero se presenta luego de una intensa deformación plástica. Se pueden reconocer tres estado de la fractura dúctil: la formación de la garganta y cavidadesen ella; las cavidades del cuello coalescen en una grieta y esta se propaga a lo largo de la superficie en dirección perpendicular a la tensión aplicada; (3) cuando la grieta se acerca a la superficie, la dirección de la grieta cambia a 45º y da lugar a la fractura de cono y embudo.

La fractura frágil cursa según planos cristalográficos específicos, llamados planos de escisión y conlleva a una rápida propagación de la fisura. Este tipo de fractura se realiza con muy poca deformación plástica. La fractura frágil se puede da en aquellos aceros con estructura cristalina HCP, debido al limitado número de planos de deslizamiento. Algunos aceros con estructura BCC se fracturan de manera frágil a bajas temperatura.

La mayoría de las fracturas frágiles en los aceros son transgranulares; las grietas se propagan a lo largo de la matriz de los granos.Se cree que la fractura frágil en los aceros tiene lugar en tres fases: (1) la deformación plástica concentra las dislocaciones a lo largo de los planos de deslizamiento; (2) los esfuerzos de cizalla se acrecientan en lugares donde las dislocaciones están bloqueadas y como resultado se nuclean microgrietas; una nueva tensión propaga las microgrietas, la energía de tensión almacenada también puede contribuir a la propagación de las fisuras.

Resistencia: es la oposición al cambio de forma y a la fuerzas externas que pueden presentarse como cargas son tracción, compresión, cizalle, flexión y torsión.

Elasticidad: corresponde a la capacidad de un cuerpo para recobrar su forma al dejar de actuar la fuerza que lo ha deformado

Plasticidad: es la capacidad de deformación de un metal sin que llegue a romperse si la deformación se produce por alargamiento se llama ductilidad y por compresión maleabilidad.

Page 36: ACERO FORJADO

Fragilidad: es la propiedad que expresa falta de plasticidad y por lo tanto tenacidad los metales frágiles se rompen en el límite elástico su rotura se produce cuando sobrepasa la carga del límite elástico.

Tenacidad: se define como la resistencia a la rotura por esfuerzos que deforman el metal; por lo tanto un metal es tenaz si posee cierta capacidad de dilatación.

Dureza: es la propiedad que expresa el grado de deformación permanente que sufre un metal bajo la acción directa de una fuerza determinada. Existen dos Dureza física y dureza técnica.

Ductilidad: es la capacidad que tienen los materiales para sufrir deformaciones a tracción relativamente alta, hasta llegar al punto de fractura.

Resilencia: es la capacidad que presentan los materiales para absorber energía por unidad de volumen en la zona elástica.

Características mecánicas y tecnológicas del acero

Representación de la inestabilidad lateral bajo la acción de una fuerza ejercida sobre una viga de acero.

Aunque es difícil establecer las propiedades físicas y mecánicas del acero debido a que estas varían con los ajustes en su composición y los diversos tratamientos térmicos, químicos o mecánicos, con los que pueden conseguirse aceros con combinaciones de características adecuadas para infinidad de aplicaciones, se pueden citar algunas propiedades genéricas:

Su densidad media es de 7850 kg/m³. En función de la temperatura el acero se puede contraer, dilatar o fundir. El punto de fusión del acero depende del tipo de aleación y los porcentajes de

elementos aleantes. El de su componente principal, el hierro es de alrededor de 1.510 °C en estado puro (sin alear), sin embargo el acero presenta frecuentemente temperaturas de fusión de alrededor de 1.375 °C, y en general la temperatura

Page 37: ACERO FORJADO

necesaria para la fusión aumenta a medida que se aumenta el porcentaje de carbono y de otros aleantes. (excepto las aleaciones eutécticas que funden de golpe). Por otra parte el acero rápido funde a 1.650 °C.[15]

Su punto de ebullición es de alrededor de 3.000 °C.[16] Es un material muy tenaz, especialmente en alguna de las aleaciones usadas para

fabricar herramientas. Relativamente dúctil. Con él se obtienen hilos delgados llamados alambres. Es maleable. Se pueden obtener láminas delgadas llamadas hojalata. La hojalata es

una lámina de acero, de entre 0,5 y 0,12 mm de espesor, recubierta, generalmente de forma electrolítica, por estaño.

Permite una buena mecanización en máquinas herramientas antes de recibir un tratamiento térmico.

Algunas composiciones y formas del acero mantienen mayor memoria, y se deforman al sobrepasar su límite elástico.

La dureza de los aceros varía entre la del hierro y la que se puede lograr mediante su aleación u otros procedimientos térmicos o químicos entre los cuales quizá el más conocido sea el templado del acero, aplicable a aceros con alto contenido en carbono, que permite, cuando es superficial, conservar un núcleo tenaz en la pieza que evite fracturas frágiles. Aceros típicos con un alto grado de dureza superficial son los que se emplean en las herramientas de mecanizado, denominados aceros rápidos que contienen cantidades significativas de cromo, wolframio, molibdeno y vanadio. Los ensayos tecnológicos para medir la dureza son Brinell, Vickers y Rockwell, entre otros.

Se puede soldar con facilidad.

La corrosión es la mayor desventaja de los aceros ya que el hierro se oxida con suma facilidad incrementando su volumen y provocando grietas superficiales que posibilitan el progreso de la oxidación hasta que se consume la pieza por completo. Tradicionalmente los aceros se han venido protegiendo mediante tratamientos superficiales diversos. Si bien existen aleaciones con resistencia a la corrosión mejorada como los aceros de construcción «corten» aptos para intemperie (en ciertos ambientes) o los aceros inoxidables.

Posee una alta conductividad eléctrica. Aunque depende de su composición es aproximadamente de[17] 3 · 106 S/m. En las líneas aéreas de alta tensión se utilizan con frecuencia conductores de aluminio con alma de acero proporcionando éste último la resistencia mecánica necesaria para incrementar los vanos entre la torres y optimizar el coste de la instalación.

Se utiliza para la fabricación de imanes permanentes artificiales, ya que una pieza de acero imantada no pierde su imantación si no se la calienta hasta cierta temperatura. La magnetización artificial se hace por contacto, inducción o mediante procedimientos eléctricos. En lo que respecta al acero inoxidable, al acero inoxidable ferrítico sí se le pega el imán, pero al acero inoxidable austenítico no se le pega el imán ya que la fase del hierro conocida como austenita no es atraída por

Page 38: ACERO FORJADO

los imanes. Los aceros inoxidables contienen principalmente níquel y cromo en porcentajes del orden del 10% además de algunos aleantes en menor proporción.

Un aumento de la temperatura en un elemento de acero provoca un aumento en la longitud del mismo. Este aumento en la longitud puede valorarse por la expresión: δL = α δ t° L, siendo a el coeficiente de dilatación, que para el acero vale aproximadamente 1,2 · 10−5 (es decir α = 0,000012). Si existe libertad de dilatación no se plantean grandes problemas subsidiarios, pero si esta dilatación está impedida en mayor o menor grado por el resto de los componentes de la estructura, aparecen esfuerzos complementarios que hay que tener en cuenta. El acero se dilata y se contrae según un coeficiente de dilatación similar al coeficiente de dilatación del hormigón, por lo que resulta muy útil su uso simultáneo en la construcción, formando un material compuesto que se denomina hormigón armado.[18] El acero da una falsa sensación de seguridad al ser incombustible, pero sus propiedades mecánicas fundamentales se ven gravemente afectadas por las altas temperaturas que pueden alcanzar los perfiles en el transcurso de un incendio.

ENSAYOS DE PROPIEDADES MECANICAS:

Los aceros de uso en recipientes de presión en general presentan una microestructura no homogénea a lo largo del espesor de su pared debido al proceso de su fabricación y esto se ve agravado porque los espesores típicos son del orden de los 200-250 mm.

Esto nos conduce a que en distintas partes del mismo varíen no sólo su micrestructura sino también sus propiedades mecánicas, en especial deben ser tenidos en cuenta estos cambios cuando estas propiedades también serán modificadas por efectos de la radiación, cuando el recipiente forme parte de una central nuclear en actividad, ya que parámetros como la curva de transición ductil-frágil, sufren un corrimiento en un determinado T en su temperatura de transición, debido a que el material se vuelve más frágil con la radiación neutrónica.

Por lo tanto, deben standarizarse los métodos de evaluación del material antes de su uso en condición no irradiada y en su posterior irradiación a través de programas de vigilancia que nos permiten verificar el estado del acero del recipiente de presión colocando probetas tipo Balderrama e Iorio544 charpy-v, tracción y fractomecánicas dentro del reactor que serán evaluadas y nos darán información del estado en que se encuentra el material del recipiente. Por otro lado, este análisis nos permitirá poder utilizar estos resultados para poder comparar los mismos, provenientes de ensayos hechos con diferente orientación en sus probetas, pero extraídas de un mismo material, tal el caso de varias centrales nucleares, en donde, en su programa de Vigilancia del Recipiente de Presión y ensayos conexos, las probetas fueron ensayadas con diferente orientación entre si y a la vez distinta de la dirección recomendada por las normas actuales para programas de vigilancia. Podemos mencionar que durante la fabricación el acero es forjado o laminado y existe una dirección principal de trabajado mecánico durante dicho proceso, esta

Page 39: ACERO FORJADO

dirección es la denominada Longitudinal L ; la dirección normal a esta última es la llamada T y la dirección del espesor S. Esta nomenclatura responde a las normas ASTM en las que se indica las diferentes orientaciones en que se extraen las probetas.

Por lo antedicho se verificarán las diferentes propiedades mecánicas experimentadas según las orientaciones de cada probeta del acero ASTM A 533 Tipo B clase 1 denominado JRQ, el cual fue provisto por la Int..Atomic Energy Agency (IAEA) y que es usado para la fabricación de recipientes de presión, siendo el mismo estudiado actualmente por muchos laboratorios del mundo.Dicho material ha sido seleccionado por sus características como un posible material de referencia a ser usado junto al material del recipiente de presión en los respectivos programas de vigilancia de las centrales nucleares.

ENSAYOS MECÁNICOS DEL ACERO:

Cuando un técnico proyecta una estructura metálica, diseña una herramienta o una máquina, define las calidades y prestaciones que tienen que tener los materiales constituyentes. Como hay muchos tipos de aceros diferentes y, además, se pueden variar sus prestaciones con tratamientos térmicos, se establecen una serie de ensayos mecánicos para verificar principalmente la dureza superficial, la resistencia a los diferentes esfuerzos que pueda estar sometido, el grado de acabado del mecanizado o la presencia de grietas internas en el material, lo cual afecta directamente al material pues se pueden producir fracturas o roturas.

Hay dos tipos de ensayos, unos que pueden ser destructivos y otros no destructivos.

Todos los aceros tienen estandarizados los valores de referencia de cada tipo de ensayo al que se le somete.[]

ENSAYOS NO DESTRUCTIVOS:

Los ensayos no destructivos son los siguientes:

Ensayo microscópico y rugosidad superficial. Microscopios y rugosímetros.

Ensayos por ultrasonidos. Ensayos por líquidos penetrantes. Ensayos por partículas magnéticas.

Page 40: ACERO FORJADO

Ensayo de dureza (Brinell, Rockwell, Vickers). Mediante durómetros.

ENSAYOS DESTRUCTIVOS:

Los ensayos destructivos son los siguientes:

Ensayo de tracción con probeta normalizada. Ensayo de resiliencia. Ensayo de compresión con probeta normalizada. Ensayo de cizallamiento. Ensayo de flexión. Ensayo de torsión. Ensayo de plegado. Ensayo de fatiga.

USOS Y EMPLEO.

Usos y Aplicaciones

Resiste a la mayoría de los ácidos y agentes químicos industriales hasta 800°C además de agua salada. Para industrias químicas, alimenticia, y vitivinícola, petróleo, laboratorios, construcciones navales y aeronáuticas. La adición de molibdeno mejora la resistencia a la corrosión en ciertos medios. Alta resistencia al ataque de ácidos orgánicos e inorgánicos.

Aplicaciones arquitectónicas.

El hierro como material estructural se usa en arquitectura desde antiguo. Por sus propiedades a la tracción se utilizaba combinando con la madera en las cabriadas que cubren las naves de las iglesias medievales. Sin embargo, es la sustitución de la madera por el carbón en la extracción del mineral (1735), la fabricación de las primeras vigas perfiladas de hierro (1847), la invención del procedimiento Bessemer que permite producir acero en gran escala (1855), los trabajos de Hennebique y el uso del hormigón armado ( 1890 ) y la patente del acero inoxidable ( 1916 ), lo que hace posible llegar a un empleo masivo del acero en la arquitectura. Básicamente, el acero forma los elementos estructurales: vigas y pilares, planchas superficiales o cables para grandes cubiertas, y barras para el armado del hormigón. Se emplea también en detalles no estructurales, desde la carpintería de puertas y ventanas hasta recubrimientos, simples manivelas, etc. Dado el gran poder de oxidación del acero en contacto con la atmósfera, hay que aplicar un proceso de revestimiento de superficie, ya por baño electrolítico, ya pintándolo. Por su resistencia, puede emplearse en estructuras ligeras, necesarias cuando la edificación pasa de cierto número de plantas o cuando cubre una gran luz. En ambos casos la relación peso propio-resistencia ha de ser baja, lo que se consigue con el

Page 41: ACERO FORJADO

empleo del acero. Este es sólo moldeable a elevadas temperaturas; por tanto, no es un material conformable en obra y se utiliza para perfiles, chapas, etc., normalizados y preformados en industrias adecuadas, mientras que en obra las operaciones se reducen a las de corte, ajuste y unión. Los sistemas de unión (roblonado, atornillado y soldadura) permiten adaptar estas formas industriales a las constructivas. El roblonado y el atornillado, aunque presentan gran facilidad de puesta en obra, no solucionan el problema fundamental, que es la continuidad. Por el contrario, la soldadura consigue hacer de los perfiles industriales un conjunto homogéneo a nivel molecular.

El acero, por presentar unas dispersiones mínimas en sus características resistentes, con un control de calidad fácilmente alcanzable, planteó la necesidad de una revisión de los métodos de cálculo usados normalmente, y pensados para materiales cuya construcción y ejecución no permitían una determinación cuantitativa aproximada de sus características resistentes. La posibilidad de un mayor conocimiento del material permitió la formulación de hipótesis de cálculo mucho más ajustadas a la realidad y cuyas aplicaciones estaban totalmente justificadas por motivos económicos. La operatividad de los métodos basados en estas hipótesis (métodos elásticos menos simplificados, métodos plásticos, métodos fundados en la continuidad de los materiales resistentes, etc.) se alcanza con la aparición y uso generalizado de los computadores electrónicos.

El acero ha sido, posiblemente, el catalizador de intentos sistemáticos de acercamiento a la realidad en el campo del cálculo estructural dentro ya del proceso general del diseño arquitectónico. La obra que refleja más claramente todos los puntos anteriores es quizá la de Ludwig Mies van der Rohe.

Series regulares de columnas de acero no recubierto sostinen las placas de los techos dejando en libertad las paredes, que son meras divisiones, límpidas, del espacio interior. Actualmente se han desarrollado técnicas constructivas a base de acero; entre ellas cabe citar los techos suspendidos que se sostienen mediante cables de acero tensados, los cascarones de acero soldado, las enormes cubiertas reforzadas por costillas sobre columnas de hormigón armado, etc.

USOS:

La estructura de la pirámide den Louvre, las latas de conserva, las plataformas petroleras, las cámaras catalíticas, los clips de las oficinas, y los soportes de los circuitos integrados son de acero.

Una relación completa sería imposible: desde el objeto más corriente hasta el instrumento más sofisticado, desde lo microscopico ( piezas menores de un gramo en los micromotores de relojes eléctricos) hasta lo gigantesco ( cubas de metanero, capaces de alojar el volumen del arco del triunfo), el acero esta en el origen de la infinidad de productos elaborados por la industria humana.

Page 42: ACERO FORJADO

En la construcción de puentes o de edificios

El acero puede tener múltiples papeles. Sirve para armar el hormigón, reforzar los cimientos, transportar el agua, el gas u otros fluidos.

Permite igualmente formar el armazón de edificios, sean estos de oficinas, escuelas, fabricas, residenciales o polideportivos. Y también vestirlos (fachadas, tejados).

En una palabra, es el elemento esencial de la arquitectura y de la estética de un proyecto.

En el sector de la automoción

Este sector constituye el segundo mercado acero, después de la construcción y las obras publicas.

Chasis y carrocerías, piezas de motor, de la dirección o de la transmisión, instalaciones de escape, carcasas de neumáticos,.... el acero representa del 55 al 70% del peso de un automóvil.

En lo cotidiano: latas, botes, bidones.

Numerosos envases son fabricados a partir de hojas de acero, revestidas en ambas caras de una fina capa de estaño que les hace inalterables.

Denominados durante largo tiempo “hierro blanco” (debido al blanco del estaño), los aceros para envase se convierten en latas de conserva o de bebidas y también en botes de aerosol para laca, tubos para carmín de labios, botes, y latas o bidones para pinturas, grasas, disolventes u otros productos que requieren un medio hermético de conservación.

En el corazón de la conservación alimentaría

El acero no aleado, llamado al carbono, requiere una protección contra la corrosión: una capa de zinc y pintura para la carrocería de automóvil, una capa de estaño y barniz para las latas de conserva o de bebidas.

El inox, acero aleado al níquel y al cromo, puede permanecer desnudo: es inalterable en la masa. Platos, cazos, cuberterías.... el acero inoxidable resiste indefinidamente al agua y alos detergentes, es perfectamente sano y no altera ni el sabor ni el color de los alimentos.

Page 43: ACERO FORJADO

En la comunicación

Los componentes electrónicos utilizados en la informática o en las telecomunicaciones, así como los elementos funcionales del tubo de los televisores en colero, son piezas delicadas con exigencias particulares: por ello, se fabrican en aleaciones adaptadas a cada coso.

En la energía

El petróleo y la industria nuclear requieren infraestructuras, equipos y redes de conductos de fluidos muy específicos.

El acero se muestra como un material clave en este mundo que, como las industrias químicas, debe hacer frente a numerosos desafíos: medios altamente corrosivos, altas temperaturas, condiciones mecánicas altamente exigentes.

En la sanidad

Inalterable y perfectamente neutro de cara al los tejidos humanos, el acero inoxidable es idóneo para convertirse en prótesis de cadera, rotulas, tornillos, pacas, bisturís..... Y hasta agujas, que se fabrican a partir de una hoja de acero inoxidable de 0.15 a 0.45 mm de grosor.

RECOMENDACIONES Y CONCLUSIONES:

El acero no es un material nuevo, se ha visto a través de la historia como se logro realizar esta aleación en el siglo XIX .

La fabricación del acero comenzó por accidente ya que los expertos en la materia intentando fabricar hierro calentaron excesivamente la masa y la enfriaron muy rápido obteniendo la aleación del acero en lugar de hierro.

El proceso que se necesita para lograr conseguir el acero y las complicaciones que tiene este proceso que es muy complejo. además las dificultades para lograr los diferentes tipos de acabados que se le pueden dar al acero.

Los sistemas de obtención del acero son muy variados dependiendo de la cantidad del acero a obtener.

La variedad de aceros es muy extensa dependiendo del método de fabricación y la cantidad de carbono que contenga.

Algunos tipos de acero pueden volverse a fundir de forma que contaminan menos al ser reciclados y vueltos a utilizar.

Page 44: ACERO FORJADO

El uso del acero en la construcción es muy importante, ya que este es que le proporciona a las estructuras el refuerzo adicional, por ende es llamado el esqueleto de las estructuras.

La industria sobre el acero es muy extensa y a la vez es de mucha calidad, por eso es uno de los sectores que predomina en nuestro país desde hace mucho tiempo.

Existen hoy cerca de 3000 matices (composiciones químicas) catalogadas, sin contar aquellas que son creadas a media, todo lo cual contribuye a hacer que el acero sea el material mejor situado para afrontar los desafíos del futuro.