final mphil thesis lip cancer latest

123
1 Risk and Treatment Factors for Squamous Cell Carcinoma of the Lip A cohort study from the Radiation Oncology Department, Westmead Hospital Name of Student: Mithilesh Dronavalli Supervisor: Prof. Val Gebski Associate Supervisor: A/Prof. Michael J. Veness Departments: National Health and Medical Research Council Clinical Trial Centre, School of Public Health, Faculty of Medicine, University of Sydney Radiation Oncology Department, Westmead Hospital A thesis submitted in fulfilment of the requirements for the degree of Master of Medical Philosophy in the School of Public Health, Faculty of Medicine at The University of Sydney. August 2011

Upload: dr-mithilesh-dronavalli

Post on 15-Jan-2017

265 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Final Mphil Thesis Lip Cancer Latest

1  

 

Risk  and  Treatment  Factors  for  Squamous  Cell  Carcinoma  

of  the  Lip  

A  cohort  study  from  the  Radiation  Oncology  Department,  Westmead  Hospital  

 

 

Name  of  Student:  Mithilesh  Dronavalli  

Supervisor:  Prof.  Val  Gebski  

Associate  Supervisor:  A/Prof.  Michael  J.  Veness  

Departments:  

• National  Health  and  Medical  Research  Council  Clinical  Trial  Centre,  School  of  

Public  Health,  Faculty  of  Medicine,  University  of  Sydney  

• Radiation  Oncology  Department,  Westmead  Hospital  

A  thesis  submitted  in  fulfilment  of  the  requirements  for  the  degree  of  Master  of  Medical  

Philosophy  in  the  School  of  Public  Health,  Faculty  of  Medicine  at  The  University  of  Sydney.  

August  2011  

 

Page 2: Final Mphil Thesis Lip Cancer Latest

2  

 

Acknowledgements    

I  thank  my  supervisors  for  having  the  patience  and  endurance  to  support  me  

throughout  the  candidature.  I  thank  my  parents  and  mentors  for  their  moral  

support  throughout  the  candidature.  

 

 

 

 

 

 

 

Declaration  

I  declare  that  the  research  presented  here  is  my  own  original  work  and  has  

not  been  submitted  to  any  other  institution  for  the  award  of  a  degree.  

 

Signed:  ……………………………………………………………………………    

 

Date:  ……………………………………………………………………………….  

Page 3: Final Mphil Thesis Lip Cancer Latest

3  

 

Abstract  

Patients  with  lip  cancer  who  have  delayed  treatment  or  for  whom  the  cancer  is  more  

aggressive,  often  have  worse  outcomes.  The  aim  of  this  investigation  was  to  find  the  risk  

and  treatment  factors  for  developing  lip  cancer,  the  recurrence  of  lip  cancer  and  survival.    

This  was  investigated  by  a  review  of  the  literature  and  original  analysis  of  data.    

 

A  summary  of  the  outcomes  regarding  survival  and  recurrence  of  patients  undergoing  

surgery  or  radiotherapy  (or  combination)  was  conducted  to  compare  these  treatments.  

An  original  analysis  of  a  lip  cancer  cohort  dataset  from  the  Department  of  Radiation  

Oncology  at  Westmead  Hospital  was  carried  out.  This  included  univariate  analysis  and  

multivariate  survival  analysis  investigating  time  to  recurrence  and  survival.  Also  

prognostic  risk  models  were  developed  to  classify  patients  into  risk  groups  in  terms  of  

recurrence  and  survival.    

 

 This  investigation  adds  to  the  literature  as  analysis  was  conducted  from  a  time  to  

recurrence  and  survival  perspective  using  survival  analysis,  rather  than  just  by  

investigating  the  occurrence  of  the  event.  Here  information  regarding  the  order  in  which  

events  occurred  is  used  to  make  inferences.  Also  this  study  gives  insight  on  outcomes  of  

patients  with  lip  cancer  who  underwent  surgery  with  adjuvant  radiotherapy,  where  there  

is  limited  information  in  the  literature.  It  should  be  noted  that  there  are  biases  involved  in  

dealing  with  a  cohort  study,  especially  since  patients  were  not  randomised  to  a  

treatment.    

 

In  conclusion  I  have  reported  on  some  significant  findings  regarding  treatment  

comparisons  and  risk  factors  for  lip  cancer.  

 

Page 4: Final Mphil Thesis Lip Cancer Latest

4  

 

Table  of  Contents  

Risk  and  Treatment  Factors  for  Squamous  Cell  Carcinoma  of  the  Lip  ..............................  1  

Tables  ....................................................................................................................................  7  

Figures  .................................................................................................................................  10  

Abbreviations  and  acronyms  ................................................................................................  12  

Literature  review  ..........................................................................................................  15  

Introduction  .........................................................................................................................  15  

TNM,  staging  and  grading  ....................................................................................................  16  

Grading  ................................................................................................................................  18  

Epidemiology  .......................................................................................................................  18  

Risk  factors  ..........................................................................................................................  20  

Sun  exposure  ..........................................................................................................................  20  

Smoking  as  a  risk  factor  for  developing  disease  .....................................................................  23  

Other  risk  factors  for  developing  lip  cancer  ...........................................................................  23  

Progression  of  disease  .........................................................................................................  24  

Treatment  modalities  and  regimens  .....................................................................................  24  

Surgery  ....................................................................................................................................  25  

Radiotherapy  ..........................................................................................................................  27  Summary  of  treatment  outcome  ..........................................................................................  29  

Flowchart  of  articles  ...............................................................................................................  30  

Recurrence  ...........................................................................................................................  35  

Age  ..........................................................................................................................................  36  

Gender  ....................................................................................................................................  37  

Tumour  size  ............................................................................................................................  38  

Histological  grade  ...................................................................................................................  42  

Maximal  tumour  thickness  .....................................................................................................  44  

Site  of  lip  cancer  .....................................................................................................................  47  

Cellular  and  molecular  factors  ................................................................................................  48  

Perineural  invasion  .................................................................................................................  52  

Other  risk  factors  ....................................................................................................................  54  

Survival  and  its  risk  factors  ...................................................................................................  55  

Analysis  of  the  Westmead  lip  cancer  dataset  ................................................................  58  

Page 5: Final Mphil Thesis Lip Cancer Latest

5  

 

Materials  and  methods  ........................................................................................................  58  

Patient  eligibility  ..................................................................................................................  58  

Inclusion  criteria  .....................................................................................................................  59  

Exclusion  criteria  .....................................................................................................................  59  

Treatment  ............................................................................................................................  59  

Methods  ..............................................................................................................................  59  

Methods  of  univariate  analysis  ............................................................................................  60  

Methods  for  adjusted  treatment  effect  ................................................................................  62  

Methods  of  risk  models  ........................................................................................................  62  

Dataset  description  ..............................................................................................................  64  

Results  .........................................................................................................................  67  

Baseline  demographics  ........................................................................................................  67  

Dichotomous  variables  used  in  overall  survival  modelling  .....................................................  68  

Univariate  models  ................................................................................................................  69  

Survival  models  from  diagnosis  ..............................................................................................  69  

Interpretation  of  risk  reduction  ..............................................................................................  70  

Recurrence  models  from  diagnosis  ........................................................................................  74  

Multivariate  analysis  ............................................................................................................  76  

Treatment  comparison:  Patients  treated  with  Sx  vs.  RTx  .......................................................  76  

Treatment  comparison:  Patients  treated  with  Sx  or  Sx+RTx  compared  to  RTx  ......................  79  Treatment  comparison:  Patients  receiving  Sx+RTx  vs.  Sx.  ......................................................  84  

Treatment  comparison:  Patients  receiving  Sx+RTx  vs.  RTx  ....................................................  87  

Risk  modelling  .....................................................................................................................  91  

Survival  model  with  treatment  ...............................................................................................  93  

Survival  model  not  including  treatment  .................................................................................  97  

Recurrence  model  with  treatment  .......................................................................................  101  

Discussion  ..................................................................................................................  105  

Tumour  size  .......................................................................................................................  106  

Age  at  diagnosis  .................................................................................................................  108  Treatment  comparison:  Sx  vs.  RTx  ......................................................................................  109  

Treatment  comparison:  Sx  and  Sx+RTx  vs.  RTx  ...................................................................  111  

Treatment  comparison:  Sx+RTx  vs.  Sx  ................................................................................  112  

Treatment  comparison:  Sx+RTx  vs.  RTx  ..............................................................................  113  

Page 6: Final Mphil Thesis Lip Cancer Latest

6  

 

Risk  models  ........................................................................................................................  114  

Risk  model:  Survival  with  treatment  .....................................................................................  115  

Risk  model:  Survival  without  treatment  ...............................................................................  116  

Risk  model:  Recurrence  with  treatment  ...............................................................................  117  

Conclusion  ..................................................................................................................  118  

Bibliography  ...............................................................................................................  120  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 7: Final Mphil Thesis Lip Cancer Latest

7  

 

Tables  

Table  1  Treatment  outcome  and  treatment  modality  for  each  article  ...................................  31  

Table  2  Summary  of  results  relating  to  loco-­‐regional  control  ................................................  33  

Table  3  Summary  of  results  relating  to  overall  survival  ..........................................................  33  

Table  4  Summary  of  results  relating  to  cause-­‐specific  survival  ..............................................  34  

Table  5  Summary  of  results  relating  to  disease  free  survival  .................................................  34  

Table  6  Summary  of  findings  for  age.  .....................................................................................  36  

Table  7  Summary  of  results  for  tumour  size  ...........................................................................  38  

Table  8  Summary  of  results  for  histological  grade  ..................................................................  42  

Table  9  Summary  of  results  for  maximal  tumour  thickness  ...................................................  44  

Table  10  Summary  of  results  for  site  of  lip  cancer  .................................................................  47  

Table  11  Summary  of  results  for  cellular  and  molecular  factors  ............................................  48  

Table  12  Summary  of  results  for  perineural  invasion  .............................................................  52  

Table  13  Summary  of  results  for  ulcerated  pattern  and  tumour  area  ....................................  54  

Table  14  Risk  factors  predicting  survival  in  lip  cancer  in  one  study  ........................................  57  

Table  15  Treatment  definitions  ..............................................................................................  65  

Table  16  Patient  and  tumour  predictor  definitions  ................................................................  66  

Table  17  Summary  measures  on  age  of  patients  by  treatment  groups  ..................................  67  

Table  18  Baseline  dichotomised  variables  and  all  cause  mortality  .........................................  68  

Table  19  Univariate  results  for  overall  survival  ......................................................................  69  

Table  20  Univariate  results  for  recurrence  modelling  ............................................................  74  

Page 8: Final Mphil Thesis Lip Cancer Latest

8  

 

Table  21  Survival  and  recurrence  models  for  the  treatment  comparison  between  patients  

treated  with  Sx  alone  vs.  RTx  alone  ........................................................................................  76  

Table  22  Survival  and  recurrence  models  for  the  treatment  comparison  between  patients  

treated  with  Sx  alone  or  with  adjuvant  RTx  vs.  RTx  alone  ......................................................  79  

Table  23(a)  Time  dependent  Cox  analysis  at  24  months  ........................................................  82  

Table  23(b)  Summary  of  patients;  based  on  2  yr  survival.  ......................................................  83  

Table  24  Adjusted  survival  and  recurrence  models  for  the  treatment  comparison  between  

patients  receiving  Sx+RTx  vs.  Sx.  .............................................................................................  84  

Table  25  Adjusted  survival  and  recurrence  models  for  the  treatment  comparison  between  

patients  receiving  Sx+RTx  vs.  RTx  ...........................................................................................  87  

Table  26  Time  dependent  Cox  analysis  at  24  months  ............................................................  90  

Table  27  Proportional  hazards  model  for  the  survival  risk  model  including  treatment  

comparison  .............................................................................................................................  93  

Table  28  2x2  table  for  risk  grouping  .......................................................................................  94  

Table  29  Logrank  test  validating  the  risk  group  cut-­‐off  point  .................................................  95  

Table  30  Gronnesby-­‐Borgan  goodness  of  fit  test  ...................................................................  95  

Table  31  May-­‐Hosmer  goodness  of  fit  test  .............................................................................  97  

Table  32  Proportional  hazards  model  for  the  survival  risk  model  excluding  treatment  

comparison  .............................................................................................................................  98  

Table  33  Chi-­‐squared  test  for  risk  grouping  ............................................................................  98  

Table  34  Logrank  test  validating  the  risk  group  cut-­‐off  point  .................................................  99  

Table  35  Gronnesby-­‐Borgan  goodness  of  fit  test  .................................................................  100  

Table  36  May-­‐Hosmer  goodness  of  fit  test  ...........................................................................  100  

Page 9: Final Mphil Thesis Lip Cancer Latest

9  

 

Table  37  Proportional  hazards  model  for  the  recurrence  risk  model  including  treatment  

comparison  ...........................................................................................................................  101  

Table  38  Chi-­‐squared  test  for  risk  grouping  ..........................................................................  102  

Table  39  Logrank  test  for  the  risk  group  cut-­‐off  point.  .........................................................  102  

Table  40  Gronnesby-­‐Borgan  goodness  of  fit  test  .................................................................  104  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 10: Final Mphil Thesis Lip Cancer Latest

10  

 

Figures  

Figure  1  Incidence  rates  in  Asia,  Europe  and  USA  for  lip  cancer.  .......................................  19  

Figure  2  Meyer’s  plasty:  steps  involved  to  excise  a  lesion  ..................................................  26  

Figure  3  Flowchart  of  articles  assessing  treatment  outcomes  for  lip  cancer  ......................  30  

Figure  4  Cumulative  proportion  experiencing  the  event  for  the  tumour  size  as  a  predictor  

of  survival  ............................................................................................................................  72  

Figure  5  Cumulative  proportion  experiencing  the  event  for  the  variable  of  age  (age≥70  

years)  as  a  prognostic  indicator  of  survival  .........................................................................  73  

Figure  6  Cumulative  proportion  experiencing  the  event  for  Sx  alone  vs.  RTx  alone  in  

predicting  overall  survival  ...................................................................................................  77  

Figure  7  Cumulative  proportion  experiencing  the  event  for  Sx  alone  vs.  RTx  alone  in  

predicting  time  to  recurrence.  ............................................................................................  78  

Figure  8  Cumulative  proportion  experiencing  the  event  for  Sx  or  Sx+RTx  vs.  RTx  alone  in  

predicting  survival  ...............................................................................................................  81  

Figure  9  Cumulative  proportion  experiencing  the  event  for  Sx  or  Sx+RTx  vs.  RTx  alone  in  

predicting  recurrence.  ........................................................................................................  83  

Figure  10  Cumulative  proportion  experiencing  the  event  for  Sx+RTx  vs.  Sx  alone  in  

predicting  survival  ...............................................................................................................  85  

Figure  11  Cumulative  proportion  experiencing  recurrence  for  Sx+RTx  vs.  Sx  ....................  86  

Figure  12  Cumulative  proportion  experiencing  the  event  for  Sx+RTx  vs.  RTx  alone  in  

predicting  survival  ...............................................................................................................  89  

Figure  13  Cumulative  proportion  experiencing  the  event  for  Sx+RTx  vs.  RTx  alone  in  

predicting  recurrence  .........................................................................................................  90  

Figure  14  Risk  model  of  survival  for  patients  who  have  been  treated  ...............................  96  

Page 11: Final Mphil Thesis Lip Cancer Latest

11  

 

Figure  15  Risk  model  of  survival  for  patients  diagnosed  and  awaiting  treatment  .............  99  

Figure  16  Risk  model  of  time  to  recurrence  .....................................................................  103  

 

Note:  A  P  value  less  than  P  =  0.05  is  considered  significant  in  this  thesis.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 12: Final Mphil Thesis Lip Cancer Latest

12  

 

Abbreviations  and  acronyms  

Terms  -­‐  Definitions  

   2x2  table  –  Two-­‐by-­‐two  table  

95%CI  -­‐  95%  Confidence  Interval    

ANZ  -­‐  Australia  and  New  Zealand  

BT  -­‐  Brachytherapy  

Cat.  -­‐  Categorical  

cm  -­‐  Centimetres    

cont.  -­‐  Continuous  

corr.  -­‐  Correlation  

CSS  -­‐  Cause  specific  survival  

DFS  -­‐  Disease  free  survival  

Diff  -­‐  Differentiated    

DRR  -­‐  Delayed  regional  recurrence  

EBRT  -­‐  External  beam  radiotherapy  

FUP  -­‐  Followup  

GB-­‐  Gronnesby-­‐Borgan  

HDR  -­‐  High  dose  rate  

HR  -­‐  Hazard  ratio  

KM  -­‐  Kaplan  Meier  

LDR  -­‐  Low  dose  rate  

Page 13: Final Mphil Thesis Lip Cancer Latest

13  

 

LR  -­‐  Local  recurrence  

LRC  -­‐  Locoregional  control  

Mets  -­‐  Metastases  

MH  -­‐  May  and  Hosmer  goodness  of  fit  test  

mm  -­‐  millimetres  

MTT  -­‐  Maximal  tumour  thickness  

No.  -­‐  Number  

NSW  -­‐  New  South  Wales  

OR  -­‐  Odds  ratio  

OS  -­‐  Overall  survival  

PCNA  -­‐  Proliferating  cell  nuclear  antigen  

RCT  -­‐  Randomised  control  trial  

RTx  -­‐  Radiotherapy  

SA  -­‐  South  Australia  

SCC  -­‐  Squamous  cell  carcinoma  

SEER  -­‐  Surveillance,  Epidemiology  and  End  Results  

Sx  -­‐  Surgery  

Sx+RTx  -­‐  Surgery  and  adjuvant  radiotherapy  

TNM  -­‐  Tumour,  node  and  metastasis  

UICC  -­‐  International  union  against  cancer  

USA  –  United  States  of  America  

Page 14: Final Mphil Thesis Lip Cancer Latest

14  

 

UV  –  Ultraviolet  

UVB  -­‐  Ultraviolet  B  

XP  -­‐  Xeroderma  pigmentosum  

yrs  -­‐  Years  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 15: Final Mphil Thesis Lip Cancer Latest

15  

 

Risk  and  Treatment  Factors  for  Squamous  Cell  Carcinoma  of  the  Lip  

A  cohort  study  from  the  Radiation  Oncology  Department,  Westmead  Hospital  

Literature  review  

Introduction  

Lip  cancer  is  a  malignant  neoplasm  of  the  upper  or  lower  lip,  or  commissure  and  

vermillion  border,  or  inner  aspect  of  the  lip  (1)  and  is  classified  according  to  the  

International  Classification  of  Disease  as  140.0-­‐140.9  ICD-­‐9.  In  some  studies  lip  cancer  

accounts  for  up  to  25%  of  oral  cancers  (2)  although,  at  least  in  Australia,  lip  cancer  is  

better  classified  as  a  sun  exposure  induced  cancer  rather  than  a  smoking  related  oral  

cancer.  Lip  cancers  account  for  <5%  of  head  and  neck  cancers  after  excluding  other  non-­‐

melanoma  skin  cancer.(2)  Histologically  90%  of  lip  cancers  are  of  squamous  cell  origin,  

with  the  remaining  10%  comprising  of  basal  cell  carcinoma  and  adenocarcinoma.  In  this  

thesis  I  will  focus  on  squamous  cell  carcinoma  (SCC)  of  the  lip  and  this  is  implied  by  use  of  

the  term  lip  cancer  unless  expressed  otherwise.  

 

Lip  cancer  may  follow  an  indolent  time  course  and  have  a  favourable  outcome  if  treated  

in  a  timely  and  appropriate  fashion,  however  in  a  subset  of  patients  the  cancer  can  be  

aggressive,  with  increased  morbidity  and  mortality  often  associated  with  the  subsequent  

development  of  nodal  metastases.(3)  If  these  patients  are  identified  and  treated  early,  

the  likelihood  of  cure  is  increased.  It  is  therefore  important  to  identify  the  risk  factors  for  

lip  cancer  and  to  investigate  the  effect  of  treatment  options  in  order  to  improve  outcome.  

 

The  objectives  of  this  thesis  are  to  discuss  the  risk  factors  for  lip  cancer  in  terms  of  the  

risk  of  developing  disease,  recurrence  and  survival.  Risk  factors  will  be  presented  as  either  

patient  or  tumour  factors.  Treatment  factors  for  prognosis  will  also  be  investigated.    

Page 16: Final Mphil Thesis Lip Cancer Latest

16  

 

The  risk  factors  for  developing  lip  cancer,  recurrence  and  predicting  survival  are  discussed  

in  the  first  chapter.  Treatment  comparisons  between  radiotherapy  (RTx),  surgery  (Sx)  and  

surgery  and  adjuvant  radiotherapy  (Sx+RTx)  are  also  investigated  and  presented  in  

Chapter  1.  In  Chapter  2,  risk  factors  for  recurrence  and  survival  are  examined  via  a  series  

of  survival  analyses,  both  univariate  and  multivariate.  Treatment  comparisons  are  

assessed  univariately  and  adjusted  for  confounding  variables,  and  risk  models  were  

developed  in  order  to  assess  the  risk  of  recurrence  and  survival.  Risk  models  were  

constructed  to  classify  patients  into  risk  groups  based  on  baseline  risk  (patient  and  

tumour  factors  only)  and  post  treatment  risk  (patient,  tumour  and  treatment  factors).  

 

This  study  aims  to  provide  a  model  that  could  aid  the  understanding  of  the  factors  

involved  in  lip  cancer,  and  the  effect  of  different  treatment  options  on  recurrence  and  

survival.  However,  this  study  has  inherent  selection  and  referral  bias,  which  will  be  

discussed  later,  and  can  therefore  not  be  expected  to  provide  a  high  level  of  evidence.  

Note  that  to  my  knowledge  there  have  been  no  published  randomised  control  trials  

(RCTs)  on  lip  cancer.  

 

TNM,  staging  and  grading  

The  following  is  a  summary  of  the  Tumour,  Node  and  Metastasis  (TNM)  classification  for  

lip  cancer  from  the  International  Union  against  Cancer  (UICC).(4)  

 

I.  Codes  describing  the  tumour    

TX:  primary  tumour  cannot  be  assessed    

T0:  no  evidence  of  primary  tumour    

Tis:  carcinoma  in  situ    

T1:  tumour  less  than  2  centimetres  (cm)  in  greatest  dimension    

Page 17: Final Mphil Thesis Lip Cancer Latest

17  

 

T2:  tumour  more  than  2  cm  but  not  more  than  4  cm  in  greatest  dimension    

T3:  tumour  more  than  4  cm  in  greatest  dimension    

T4:  tumour  invades  adjacent  structures  (mandible,  tongue  musculature,  maxillary  sinus,  

skin)    

 

II.  Codes  describing  nodal  involvement    

NX:  regional  lymph  nodes  cannot  be  assessed  

N0:  no  regional  lymph  node  metastasis    

N1:  metastasis  in  a  single  ipsilateral  lymph  node,  less  than  3  cm  in  greatest  dimension  

N2a:  metastasis  in  a  single  ipsilateral  lymph  node,  more  than  3  cm  but  not  more  than  6  

cm  in  greatest  dimension    

N2b:  metastasis  in  multiple  ipsilateral  lymph  nodes,  none  more  than  6  cm  in  greatest  

dimension    

N2c:  metastasis  in  bilateral  or  contralateral  lymph  nodes,  none  more  than  6  cm  in  

greatest  dimension    

N3:  metastasis  in  a  lymph  node,  more  than  6  cm  in  greatest  dimension  

 

III.  Codes  describing  metastasis    

M0:  no  distant  metastasis  

M1:  distant  metastasis  

 

IV.  Stage  Grouping    

Stage  I:  T1N0M0    

Page 18: Final Mphil Thesis Lip Cancer Latest

18  

 

Stage  II:  T2N0M0    

Stage  III:  T3N0M0;  T1  or  T2  or  T3N1M0    

Stage  IV:  T4N0  or  N1M0;  Any  T,  N2,  or  N3M0;  Any  T,  any  N,  M1  

 

Grading  

The  Broder’s  grading  system  (5)  is  the  main  system  used  in  lip  cancer  studies  to  assess  

histological  grading  of  tumour  specimens.  This  system  categorises  tumours  according  to  

well,  moderate  and  poor  differentiation.  The  potential  weakness  with  this  system  is  that  

the  degree  of  differentiation  may  vary  across  any  surgical  specimen.(6)  However,  some  

studies  have  shown  correlation  between  tumour  grading  and  prognosis.    

 

In  contrast,  the  Anneroth  and  Jacobson  system  includes  the  degree  of  keratinisation,  

polymorphism,  mitoses,  inflammatory  infiltration  and  mode  of  invasion.  These  5  factors  

are  graded  out  of  4  and  total  scores  are  divided  into  grade  I  (0-­‐4),  grade  II  (5-­‐10),  grade  III  

(11-­‐15)  and  grade  IV  (16-­‐20).(7)  

 

These  two  systems  are  mentioned  here,  as  when  discussing  later  articles,  histological  

grading  will  be  assessed  via  these  two  systems.  

 

Epidemiology  

The  epidemiology  of  lip  cancer  is  investigated  here  from  both  an  Australian  and  

international  perspective.  In  Australia  one  large  study  in  the  literature  reporting  the  

epidemiology  of  lip  cancer  was  undertaken  in  South  Australia  (SA).    

 

Page 19: Final Mphil Thesis Lip Cancer Latest

19  

 

The  age-­‐standardised  incidence  of  lip  cancer  in  SA  between  1976  -­‐  1996  was  15/100,000  

in  males  and  4/100,000  in  females.(8)  The  authors  considered  this  very  high  on  a  global  

scale.  Over  the  follow  up  period  there  were  2095  (77.1%)  males  and  621  (22.9%)  females  

presenting  with  lip  cancer  (8)  and  as  of  June  2005  there  were  1.54  million  residents  in  

SA.(9)  The  average  age  for  diagnosis  was  58.3  yrs  in  males  and  66.0  yrs  in  females.(10)  

The  sun  exposed  lower  lip  was  the  most  common  site  (72.5%  lower  lip  vs.  7.7%  upper  lip  

vs.  19.8%  remaining).(8)  New  South  Wales  (NSW)  has  a  much  lower  incidence  in  line  with  

global  rates  at  3.8/100,000  for  males  and  1.5/100,000  for  females  during  2005.(10)  

 

Figure  1  Incidence  rates  in  Asia,  Europe  and  USA  for  lip  cancer.  

Figure  courtesy  of  Yako-­‐Suketomo  et  al,  2008  (11)  

Page 20: Final Mphil Thesis Lip Cancer Latest

20  

 

In  Figure  1  the  contrasting  trends  in  the  incidence  of  lip  cancer  in  Asia,  Europe  and  the  

United  States  of  America  (USA)  can  be  seen.  The  incidence  has  been  falling  in  those  

countries  with  the  incidence  higher  than  2/100,000  at  1973  in  parts  of  England,  Italy,  and  

Denmark  and  in  white  Americans.  Since  the  1970s  there  has  been  a  marked  decrease  in  

the  incidence  of  lip  cancer  in  many  countries  as  a  consequence  of  a  better  awareness  of  

smoking  and  UV  exposure  as  causes  for  lip  cancer.  The  East  Asian  locations  studied  all  

have  a  low  incidence  of  lip  cancer.  Also  black  Americans  have  a  much  lower  incidence  

than  white  Americans,  likely  due  to  the  increased  melanin  found  in  dark  skin  that  is  UV  

protective.  

 

Risk  factors  

The  risk  factors  for  developing  lip  cancer  can  be  defined  as  environmental,  behavioural  or  

endogenous.  Environmental  risk  factors  consist  of  ultraviolet  (UV)  sunlight  exposure  and  

rural  residence.  Behavioural  risk  factors  include  smoking  (including  pipe  smoking  in  

particular),  occupation,  alcohol  consumption,  socioeconomic  status  and  viral  infections  

(e.g.  human  papilloma  virus).  Endogenous  factors  include  familial  and  genetic  

predisposition,  immunosuppression  and  immunodeficiency.  Race  and  cultural  practices  

are  other  risk  factors.  

 

Sun  exposure  

Sunlight  exposure  is  a  major  risk  factor  in  developing  lip  cancer  in  Australia,  and  is  a  result  

of  a  cumulative  lifetime  exposure  to  sunlight.  UVB  (wavelength  of  290-­‐320nm)  is  the  key  

exposure  attributed  to  lip  cancer.  UVB  radiation  induces  mutational  changes  in  the  DNA  

that  can  lead  to  cancerous  growth.  In  particular  the  p53  tumour  suppressor  gene  that  

would  otherwise  terminate  cancerous  growth  is  mutated  and  rendered  ineffective.(12)  

Risk  of  lip  cancer  associated  to  sunlight  exposure  is  influenced  by  outdoor  exposure,  fair  

skin  (fair  skin  has  a  lack  of  melanin  which  protects  against  UVB),  increasing  age  (lifetime  

sun  exposure),  gender  (males  associated  with  higher  outdoor  exposure),  use  of  sun  

Page 21: Final Mphil Thesis Lip Cancer Latest

21  

 

protection  and  rural-­‐urban  divide  and  cultural  practices.(12)  In  SA  over  the  period  of  

1996-­‐1997  the  incidence  in  rural  areas  was  12.3/100  000,  compared  to  5.9/100  000  in  

metropolitan  Adelaide.(13)  This  is  likely  to  be  due  to  increased  outdoor  sun  exposure  for  

the  rural  population  living  in  SA.    

 

Lip  cancer  has  a  higher  incidence  in  men  than  in  women,  which  was  seen  in  both  the  SA  

and  NSW  studies.(8,  10)  Other  countries,  like  the  USA  (14)  and  Greece  (15)  confirm  a  

similar  trend,  which  has  been  attributed  to  higher  exposure  of  men  than  women  to  UVB,  

as  well  as  other  carcinogens,  such  as  cigarette  smoke.    

 

For  example,  in  Greece,  the  male:  female  ratio  was  9.2:1  for  lip  cancer,  which  was  

attributed  to  women  mostly  staying  in  an  indoor  environment  compared  to  men.  Females  

when  working  outdoors  used  a  covering  for  their  face  and  men  generally  did  not.  Also  

they  noted  that  the  diagnosis  of  lip  cancer  occurred  on  average,  11.2  yrs  later  in  females  

than  males.  At  the  time  of  the  study,  the  incidence  of  smoking  in  females  was  much  lower  

than  in  males.  Furthermore,  in  the  897  patients  of  the  study  80%  were  from  a  rural  area.  

Rural  residents  doing  agricultural  work  would  have  had  more  sun  exposure  then  their  

urban  counterparts.  Recently  the  overall  incidence  of  lip  cancer  has  reduced  in  Greece  

with  increased  public  awareness,  decreased  pipe  smoking,  decreased  outdoor  workers  

and  the  rural-­‐urban  drift.(15)  

 

In  a  USA  study  of  lip  cancer  African-­‐Americans  comprised  only  7%  of  the  study,  which  

suggests  a  low  incidence  of  lip  cancer  in  this  race.(16)  Furthermore  in  Figure  1  from  the  

Surveillance,  Epidemiology  and  End  Results  (SEER)  study  the  incidence  was  higher  among  

white  Americans  compared  to  African-­‐Americans.  African-­‐Americans  have  significantly  

more  melanin  in  their  skin  than  the  white  population  so  they  are  likely  more  protected  

against  UV  light  and  developing  skin  cancer.(17)  Among  African-­‐Americans  and  white  

Americans  living  in  the  same  area  and  assumedly  receiving  similar  UV  exposure,  African-­‐

Page 22: Final Mphil Thesis Lip Cancer Latest

22  

 

Americans  have  a  lower  incidence  of  lip  cancer.  Therefore,  this  likely  implies  that  the  

protection  by  melanin  from  the  damaging  effects  of  UVB  results  in  a  lower  incidence  of  lip  

cancer  among  African-­‐Americans.  

 

There  has  been  a  case  study  of  a  15-­‐year-­‐old  patient  with  xeroderma  pigmentosum  (XP)  

diagnosed  with  lip  cancer.(18)  XP  is  a  rare  genetic  disorder  where  there  is  a  deficiency  in  

the  ability  to  repair  DNA  mutations  induced  by  UV  light.  This  further  adds  to  the  evidence  

that  sun-­‐exposure  is  a  risk  factor  for  the  development  lip  cancer.  This  is  because  if  lip  

cancer  is  triggered  by  mutations  induced  by  UV  exposure  then  those  with  XP  due  to  their  

deficiency  in  repairing  such  mutations  can  develop  both  skin  cancer  and  also  lip  cancer  at  

a  much  younger  age.  

 

Lip  cancer  affects  mainly  older  patients,  with  only  97  of  a  cohort  of  1038  (7%)  patients  

aged  under  40  years  old.(19)  Of  these  97  patients,  63  reported  prolonged  sun  exposure  

based  in  their  work  environment.  Cumulative  sun  exposure  increases  with  age  and  

therefore  patients  under  the  age  of  40  generally  have  a  lower  incidence  of  lip  cancer.  

However  these  particular  young  patients  may  have  developed  lip  cancer  in  part  due  to  

excessive  sun  exposure  that  they  experienced.  The  mean  age  for  developing  lip  cancer  

was  above  58  for  both  sexes  in  one  study  supporting  this  disease  occurring  in  older  

patients.(10)  Another  study  also  reported  only  14  patients  out  of  223  below  the  age  of  50  

(6.3%).(20)  Lip  cancer  can  therefore  be  considered  a  cancer  of  patients  in  their  60  -­‐  70’s.  

 

Fabbrocini  et  al.,  2000  (21)  noted  that  p53  expression  was  elevated  in  lip  cancer  

specimens  compared  to  samples  of  the  lip  from  non-­‐cancer  controls  (Lip  cancer:  50%,  

control:  20%).  This  is  an  important  observation  because  p53  expression  increases  in  

chronically  UV  exposed  areas  that  develop  lip  cancer.  As  this  is  an  observational  study  (a  

snapshot),  we  cannot  say  whether  the  controls  will  go  on  to  develop  lip  cancer  with  time.  

This  finding  is  unlikely  to  aid  clinicians  in  treating  lip  cancer  as  diagnosis  is  made  on  

Page 23: Final Mphil Thesis Lip Cancer Latest

23  

 

clinical  presentation  and  histological  findings  and  not  by  p53  expression.  Currently  

biopsies  are  not  done  on  at  risk  individuals  as  a  screening  tool  to  assess  p53  expression.  

This  study  particularly  did  not  add  support  to  using  p53  as  a  screening  tool  as  it  is  not  a  

cohort  study  that  investigates  cause  and  effect  over  time.    

 

Smoking  as  a  risk  factor  for  developing  disease  

Lip  cancer  is  strongly  associated  with  smoking  in  some  studies  in  some  countries,  in  

particular  pipe  smoking.(2)  This  may  be  due  to  the  local  toxicity  of  smoking.  Smoking  has  

also  been  linked  with  lung  cancer  (22)  and  the  rates  of  lung  cancer  are  reported  to  be  

higher  in  lip  cancer  patients  than  in  the  general  population.(12)  Therefore,  smoking  has  

causality  with  both  lip  cancer  and  lung  cancer.  

 

In  the  previously  mentioned  study  of  patients  below  40  years  of  age,  78  out  of  97  patients  

used  tobacco  (80.4%)  a  prevalence  much  higher  than  the  general  population.(19)  This  

implies  that  those  aged  below  40  years,  who  had  less  lifetime  sun  exposure,  developed  lip  

cancer  possibly  due  to  the  damaging  effect  of  smoking.  

 

Other  risk  factors  for  developing  lip  cancer  

The  less  common  risk  factors  of  immunosuppression  or  immunodeficiency  are  important  

to  consider  and  are  particularly  relevant  to  the  younger  population.  Many  cases  are  

reported  in  young  patients  who  have  had  renal  transplants  and  due  to  the  anti-­‐rejection  

medication  are  immunosuppressed.(23)  In  these  patients  the  cancer  is  often  more  

biologically  aggressive  due  to  host  susceptibility.    

 

A  study  of  renal  transplant  recipients  identified  age,  time  since  transplant,  current  use  of  

azathioprine,  cyclosporine,  male  sex  and  birthplace  outside  Australia  and  New  Zealand  

Page 24: Final Mphil Thesis Lip Cancer Latest

24  

 

(ANZ)  to  be  significantly  associated  with  an  increased  incidence  of  lip  cancer.(23)  The  data  

was  obtained  from  the  ANZ  Transplant  Registry  between  1982  and  2003  with  a  sample  

size  of  8162  renal  transplant  patients.  The  variables  of  interest  are  the  

immunosuppressant  agents  and  time  since  transplant  as  they  reflect  the  degree  of  

immunosuppression  in  the  patient.  

   

In  other  studies  increased  alcohol  consumption  was  also  associated  with  lip  cancer  (21)  as  

was  low  education  level.(24)  The  hypothesis  being  that  a  low  education  level  could  be  

associated  with  heavy  outdoor  work  and  increased  sun-­‐exposure  and  also  an  increased  

prevalence  of  smoking.  

 

Progression  of  disease  

The  clinical  precursors  to  lip  cancer  predominantly  are  leukoplakia,  hyperkeratosis,  and  

actinic  changes  and  are  related  to  sun  exposure.(25,  26)  The  initial  presentation  is  

variable  but  may  be  that  of  an  ulcer,  usually  of  the  lower  lip,  that  fails  to  heal  and  

gradually  increases  in  size  and  thickness.  Pain  is  often  not  an  issue  with  the  patient.  Only  

a  small  proportion  (5-­‐10%)  will  actually  present  with  concomitant  upper  neck  

lymphadenopathy  from  metastatic  spread.  Instead  subsequent  nodal  relapse  is  the  most  

common  scenario  for  nodal  metastasis.  

 

Treatment  modalities  and  regimens  

There  are  various  treatment  options  available  to  a  patient  diagnosed  with  lip  cancer  in  its  

different  presentations.  Standard  treatment  recommendation  is  either  RTx  or  Sx.  Post  

operative  (or  adjuvant)  RTx  after  Sx  is  also  prescribed,  especially  where  the  margins  of  

excision  are  close  or  positive.(27)  There  are  various  operations  utilised  and  these  depend  

on  the  size  of  the  tumour  and  its  localisation,  as  well  as  patient,  surgeon  and  institute  

preferences.  There  are  also  various  RTx  modalities,  which  include  orthovoltage,  

megavoltage  (external  beam  radiotherapy  [EBRT])  and  brachytherapy  (BT).  BT  may  be  

Page 25: Final Mphil Thesis Lip Cancer Latest

25  

 

delivered  as  either  low  dose  rate  (LDR)  or  high  dose  rate  (HDR)  BT,  which  specifies  the  

rate  of  radiation  administered.  All  these  treatment  options  will  be  described  with  a  

discussion  of  various  treatment  regimens  currently  utilised.    

 

Surgery  

Superficial  lip  cancer  with  maximal  tumour  thickness  (MTT)  less  than  3  millimetres  (mm)  

and  also  the  pre-­‐malignant  condition  of  actinic  cheilitis  may  be  indications  for  

vermilionectomy.  Actinic  cheilitis  has  a  probability  of  developing  into  lip  cancer  if  left  

untreated.(25)  Vermilionectomy  is  the  excision  of  the  vermilion  surface  of  the  lip  and  is  

commonly  referred  to  as  a  lip  shave.    

 

For  lesions  measuring  approximately  2  cm  or  less  in  maximum  dimension,  the  most  

efficacious  resection  is  a  “V”  shaped  wedge  excision  and  primary  closure.  Here  the  

excision  is  in  a  V  shape  around  the  lesion  and  closure  is  performed  on  the  two  edges.  If  

the  V  excision  approaches  the  mental  crease,  then  a  “W”  excision  is  performed  using  the  

same  principles.  Margins  of  5  to  7  mm  are  recommended,  with  a  total  resection  

achievable  of  approximately  one-­‐third  of  the  lower  lip.    

 

There  are  other  more  sophisticated  and  complex  lip  cancer  operations  including  the  Abbe  

method  and  the  Estlander  method.  These  operations  are  undertaken  when  the  excision  

defect  is  30  to  65%  of  the  lip.  For  defects  larger  than  65%  there  is  the  Bernard-­‐Freeman-­‐

Fries  method.  These  methods  leave  very  little  of  the  lower  lip  remaining  (1.5  cm)  and  

therefore,  reconstruction  using  various  flaps  are  utilised,  such  as  the  radial  forearm-­‐

palmaris  longus  tendon  flap.(28)  This  flap  can  be  used  when  the  expected  defect  is  

greater  than  80%  of  the  lower  lip.  An  improved  flap  for  this  situation  is  the  anterolateral  

thigh  flap,  which  has  an  inconspicuous  scar  compared  to  the  forearm  and  it  is  then  

unnecessary  to  sacrifice  one  of  the  two  arteries  of  the  hand.(28)  

Page 26: Final Mphil Thesis Lip Cancer Latest

26  

 

One  consequence  of  many,  but  not  all  operations,  apart  from  poor  cosmesis,  is  

microstomia  where  the  oral  opening  is  reduced.  This  is  especially  a  problem  when  a  

patient  has  dentures  fitted.(25)  

 

A  further  operation  is  Meyer’s  plasty.  This  operation  can  be  used  for  defects  up  to  80%  

and  does  not  require  a  flap  (see  Figure  2).  In  this  method,  cosmesis  was  reported  as  

acceptable  in  87%  patients  with  100%  local  control  in  one  small  study.(29)  

 

Figure  2  Meyer’s  plasty:  steps  involved  to  excise  a  lesion    

a  Tumour.  b  Tumour  excision.  c  Commissuroplasty:  triangular  cutaneous  excision.                            

d  Mucosal  flap  incision  and  lower  lip  closure,  blue  arrows.  e  Eversed  mucosal  flap,  yellow  

arrows.  f  End  result  with  scars  along  the  white  line  and  labiomental  crease  

Figure  courtesy  of  Jaquet  et  al,  2005  (29)  

 

Page 27: Final Mphil Thesis Lip Cancer Latest

27  

 

Other  operations  include  using  double  free  flaps  (30)  for  increased  mobility.  Some  

clinicians  recommend  Sx  as  the  best  option  since  the  margin  status  of  the  excision  can  be  

assessed  and  a  detailed  histological  examination  can  be  performed.(31)  However  the  

functional  and  cosmetic  outcome  of  any  operation  must  always  be  taken  into  

consideration.  Patients  are  often  elderly  and  when  given  the  option  some  patients  may  

also  elect  a  non-­‐surgical  treatment.  Patients  may  also  have  medical  co-­‐morbidity  that  

precludes  Sx.  

 

Radiotherapy  

RTx  offers  a  non-­‐surgical  option  for  treating  patients  with  lip  cancer.  The  mainstay  of  RTx  

to  treat  lip  cancer  is  orthovoltage  energy  photons.  RTx  is  a  weekday  out  patient  

treatment  taking  10-­‐15  minutes  to  deliver.  Typical  treatments  extend  over  2-­‐6  weeks  (10-­‐

30  treatments).  Shorter  treatments  are  often  considered  in  older  sicker  patients.  Various  

dose  schedules  are  also  used  with  one  study  reporting  17  daily  fractions  of  300  centi-­‐Gray  

(cGy)  over  4  weeks  of  orthovoltage  as  biologically  equivalent  to  6000cGy  in  30  daily  

fractions  of  200  cGy  each,  5  times  per  week,  for  6  weeks  of  megavoltage  therapy.  This  is  

also  equivalent  to  an  implant  used  in  BT  of  6000cGy  with  a  LDR  of  40-­‐80  cGy/hr.  This  

equivalence  is  in  terms  of  radiobiological  equivalence  of  dose.(32)  

 

BT  is  less  commonly  used  in  Australia  in  treating  patients  non-­‐surgically.  However  when  

used,  one  approach  uses  radioactive  iridium-­‐192  wires  with  3  wires  inserted  in  a  

triangular  fashion  with  the  dose  rate  pre-­‐calculated  before  treatment.  The  mean  

calculated  dose  in  one  study  was  63.54  cGy/hour.(32)  The  total  dose  varied  between  

6000-­‐7000  cGy  for  this  study,  with  treatment  completed  in  3  to  7  days.  The  wire  pierces  

the  tumour  and  the  surrounding  lip  to  deliver  radiation  directly  to  the  tumour.  The  

procedure  is  usually  carried  out  under  local  anaesthetic  with  the  patients  spending  3-­‐5  

days  in  a  radio-­‐protective  room  for  LDR  BT.    

Page 28: Final Mphil Thesis Lip Cancer Latest

28  

 

An  accepted  advantage  of  RTx  is  that  it  does  not  require  the  tumour  to  be  excised  and  

hence  may  result  in  better  cosmesis  and  functional  outcomes  compared  to  Sx.  This  is  

especially  true  in  larger  lesions  where  a  significant  amount  of  the  lip  may  need  to  be  

resected.  The  choice  between  EBRT  and  BT  is  based  on  physician  and  patient  preferences  

and  what  is  available  at  the  treating  institution,  however,  few  centres  in  Australia  use  BT  

for  treating  lip  cancer.  

 

Deeply  infiltrating  tumours  where  surgical  margins  are  ill-­‐defined,  may  make  simple  

excision  difficult  and  it  is  these  cases  where  Sx  is  less  ideal.  A  more  extensive  surgical  

approach  may  lead  to  less  than  ideal  cosmetic  and  functional  results.  In  such  patients  

there  is  a  reasonable  likelihood  that  adjuvant  RTx  will  be  recommended,  as  surgical  

margins  are  often  close  or  positive.  

 

For  patients  with  large  tumours  and  for  whom  Sx  is  not  advisable,  or  those  who  would  

have  poor  functional  outcome,  RTx  is  often  recommended.  This  often  means  RTx  treated  

patients  in  many  observational  studies  have  more  advanced  disease  possibly  leading  to  a  

selection  bias  when  reporting  results.(33)  

 

Patients  treated  with  RTx  usually  tolerate  their  treatment  well,  even  older  patients.  When  

treating  the  lip,  EBRT  irradiates  a  relatively  small  volume  of  surrounding  normal  tissue,  

which  usually  leads  to  symptomatic  local  mucocutaneous  reactions.  However  these  

reactions  are  localised  and  usually  resolve  in  4-­‐6  weeks  following  completion  of  

treatment.  Systemic  side  effects  are  negligible.  Late  side  effects  are  limited  to  the  

irradiated  lip  and  many  include  hypo/hyperpigmentation  of  the  lip  and  skin  with  

associated  epithelial  atrophy.  Serious  late  effects  are  rare.    

 

Page 29: Final Mphil Thesis Lip Cancer Latest

29  

 

Summary  of  treatment  outcome  

Various  studies  have  reported  treatment  outcomes  following  Sx  or  RTx  for  patients  with  

lip  cancer.  The  outcome  measures  from  these  studies  include  loco-­‐regional  control  (LRC),  

overall  survival  (OS),  cause  specific  survival  (CSS)  and  disease  free  survival  (DFS).    

 

LRC  is  defined  as  the  percentage  of  lip  cancer  patients  that  did  not  relapse  either  locally  in  

the  lip  or  regionally  to  the  nodes.  DFS  refers  to  the  percentage  of  the  cohort  that  did  not  

relapse  locally,  regionally,  distantly  or  develop  a  second  primary.  DFS  and  LRC  differ  in  

that  a  metastasis  to  a  distant  site  is  counted  in  DFS  where  it  is  not  counted  in  LRC.  

 

OS  is  the  percentage  of  the  cohort  surviving,  i.e.  not  dying  of  any  cause.  CSS  or  

determinate  survival  is  calculated  using  various  methods  but  refers  to  the  percentage  of  

the  cohort  who  have  not  died  due  to  the  disease.  

 

This  section  of  the  thesis  aims  to  summarise  treatment  results  and  make  comparisons  

between  different  treatments.  There  are  various  weaknesses  in  many  retrospective  

studies  noting  that  as  most  studies  do  not  have  two  treatment  groups  for  direct  

comparison  but  often  just  describe  the  outcome  of  either  Sx  or  RTx  as  a  single  modality  

treatment.    

 

Following  a  literature  review  articles  were  selected  from  the  main  medical  databases  

(PubMed,  Science  Direct  and  Embase,  etc.).  The  search  criteria  was  as  follows:  Lip  AND  

(Carcinomas  or  Cancer  or  SCC  or  Neoplasm)  AND  (survival  or  patients  or  cases).  All  

abstracts  were  deidentified  and  had  the  results  removed  by  an  external  researcher.  I  

excluded  all  non-­‐related  articles  and  sent  this  list  to  my  supervisor  who  checked  if  any  of  

them  should  be  re-­‐included.  From  this  selection  process  76  articles  remained.  The  

flowchart  of  included  articles  is  presented  in  Figure  3.  

Page 30: Final Mphil Thesis Lip Cancer Latest

30  

 

76  articles  Identified  

56  articles  remaining  

49  articles  remaining  

35  articles  remaining  

24  articles  on  

Sx  

15  articles  on  

RTx  

6  articles  on  Sx+RTx  

7  articles  on  BT  

 

20  articles  excluded  (see  below  *)    

7  articles  had  no  data  in  required  format  (i.e.  LRC,  OS,  CSS,  DFS)    

8  articles  had  only  non-­‐treatment  specific  data    41  articles  

remaining    

6  articles  had  no  5-­‐year  data  available    

Outcome  

LRC  –  10  

OS  -­‐  15  

CSS  –  10  

DFS  -­‐  6  

Outcome  

LRC  –  6  

OS  -­‐  10  

CSS  –  3  

DFS  -­‐  4  

Outcome  

LRC  –  4  

OS  -­‐  2  

CSS  –  0  

DFS  -­‐  0  

Outcome  

LRC  –  7  

OS  -­‐  5  

CSS  –  2  

DFS  -­‐  4  

Flowchart  of  articles  

 

 

   

 

 

   

 

 

 

 

 

 

 

 

Figure  3  Flowchart  of  articles  assessing  treatment  outcomes  for  lip  cancer  

*4  had  no  lip  specific  data  (only  oral),  2  epidemiological  studies  without  usable  data,  1  basal  cell  carcinoma,  6  advanced  

disease  but  not  at  primary  presentation,  1  review  article  without  original  data,  1  site  other  than  lip,  2  duplicate  or  

obsolete  studies,  1  chemotherapy  only,  2  abstracts  with  no  data  (of  which  1  article  was  in  foreign  language  with  an  

English  abstract)  (total  20).  Sx:  Surgery;  RTx:  Radiotherapy;  Sx+RTx:  Surgery  and  adjuvant  radiotherapy;  BT:  

Brachytherapy;  LRC:  Locoregional  Control;  OS:  Overall  Survival;  CSS:  Cause  Specific  Survival;  DFS:  Disease  Free  Survival  

Of  the  35  articles  remaining  in  Figure  3  many  reported  more  than  one  outcome  and  some  

articles  reported  on  more  than  one  treatment  also.  In  Table  1  the  outcomes  reported  and  

treatments  used  are  listed  with  the  years  of  study.  

Page 31: Final Mphil Thesis Lip Cancer Latest

31  

 

Table  1  Treatment  outcome  and  treatment  modality  for  each  article  

Title   Reference     Years  of  Study  

       n   OS   DFS   CSS   LRC   Brachy-­‐  therapy  

Sx   RTx   Sx+RTx  

A  comparison  of  results  after  radiotherapy  and  surgery  for  stage  I  squamous  cell  carcinoma  of  the  lower  lip  

de  Visscher  et  al,  1999  (34)   1980-­‐1994   256   Yes   Yes   No   No   No   Yes   Yes   No  

A  study  of  squamous  cell  carcinoma  of  the  lip  at  West  Virginia  University  Hospitals  from  1980-­‐2000  

Wilson  et  al,  2005  (35)   1980-­‐2000   52   No   No   No   Yes   No   Yes   No   Yes  

Brachytherapy  for  lower  lip  epidermoid  cancer  tumoral  and  treatment  factors  influencing  recurrences  and  complications  

Beauvois  et  al,  1994  (36)   1972-­‐1991   237   Yes   No   Yes   Yes   Yes   No   No   No  

Brachytherapy  for  squamous  cell  carcinoma  of  the  lip  

Tombolini  et  al,  1998  (37)   1970-­‐1992   57   Yes   Yes   No   Yes   Yes   No   No   No  

Cancer  of  the  lips  Results  of  the  treatment  of  299  patients  

Cowen  et  al,  1990  (38)   1970-­‐1985   299   No   No   No   Yes   Yes   No   No   No  

Carcinoma  of  the  lip   Heller  et  al,  1979  (39)  

1955-­‐1969   171   Yes   No   Yes   Yes   No   Yes   No   No  

Carcinoma  of  the  lip   Petrovich  et  al,  1979  (40)  

1945-­‐1975   250   Yes   No   No   Yes   No   No   Yes   No  

Choice  of  the  treatment  for  lip  carcinoma–an  analysis  on  74  cases  

Wu  et  al,  1985  (41)  

1958-­‐1974   74   Yes   No   No   No   No   Yes   Yes   No  

Critical  review  of  121  squamous  cell  epitheliomas  of  the  lip  

Giuliani  et  al,  1989  (42)  

1974-­‐1986   121   Yes   Yes   No   Yes   No   Yes   No   No  

Curative  radiotherapy  for  early  cancers  of  the  lip,  buccal  mucosa,  and  nose–a  simple  interstitial  brachytherapy  

Ngan  et  al,  2005  (43)  

1996-­‐2004   13   Yes   Yes   Yes   Yes   Yes   No   No   No  

Effectiveness  of  brachytherapy  in  the  treatment  of  lip  cancer  a  retro  at  the  Istanbul  university  oncology  institute  

Aslay  et  al,  2005  (44)  

1988-­‐2003   41   Yes   Yes   No   Yes   Yes   No   No   No  

Interstitial  brachytherapy  for  carcinomas  of  the  lower  lip  Results  of  treatment  

Orecchia  et  al,  1991  (45)   1973-­‐1988   47   Yes   Yes   No   Yes   Yes   No   No   No  

Lip  cancer  experience  in  Mexico.  An  11-­‐year  retrospective  study  

Luna-­‐Ortiz  et  al,  2004  (46)   1990-­‐2000   113   Yes   No   No   No   No   Yes   Yes   No  

Long  term  results  in  treating  squamous  cell  carcinoma  of  the  lip,  oral  cavity  and  orophar  

Hemprich  et  al,  1989  (47)   15  years   352   Yes   No   No   No   No   No   Yes   No  

Lymph-­‐node  metastasis  in  squamous  cell  carcinoma  of  the  lip  

Califano  et  al,  1994  (48)  

1975-­‐1987   105   Yes   No   Yes   No   No   Yes   No   No  

Management  of  lower  lip  cancer  a  retrospective  analysis  of  118  patients  and  review  of  the  literature  

Bilkay  et  al,  2003  (18)   1983-­‐1999   118   Yes   No   Yes   Yes   No   Yes   No   No  

n:  number  of  patients  in  study,  OS:  Overall  survival,  DFS:  Disease  free  survival,  CSS:  Cause  

specific  Survival,  LRC:  Loco-­‐regional  control,  Sx+RTx:  Surgery  and  adjuvant  radiotherapy    

 

Page 32: Final Mphil Thesis Lip Cancer Latest

32  

 

Title   Reference     Years  of  Study   n   OS   DFS   CSS   LRC   Brachy-­‐  therapy   Sx   RTx   Sx+RTx  

Meyer’s  surgical  procedure  for  the  treatment  of  lip  carcinoma  

Jaquet  et  al,  2005  (29)   1983-­‐2001   24   Yes   No   Yes   Yes   No   Yes   No   No  

Oncologic  aspects  of  the  vermilionectomy  in  squamous  cell  carcinoma  of  the  lower  lip  abstract  

van  der  Wal  et  al,  1996  (49)  

1985-­‐1992   14   No   No   No   Yes   No   Yes   No   No  

Outcome  analysis  for  lip  carcinoma  

Zitsch  et  al,  1995  (2)   1940-­‐1987   1252   Yes   No   Yes   No   No   Yes   Yes   No  

Prognostic  factors  in  squamous  cell  carcinoma  of  the  oral  cavity.  

Beltrami  et  al,  1992  (50)    

 80  

Yes   No   Yes   No   No   Yes   No   No  

Radiotherapy  for  cancer  of  the  lip  

Gooris  et  al,  1998  (32)  

1974-­‐1994   85   No   Yes   No   Yes   Yes   No   Yes   Yes  

Results  of  radiation  therapy  of  cancer  of  the  lip    

Miltenyi  et  al,  1980  (51)     170   Yes   No   Yes   No   No   No   Yes   No  

Results  of  radiotherapy  for  scc  lower  lip.  A  retrospective  analysis  of  108  patients  

de  Visscher  et  al,  1996  (52)  

1980-­‐1992   108   Yes   Yes   No   No   No   No   Yes   No  

Squamous  carcinoma  of  the  lower  lip  in  patients  under  40  years  of  age  

Boddie  et  al,  1977  (19)   1943-­‐1974   1308   Yes   No   Yes   No   No   Yes   Yes   No  

Squamous  cell  carcinoma  of  the  lip:  a  retrospective  review  of  the  Peter  MacCallum  Cancer  Institute  experience  1979-­‐88  

McCombe  et  al,  2000  (33)  

1979-­‐1988    323  

No   No   No   Yes   No   Yes   Yes   No  

Squamous  cell  carcinoma  of  the  lip  analysis  of  the  Princess  Margaret  Hospital  experience  

Cerezo  et  al,  1993  (53)   1971-­‐1976   117   No   No   No   Yes   No   Yes   Yes   Yes  

Squamous  cell  carcinoma  of  the  lip:  is  there  a  role  for  adjuvant  radiotherapy  in  improving  local  control  following  incomplete  or  inadequate  excision?  

Babington  et  al,  2003  (27)  

1980-­‐2000    

130    

Yes   Yes   No   Yes   No   Yes   Yes   Yes  

Squamous  cell  carcinoma  of  the  lip  treated  with  Mohs  

Holmkvist  et  al,  1998  (54)  

1986-­‐1999   50   No   Yes   No   Yes   No   Yes   No   No  

Squamous  cell  carcinoma  of  the  lip    

Cruse  et  al,  1987  (55)   1962-­‐1982   117   Yes   No   Yes   No   No   Yes   No   No  

Squamous  cell  carcinoma  of  the  lips  in  a  northern  Greek  population.  5yr  Surv  rate  

Antoniades  et  al,  1995  (15)   1979-­‐1989   906   Yes   No   No   No   No   Yes   Yes   Yes  

Squamous  cell  carcinoma  of  the  lower  lip  and  supra-­‐omohyoid  neck  dissection  

Kutluhan  et  al,  2003  (26)   1994-­‐2000   31   Yes   No   Yes   Yes   No   Yes   No   No  

Squamous-­‐cell  carcinoma  of  the  lower  lip  a  retrospective  study  of  58  patients  

dos  Santos  et  al,  1996  (56)   1980-­‐1999   58   Yes   Yes   No   Yes   No   Yes   No   No  

Surgical  treatment  of  squamous  cell  carcinoma  of  the  lower  lip  

de  Visscher  et  al,  1998  (57)  

1979-­‐1992   184   Yes   Yes   No   Yes   No   Yes   No   No  

Survival  analysis  of  5595  head  and  neck  cancers  

Rao  et  al,  1998  (58)   1987-­‐1989   62   Yes   No   No   No   No   Yes   Yes   Yes  

The  step  technique  for  the  reconstruction  of  lower  lip  defects  after  cancer  resection    

Blomgren  et  al,  1988  (59)   25  years   165   Yes   No   Yes   Yes   No   Yes   No   No  

n:  number  of  patients  in  study,  OS:  Overall  survival,  DFS:  Disease  free  survival,  CSS:  Cause  

specific  survival,  LRC:  Loco-­‐regional  control,  Sx+RTx:  Surgery  and  adjuvant  radiotherapy,    

Page 33: Final Mphil Thesis Lip Cancer Latest

33  

 

Table  2  Summary  of  results  relating  to  loco-­‐regional  control  

Treatment   5yr  LRC     95%CI   No.  of  studies   No.  maintaining  LRC   Sample  size   Crude  ratio  

Sx   89.8%   (87.9  –  91.6%)   10   785   947   82.9%  

EBRT   85.3%   (82.2  –  88.3%)   5   414   504   82.1%  

Sx+RTx   95.3%   (88.3  –  100%)   4   43   47   91.5%  

BT   94.6%   (92.8  –  96.4%)   6   579   617   93.8%  

95%CI:  95%  Confidence  interval,  No.:  Number  

 

Treatment  results  were  pooled  together  with  results  weighted  according  to  the  inverse  

variance.  That  is  larger  studies  contributed  more  to  the  pooled  results  than  smaller  

studies,  because  they  have  a  decreased  variance  due  to  the  larger  sample  size.  Where  the  

5yr  LRC  rate  was  either  100%  or  0%  the  Wilson  interval  was  used  to  calculate  the  

variance.(60)  In  Table  2  the  results  for  LRC  are  summarised.  The  results  suggest  that  

patients  undergoing  BT  may  have  a  slightly  better  outcome  than  patients  undergoing  

either  Sx  or  RTx.  Sx  may  result  in  better  LRC  than  RTx  noting  that  the  95%  CIs  do  not  

overlap.  The  combination  of  Sx+RTx  may  also  be  better  than  RTx  with  CIs  touching.  Note  

that  the  crude  ratio  is  the  number  of  patients  with  an  outcome  (e.g.  maintaining  LRC)  

divided  by  the  total  number  of  patients  in  the  sample  (the  sample  size).  

 

Table  3  Summary  of  results  relating  to  overall  survival  

Treatment   5yr  OS   95%CI   No.  of  studies   No.  alive   Sample  size   Crude  ratio    

Sx   81.9%   (80.1  –  83.7%)   15   1146   1550   73.9%  

EBRT   79.9%   (77.4  –  82.4%)   10   729   943   77.3%  

Sx+RTx   72.0%   (56.2  –  87.8%)   2   11   18   61.1%  

BT   85.3%   (81.8  –  88.8%)   4.00   280   357   78.4%  

 95%CI:  95%  Confidence  interval,  No.:  Number  

 

Page 34: Final Mphil Thesis Lip Cancer Latest

34  

 

Table  3  details  the  results  for  OS.  Patients  having  BT  had  the  best  outcome,  followed  by  

Sx  then  RTx  and  lastly  Sx+RTx  but  note  all  CIs  were  overlapping  indicating  no  statistically  

significant  difference  in  OS  between  the  4  treatments.  

 

Table  4  Summary  of  results  relating  to  cause-­‐specific  survival  

Treatment   5yr  CSS   95%CI   No.  of  studies   No.  not  dead  of  disease   Sample  size   Crude  ratio    

Sx   94.9%   (93.7  –  96.1%)   10   1114   1219   91.4%  

EBRT   96.0%   (94.3  –  97.8%)   3   401   439   91.3%  

Sx+RTx  

   

0   0   0  

 BT   91.1%   (87.5  –  94.8%)   1.00   216   237   91.1%  

 95%CI:  95%  Confidence  interval,  No.:  Number  

 

Table  4  details  the  results  for  CSS.  Patients  receiving  RTx  achieved  the  best  CSS,  followed  

by  Sx  and  BT.  No  studies  with  Sx+RTx  were  available.  Here  also  the  CIs  overlapped  for  all  

treatments  suggesting  no  significant  difference  in  CSS  between  treatments.    

 

Table  5  Summary  of  results  relating  to  disease  free  survival  

Treatment   5yr  DFS   95%CI   No.  of  studies   No.  disease  free   Sample  size   Crude  ratio    

Sx   85.0%  

(82.4  –  

87.6%)   6   486   630   77.1%  

EBRT   81.7%  

(77.5  –  

85.9%)   4   247   314   78.7%  

BT   90.2%  

(84.9  –  

95.4%)   3   105   120   87.5%  

 95%CI:  95%  Confidence  interval,  No.:  Number  

 

Page 35: Final Mphil Thesis Lip Cancer Latest

35  

 

Table  5  details  the  results  for  DFS.  Patients  undergoing  BT  had  the  best  outcome,  

followed  by  Sx  and  then  RTx.  Once  again  all  CIs  overlapped.  

It  is  important  to  note  that  these  results  do  not  conclusively  favour  one  particular  

treatment  over  the  other  across  the  outcomes  of  LRC,  OS,  CSS  and  DFS.  Most  patients  did  

not  die  from  their  lip  cancer  so  OS  may  not  necessarily  be  an  accurate  outcome  to  

investigate  in  this  disease.  Similarly  CSS  is  calculated  using  deaths  due  to  lip  cancer.  This  

outcome  may  be  biased  if  people  die  due  to  a  secondary  cause  unrelated  to  lip  cancer  

(e.g.  heart  attack),  before  they  may  have  relapsed  and  potentially  die  from  their  lip  

cancer.  An  alternative  way  is  to  analyse  this  problem  is  to  use  competing  risk  survival  

analysis,  where  the  probability  of  dying  due  to  lip  cancer  is  adjusted  for  by  the  presence  

of  competing  co-­‐morbid  events  that  precede  death  due  to  lip  cancer  such  as  other  causes  

of  mortality.  However  no  studies  we  reviewed  have  used  this  statistical  methodology.    

 

Recurrence  

Following  treatment  patients  may  experience  recurrence  at  either  the  primary  site  (local  

recurrence)  or  regionally  (nodal  recurrence).  Alternatively,  but  much  less  likely,  lip  cancer  

may  metastasise  to  distant  sites  such  as  the  lung  or  liver.  Delayed  regional  recurrence  

(DRR)  implies  that  regional  metastases  were  not  clinically  present  at  the  time  of  diagnosis  

but  occurred  later.  

 

If  recurrence  does  occur,  95%  of  such  cases  usually  occur  within  5  years  of  treatment.(18)  

The  peak  incidence  of  recurrence  usually  occurs  in  the  first  and  second  years.  For  example  

in  one  study  from  1996,  12  out  of  108  patients  developed  local  or  regional  recurrences  

and  of  these  8  occurred  within  the  first  2  years  following  treatment.(52)  

 

The  predictors  of  recurrence  as  documented  in  the  literature  include:  tumour  size,  

histological  grade,  MTT,  extent  of  surgical  margins  (positive/close  vs.  clear  margins),  

Page 36: Final Mphil Thesis Lip Cancer Latest

36  

 

perineural  and  muscle  invasion,  age  and  various  cellular  and  molecular  factors.  These  

predictors  will  be  investigated  using  the  data  published  by  other  researchers  and  

analysing  a  database  of  patients  from  Westmead  Hospital,  Sydney,  Australia.  

Predictors  of  recurrence  and  survival  can  be  divided  into  patient,  tumour  and  treatment  

factors.  Patient  factors  include  age,  gender,  smoking  and  UVB  exposure  from  sunlight.  

Tumour  factors  include  tumour  size,  histological  grade,  MTT,  perineural  invasion,  muscle  

invasion,  cellular  and  molecular  factors  and  status  of  surgical  margins.  Treatment  factors  

include  treatment  comparisons  (Sx  or  RTx).  

 

Age  

Table  6  Summary  of  findings  for  age  

Study   Outcome  

Cut-­‐off  

point   N   Effect  size   95%CI   P  value   FUP   Event  rate  

Fernandez  et  al,  2003  (61)*   Mets.   Cat.   251   1.013  OR   (0.97-­‐1.06)   0.05   5  yrs   6.40%  

Zitsch  et  al,  1999  (5)   DRR   40yrs   1001   -­‐   -­‐   0.99   5  yrs   4%  

n:  Sample  size,  95%CI,  95%  Confidence  interval  FUP:  Minimum  follow  up,  Mets:  Metastases,  DRR:  Delayed  regional  recurrence,  Cat.  :  Categorical,  *:  multivariate  model  

 

There  are  various  hypotheses  as  to  why  age  may  be  associated  with  recurrence.  One  is  

that  cancer  is  likely  to  recur  in  older  people  due  to  the  increased  rate  of  accumulated  

somatic  genetic  mutation  with  increasing  age.  Alternatively  lip  cancer  is  more  biologically  

aggressive  in  the  young  and  hence  more  likely  to  recur  despite  treatment.    

 

Fernandez  et  al,  2003  (61)  as  detailed  in  Table  6  analysed  age  in  a  multivariate  model  

along  with  site  and  tumour  area  and  reported  a  non-­‐significant  odds  ratio  (OR)  with  no  P  

value  given.  However  the  CI  for  the  OR  included  1  and  this  usually  implies  that  the  result  

Page 37: Final Mphil Thesis Lip Cancer Latest

37  

 

is  statistically  non-­‐significant.  In  this  study  there  were  251  patients  with  a  minimum  

follow  up  of  5  yrs  and  an  event  rate  of  6.4%  throughout  the  study  period.  

Zitsch  et  al,  1999  (5)  also  reported  a  statistically  non-­‐significant  association  between  age  

and  DRR  using  age  as  a  binary  variable  with  the  cut-­‐off  point  at  40  years.  This  study  had  

1001  patients  and  was  one  of  the  larger  studies  dealing  with  lip  cancer.  An  OR  was  not  

reported.  Both  these  large  studies  suggest  that  age  alone  is  not  a  strong  predictor  of  DRR  

or  worse  outcome.  

 

Gender  

The  effect  of  gender  on  DRR  was  investigated  in  2  studies.  These  both  found  no  

association  between  gender  and  DRR.(5,  62)  Of  these  studies,  Zitsch  et  al,  1999  (5)  had  

1001  patients  with  a  minimum  follow  up  of  5  yrs  and  reported  the  association  between  

gender  and  DRR  as  statistically  non-­‐significant  (P=0.34).  The  other  study  of  Vukadinovic  et  

al,  2007  (20)  had  223  patients  with  a  median  follow  up  of  56  months  and  also  found  no  

statistically  significant  association  between  gender  and  DRR.  The  study  did  not  mention  

an  OR  or  P  value.    

 

A  previously  described  study  found  no  association  between  gender  and  the  tumour  size  

of  the  primary  tumour  which  is  itself  an  indicator  of  DRR.(20)  Also  gender  did  not  impact  

on  the  risk  of  CSS  from  lip  cancer  (i.e.  proportion  dying  of  disease).(2)  

 

 

 

 

 

 

Page 38: Final Mphil Thesis Lip Cancer Latest

38  

 

Tumour  size  

Table  7  Summary  of  results  for  tumour  size  

Study   Outcome   Cut-­‐off  point   n   Effect  size   95%CI   P  value   FUP   Event  rate  Zitsch  et  al,  1999  (5)   DRR   3  cm   1001   -­‐   -­‐   0.034   5  yrs   4%  

Hosal  et  al,  1992  (3)   DRR+LR   -­‐  

 

-­‐   -­‐   no  corr.   -­‐   -­‐  

de  Visscher  et  al,  2002*  (57)   LR   Cat.   184   -­‐   -­‐   <0.01   2  yrs   6%  

de  Visscher  et  al,  2002*  (57)   DRR   Cat.   184   -­‐   -­‐   >0.05   2  yrs   5%  

McGregor  et  al,  1992  (63)   DRR   -­‐   108   -­‐   -­‐   <0.05   2  yrs   18%  

Heller  et  al,  1979  (39)   LR   -­‐   171   1.01  OR   -­‐   0.99   -­‐   8%  

Rodolico  et  al,  2005  (7)   DRR   T2&T3  vs.  T1   97   15.21  HR   (2.25-­‐94.1)   0.033   5  yrs   -­‐  

Rodolico  et  al,  2005  (7)   DRR   cont.   97   1.09  HR   (1.05-­‐1.13)   <0.0001   5  yrs   -­‐  

Rodolico  et  al,  2005*  (7)   DRR   T2&T3  vs.  T1   97   13.5  HR   (2.19-­‐83)   0.005   5  yrs   -­‐  

Rodolico  et  al,  2005*  (7)   DRR   cont.   97   1.04  HR   (0.99-­‐1.09)   0.042   5  yrs   -­‐  

Rodolico  et  al,  2004  (64)   DRR   2  cm   97   -­‐   -­‐   0.05   5  yrs   -­‐  

n:  Sample  size,  95%CI:  95%  Confidence  interval,  FUP:  Minimum  follow  up,  DRR:  Delayed  regional  recurrence,  LR  Local  recurrence  Cat.  :  Categorical,  *:  multivariate  model,  cont.:  continuous,  cat:  categorical,  corr.:  correlation  

 

Tumour  size  is  recorded  as  the  maximum  lesion  size  and  is  the  largest  diameter  of  the  

tumour.  Tumour  size  is  reported  in  the  TNM  classification  at  cut-­‐offs  of  2  cm  (T1),  2-­‐4  cm  

(T2)  and  >4  cm  (T3).  Various  studies,  as  presented  in  Table  7,  have  investigated  tumour  

size  as  a  predictor  of  regional  recurrence.  These  studies  incorporate  both  the  event  of  

recurrence  and  time  to  event,  in  survival  models.  Tumour  size  has  an  impact  on  prognosis  

and  also  on  selection  of  the  appropriate  treatment.    

 

Zitsch  et  al,  1999  (5)  with  39  patients  developing  DRR  found  tumour  size  to  be  a  

statistically  significant  predictor  of  DRR  (P  =  0.034).  Tumour  size  was  dichotomised  into  

above  or  below  3  cm.  Despite  the  larger  size  of  this  study,  the  power  to  detect  a  50%  

difference  in  prevalence  of  risk  factors  between  the  two  tumour  size  categories  was  only  

very  low.  This  was  because  the  overall  event  rate  was  low  and  also  due  to  the  small  

number  of  patients  with  tumour  size  above  3cm,  who  composed  only  14%  of  the  total  

sample.  

 

Page 39: Final Mphil Thesis Lip Cancer Latest

39  

 

In  contrast  Hosal  et  al,  1992  (3)  found  that  size  of  the  primary  did  not  correlate  with  

regional  recurrence.  However,  this  was  inconclusive  as  the  study  only  reported  1  DRR  

with  the  remaining  patients  having  nodal  involvement  at  presentation.  To  combine  

patients  with  nodal  involvement  at  diagnosis  and  DRR  is  an  unreasonable  assumption  as  

they  may  experience  different  disease  progressions.  Those  with  nodal  involvement  at  

presentation  have  not  undergone  treatment  whereas;  the  delayed  group  has  undergone  

curative  treatment  to  the  primary.  Also,  clinically  the  interest  lies  in  predicting  DRR  so  as  

to  establish  an  at  risk  group.  By  doing  so,  such  patients  may  warrant  different  

management  such  as  elective  nodal  treatment  or  more  intensive  follow  up  and  

investigations.  

 

De  Visscher  et  al,  2002  (57)  also  documented  a  low  event  rate  of  9  DRR  and  11  LR  out  of  

184  treated  patients.  The  study  found  tumour  size  to  be  a  statistically  significant  predictor  

of  LR  on  multivariate  analysis,  but  found  no  association  with  DRR.  DRR  is  an  important  

prognosticator  for  outcome  and  therefore  a  determinate  of  survival.    

 

McGregor  et  al,  1992  (63)  documented  a  higher  event  rate  (18%,  double  that  of  previous  

studies)  and  documented  that  tumour  size  (cut-­‐off  point  unspecified,  but  likely  to  be  

based  on  T  staging)  was  a  statistically  significant  predictor  (P<0.05)  of  DRR.  This  study  had  

19  events  out  of  108  (18%)  with  a  minimum  follow-­‐up  of  2  years.  There  were  no  details  of  

statistical  methods  used  and  no  reported  effect  size.  

 

Heller  et  al,  1979  (39)  looked  at  tumour  size  as  a  predictor  of  LR  but  found  no  statistically  

significant  association  (Table  7).  In  this  study  there  were  14/171  LR,  8  regional  

recurrences  and  1  distant  metastasis  without  regional  recurrence.(39)  The  regional  

recurrences  should  have  also  been  included  in  the  analysis;  this  way  the  outcome  would  

have  been  both  local  and  regional  control,  which  is  a  more  complete  outcome.  It  would  

Page 40: Final Mphil Thesis Lip Cancer Latest

40  

 

also  have  added  more  power  to  an  association  with  tumour  size  as  the  event  rate  

increases.  

 

Rodolico  et  al,  2005  (7)  analysed  risk  factors  predicting  the  risk  of  regional  recurrence  in  a  

Cox  regression  model  and  reported  tumour  size,  analysed  as  a  continuous  variable  (T  size  

in  mm)  and  a  categorical  variable  (T  staging),  to  be  a  significant  predictor  of  DRR  on  both  

univariate  analysis  and  multivariate  analysis.(7)  The  study  ran  for  11  years  (1988-­‐1998)  

and  reported  on  97  patients  who  were  followed  for  5  years.  All  patients  were  treated  

with  Sx  alone.  On  univariate  analysis  patients  with  T  stage  2-­‐3  had  a  significantly  higher  

risk  of  DRR  (HR  15.21,  95%  CI  2.25-­‐94.1)  compared  to  patients  with  T1.  The  risk  of  DRR  

increased  by  9%  for  each  mm  increase  in  tumour  size  (HR:  1.09,  95%  CI  1.05-­‐1.13).  After  

adjusting  for  other  risk  factors  this  association  was  only  slightly  attenuated  with  the  HR  

for  tumour  stage  being  13.50  and  that  for  tumour  size  being  1.04.  The  multivariate  

models  were  adjusted  for  molecular  factors  (Cyclin  D1  expression,  p27Kip1,  MTT,  

interaction  between  MTT  and  p27Kip1),  which  will  be  discussed  later.  Significant  results  on  

multivariate  analysis  suggested  that  tumour  size  is  a  predictor  of  DRR  independent  of  the  

above-­‐mentioned  factors.  Despite  the  addition  of  these  variables,  the  multivariate  model  

may  not  have  been  complete  as  there  were  other  predictors  identified  in  this  review  that  

were  not  included,  e.g.  histological  grade  or  perineural  invasion.  

 

Rodolico  et  al,  2004  (64)  showed  a  significant  association  between  tumour  size  and  DRR.  

The  data  was  analysed  and  reported  an  OR  with  conditional  binomial  exact  test  

comparing  the  risk  of  recurrence  to  tumour  size  above  and  below  2  cm  (T1  vs.  T2  and  T3).  

This  data  was  reanalysed  as  time  to  event  in  Rodolico  et  al,  2005  (7).(64)  The  results  in  

both  of  these  reports  may  have  been  biased  if  larger  tumours  were  more  likely  to  receive  

RTx  so  that  RTx  may  have  been  a  potential  confounding  variable  in  this  analysis.  

 

Page 41: Final Mphil Thesis Lip Cancer Latest

41  

 

In  summary,  there  are  various  points  to  consider  when  assessing  tumour  size  as  a  

prognostic  factor  for  recurrence.  These  include  the  treatment  they  received.  Tumour  size  

was  recorded  as  a  continuous  variable  or  a  categorical  variable  with  different  cut-­‐offs  

used  for  tumour  size.  This  leads  to  classification  bias  and  lack  of  uniformity.  Regarding  the  

cut-­‐off,  it  was  important  how  many  patients  in  the  study  were  above  or  below  the  cut-­‐off.  

It  is  also  important  whether  they  included  both  DRR  and  LR  and  only  used  recurrences  

occurring  after  diagnosis  and  treatment.    

 

In  terms  of  local  control,  two  studies  provide  conflicting  evidence  regarding  tumour  size  

with  Heller  et  al,  1979  (39)  reporting  a  non-­‐significant  association  and  de  Visscher  et  al,  

2002  (57)  reporting  a  significant  association.  In  general,  the  event  rates  are  low  for  local  

recurrence,  which  suggests  a  need  for  a  long  period  of  follow  up  with  a  minimum  of  2yrs  

and  a  recommendation  for  at  least  5  yrs  of  follow  up.    

 

It  is  recommended  that  future  studies  have  uniform  reporting  practices,  with  analyses  

being  done  for  LR,  DRR  and  local  and  regional  control,  with  a  minimum  follow  up  of  5  yrs.  

They  should  use  a  cut-­‐off  point  of  2  cm  as  well  as  assessing  tumour  size  continuously.  

They  should  also  document  the  event  rate  and  any  potential  biases  in  selecting  the  

patients  for  analysis  and  should  state  how  the  patients  were  treated  and  assess  the  

treatment  option  as  a  potential  confounding  variable.    

 

 

 

 

 

Page 42: Final Mphil Thesis Lip Cancer Latest

42  

 

Histological  grade  

Table  8  Summary  of  results  for  histological  grade  

Study   Cut  point   N   HR   95%CI   P  value   FUP   Event  rate  

Zitsch  et  al,  1999  (5)   G1  -­‐  G4   1001   -­‐   -­‐   <0.0001   5  yrs   4%  

Rodolico  et  al,  2005  (7)   G1&G2  vs.  G3&G4   97   3.51     (1.15-­‐10.75)   0.028   5  yrs   -­‐  

Rodolico  et  al,  2004  (64)   G1&2  vs.  G3&4   97   -­‐   -­‐   0.016   5  yrs   -­‐  

Rodolico  et  al,  1998  (65)   G1&2  vs.  G3&4   54   -­‐   -­‐   <0.05   -­‐   -­‐  

n:  Sample  size,  HR:  HR  95%CI:  95%  Confidence  interval,  FUP:  Minimum  follow  up,  Mets:  Metastases,  DRR:  Delayed  regional  recurrence,  Cat.  :  Categorical,  *:  multivariate  model,  G:  Grade,  all  studies  used  DRR,  yrs:  years  

 

Histological  grade  is  a  risk  factor  for  predicting  recurrence.  Four  studies  analysing  

histological  grade  as  a  risk  factor  for  recurrence  have  been  investigated.    

Zitsch  et  al,  1999  (5)  assessed  histological  grade  as  a  predictor  of  regional  recurrence.  In  

this  study  as  the  histological  grade  increased  from  grade  I  to  IV,  the  proportion  of  patients  

with  DRR  also  increased.  The  proportion  of  patients  with  grade  I  tumours  who  developed  

DRR  was  2%  whereas  20%  of  patients  with  grade  IV  tumours  developed  DRR  (P  <0.0001).  

For  histological  grading  the  authors  referenced  a  modified  Broder’s  grading  system,  which  

is  similar  to  the  system  proposed  by  Anneroth,  as  discussed  earlier.  The  grading  system  

reported  is  important  for  standardisation,  so  that  valid  comparisons  between  studies  can  

be  made.  A  significant  increase  of  8%  to  20%  nodal  recurrence  was  noted  between  grade  

III  and  grade  IV  histology.  This  is  important  for  risk  modelling  purposes,  as  the  increase  in  

recurrence  associated  with  increasing  tumour  grade  was  not  linear.  

 

Rodolico  et  al,  2005  (7),  in  a  Cox  regression  analysis,  found  grade  to  be  a  significant  

predictor  of  DRR  on  univariate  analysis.  Since  all  patients  in  the  study  were  treated  by  Sx,  

histological  specimens  were  available.  The  risk  of  DRR  was  significantly  higher  for  patients  

with  grade  III  and  IV  compared  to  grade  I  or  II  (HR:  3.51,  95%CI  1.15-­‐10.75,  P=0.028).  

Page 43: Final Mphil Thesis Lip Cancer Latest

43  

 

Those  with  histologically  confirmed  metastases  at  presentation  were  excluded.  This  study  

reported  the  Anneroth  grading  system.  Histological  grading  was  not  present  in  the  final  

multivariate  analysis,  as  it  had  been  eliminated  by  backward  regression.  This  suggests  

predictors  such  as  tumour  size,  MTT  and  molecular  factors,  which  were  included  in  the  

final  model,  had  a  stronger  association  with  DRR  than  histological  grading  and  that  

histological  grade  of  the  tumour  was  not  an  independent  predictor  of  DRR.  

 

Rodolico  et  al,  2004  (64)  on  a  Chi-­‐squared  test  (univariate)  found  histological  grade  to  be  

a  significant  predictor  of  DRR.  Histological  grading  was  reported  according  to  the  

Anneroth  system.  The  authors  noted  a  significant  difference  between  grade  III  and  IV  vs.  

grade  I  and  II  (P=0.016).  Note,  that  this  is  the  same  data  as  Rodolico  et  al,  2005  (7)  but  

analysed  as  occurrence  of  event  rather  than  time  to  event.    

 

Daniele  et  al,  1998  (66)  found  histological  grade  to  be  a  predictor  of  DRR.  The  study  

compared  grade  III  and  grade  IV  vs.  grade  I  and  grade  II.  This  was  a  smaller  study  of  only  

54  patients  and  all  under  went  Sx  with  histological  specimens  reported  on  all.  The  high  

proportion  of  DRR  in  patients  with  grade  I  tumours  is  misleading  because  there  were  only  

4  patients  with  grade  I  tumours  (1  recurrence  out  of  4  grade  I  tumours).    

 

In  summary  all  four  studies  have  shown  that  the  histological  grade  of  the  tumour  may  be  

an  independent  risk  factor  for  predicting  recurrence.  These  results  have  been  found  using  

both  the  Broder’s  and  Anneroth  grading  system.  However,  these  studies  may  still  be  

underpowered  with  even  the  largest  study  (5)  having  only  a  4%  event  rate.  Also  these  

studies  did  not  adjust  for  other  confounding  variables,  especially  tumour  size.  

 

Page 44: Final Mphil Thesis Lip Cancer Latest

44  

 

Maximal  tumour  thickness  

Table  9  Summary  of  results  for  maximal  tumour  thickness  

Study   Outcome  

Cut-­‐off  

point   N   Effect  size   95%CI   P  value   FUP   Event  rate  

de  Visscher  et  al,  1998  (62)   LR   -­‐   184   -­‐   -­‐   >0.05   2  yrs   6%  

de  Visscher  et  al,  1998  (62)   DRR   -­‐   184   -­‐   -­‐   <0.001   2  yrs   6%  

Rodolico  et  al,  2005  (7)   DRR   -­‐   184   -­‐   -­‐   <0.001   2  yrs   6%  

Rodolico  et  al,  2005  (7)   DRR   5mm   97   13.17  HR   (3.61-­‐48.02)   <0.001   5  yrs   -­‐  

Rodolico  et  al,  2005  (7)   DRR   cont.   97   1.32  HR   (1.18-­‐1.48)   <0.0001   5  yrs   -­‐  

Rodolico  et  al,  2005*  (7)   DRR   5mm   97   10.93  HR   (2.11-­‐56.44)   0.043   5  yrs   -­‐  

Rodolico  et  al,  2005**  (7)   DRR   cont.   97   0.96  HR   (0.74-­‐1.25)   0.072   5  yrs   -­‐  

Rodolico  et  al,  2004  (64)   DRR   5mm   97   8.03  OR   (2.76-­‐25.04)   <0.0001   5  yrs   -­‐  

n:  Sample  size,  95%CI:  95%  Confidence  interval,  FUP:  Minimum  follow  up,  LR:  Local  recurrence  DRR:  Delayed  regional  recurrence,  *:Multivariate  analysis,  **:  Multivariate  analysis  with  interaction  term  

 

MTT,  sometimes  referred  to  as  depth  of  invasion,  is  defined  as  the  distance  from  the  

granular  layer  through  to  the  thickest  portion  of  the  lesion  measured  in  mm.(54)  MTT  is  

also  defined  as  the  distance  measured  vertically  from  the  surface  of  tumour  to  the  base  

of  the  tumour.  This  excludes  surface  layers  of  parakeratotic  cells  and  inflammatory  

exudates,  and  is  measured  using  an  ocular  meter.(6)  

 

As  tumours  grow  they  invade  into  surrounding  structures  including  microvessels  and  via  

these  may  enter  the  blood  stream  as  they  increase  in  thickness  and  invade  deeper.  Hence  

MTT  may  be  a  risk  factor  for  recurrence  if  escaping  micrometastases  establish  in  nodal  or  

distant  sites.  Also  another  hypothesis  is  that  tumours  with  increasing  thickness  may  

become  more  aggressive  biologically.    

 

Page 45: Final Mphil Thesis Lip Cancer Latest

45  

 

De  Visscher  et  al,  1998  (62)  reported  no  significant  association  between  MTT  and  LR  but  

did  report  a  statistically  significant  association  with  DRR  (P<0.001).  An  MTT  cut-­‐off  point  

was  not  documented,  but  the  association  referred  to  increasing  MTT  and  DRR.  There  

were  184  patients  in  the  study  with  an  event  rate  of  6%.    

 

Rodolico  et  al,  2005  (7)  modelled  MTT  as  both  a  continuous  and  categorical  variable  

univariately  and  multivariately  in  a  Cox  model.  Using  time  to  DRR  the  study  found  that  

MTT  was  significant  on  univariate  analysis  in  both  continuous  and  dichotomous  (cut-­‐off  

5mm)  formats  (see  Table  9).  MTT  on  multivariate  analysis  was  not  significant  as  a  

continuous  variable  and  was  likely  to  be  crowded  out  by  other  factors  such  as  the  

included  interaction  variable  between  MTT  and  p27Kip1  LI,  which  is  a  tumour  suppressor  

gene  (p27Kip1  LI  is  mentioned  later).  This  interaction  term  was  highly  significant  

(P=0.0053).  Analyses  may  be  difficult  to  interpret  when  the  individual  term  is  non-­‐

significant  but  the  interaction  term  is  significant.  MTT  when  dichotomised,  was  significant  

on  multivariate  analysis  (MTT  cut-­‐off  5mm)  (HR:10.93  95%CI:  2.11-­‐56.44;P=0.043).  This  

suggests  that  the  interaction  term  has  taken  up  much  of  the  variability  in  the  analysis  

where  MTT  is  continuous  as  it  was  not  present  in  the  multivariate  categorical  analysis.    

 

This  interaction  term  suggests  that  patients  who  have  a  p27  Kip1  LI  expression  of  <20%  

have  a  decreased  risk  of  DRR  as  does  an  MTT  >5mm,  but  furthermore,  both  these  

features  combine  to  result  in  an  increasing  risk  of  recurrence.  This  suggests  that  the  

combined  risk  is  more  than  the  sum  of  the  component  risks.  This  is  likely  due  to  some  

underlying  mechanism  where  the  effect  of  a  high  MTT  is  amplified  by  low  p27  Kip1  LI.    

 

Rodolico  et  al,  2004  (64)  reanalysed  the  same  data  as  Rodolico  et  al,  2005  (7)  but  looked  

at  event  occurrence  instead  of  time  to  event  and  found  MTT  to  be  a  significant  predictor  

of  DRR  with  an  OR  of  8.03.  An  inverse  correlation  between  MTT  and  p27Kip1LI  was  seen,  

where  MTT  rose  with  decreasing  expression  ofp27Kip1LI.(64)  Mean  MTT  in  group  1  (no  

Page 46: Final Mphil Thesis Lip Cancer Latest

46  

 

recurrence)  was  4.2  mm  (range  1.2-­‐12.1)  and  group2  (recurrence)  11.2  mm  (range  4.1  -­‐

16.7).  This  result  suggests  that  a  cut-­‐off  point  MTT  of  4-­‐5  mm  may  be  acceptable  for  

separating  risk  groups.    

 

Daniele  et  al,  1998  (66)  found  MTT  to  be  a  significant  predictor  of  DRR  as  an  event  rather  

than  time  to  event  using  an  OR  determined  from  a  Chi-­‐squared  test.  The  study  used  6  mm  

as  the  cut-­‐off  for  MTT  and  reported  a  significant  P  value  (P<0.001).  This  adds  further  

supportive  evidence  to  the  argument  that  increasing  MTT  is  a  predictor  of  regional  

recurrence.  

 

Frierson  et  al,  1986  (6)  calculated  the  mean  MTT  of  two  groups  based  on  DRR.  Group  1  

had  157  patients  with  no  DRR  while  group  2  had  30  patients  that  experienced  DRR.  The  

mean  MTT  for  group  1  was  2.5  mm  (range:0.5-­‐16.8mm)  compared  with  7.5  mm  in  group  

2  (range:  2.2  –  16.0mm),  P<0.001.  Therefore,  a  cut-­‐off  of  6  mm  for  MTT  is  reasonable  as  it  

lies  between  the  two  means.  The  summary  of  these  studies  provides  supportive  evidence  

of  MTT  as  a  predictor  of  DRR  for  both  the  event  and  time  to  event.    

 

In  summary  a  number  of  studies  have  analysed  the  association  of  increasing  MTT  and  

recurrence  using  different  methodology.  The  association  was  confirmed  as  significant  on  

both  univariate  and  multivariate  analyses.  However,  studies  have  not  shown  MTT  to  be  a  

risk  factor  of  recurrence  independent  of  tumour  size.    

 

 

Page 47: Final Mphil Thesis Lip Cancer Latest

47  

 

Site  of  lip  cancer  

Table  10  Summary  of  results  for  site  of  lip  cancer  

Study   Cut  point   N   OR   95%CI   P  value   FUP   Event  rate  

Zitsch  et  al,  1999  (5)   Upper,  lower  and  commissure   1001  

   

>0.34   5  yrs   4%  

Fernandez  et  al,  2003  (61)   Commissure  and  lower  lip   251   11.06   (3.17-­‐38.59)   <0.001   5  yrs   6.40%  

n:  Sample  size,  OR:  Odds  ratio,  95%CI:  95%  Confidence  interval,  FUP:  Minimum  follow  up,  

all  studies  reported  delayed  regional  recurrence    

 

Lip  cancer  can  either  arise  on  the  lower  lip,  upper  lip  or  the  commissure  (junction  of  the  

upper  and  lower  lip),  with  the  majority  (95%)  of  lip  cancers  arising  on  the  lower  lip  and  

the  remaining  arising  on  the  upper  lip  and  commissure.  The  aetiology  of  these  different  

subsites  is  suspected  to  be  also  different  as  the  lower  lip  is  predominantly  exposed  to  the  

sun.  Some  studies  have  associated  a  poorer  prognosis  with  non-­‐lower  lip  cancers  and  

suggested  these  as  representing  a  site  of  more  aggressive  disease  with  possibly  different  

risk  factors.    

 

Zitsch  et  al,  1999  (5)  reported  no  association  between  site  of  lip  cancer  (i.e.  lower  lip  vs.  

upper  lip  vs.  commissure)  and  DRR  (P>0.34).  The  authors  reported  a  4%  rate  of  DRR  in  the  

lower  lip  and  a  6%  rate  of  DRR  in  the  other  two  subsites.  Of  note,  95%  of  the  study  

constituted  lower  lip  cancer,  with  only  a  small  minority  having  non-­‐lower  lip  cancers.    

 

Fernandez  et  al,  2003  (61)  analysed  DRR  in  patients  with  lip  cancer.  There  was  a  10  yr  

collection  period  and  minimum  follow-­‐up  of  5  yrs.  They  found  commissural  localisation  to  

have  a  significant  OR  of  11.06  in  predicting  lymph  node  metastases.  Localisation  to  

commissure  only  included  tumours  on  the  commissure.  This  is  important  because  some  

studies  define  lip  cancer  on  the  commissure  as  tumours  that  have  commissural  

Page 48: Final Mphil Thesis Lip Cancer Latest

48  

 

involvement,  even  if  they  developed  on  the  upper  or  lower  lip.  Commissural  tumours  

arising  from  the  lower  or  upper  lip  are  often  larger  tumours,  which  are  more  likely  to  

recur.  Also  commissural  involvement  alone  does  not  answer  the  hypothesis  of  whether  

tumours  originating  from  the  commissure  have  an  increased  risk  of  DRR.    

 

In  summary,  Zitsch  et  al,  1999  (5)  and  Fernandez  et  al,  2003  (61)  have  varying  views  that  

tumours  covering  more  than  one  site  are  more  likely  to  recur  regionally.  Fernandez  et  al,  

2003  (61)  confirms  tumours  presenting  only  in  the  commissure  are  of  higher  risk  of  DRR.    

 

Cellular  and  molecular  factors  

Table  11  Summary  of  results  for  cellular  and  molecular  factors  

Variable   Study   Cut  point   N   Effect  size   95%CI   P  value   FUP  

p27Kip1   Rodolico  et  al,  2005  (7)   Continuous   97   0.92HR   (0.89-­‐0.96)   <0.0001   5  yrs  

 

Rodolico  et  al,  2005  (7)   Low  vs.  High  (by  median)   97   9.37HR   -­‐   <0.0001   5  yrs  

 

Rodolico  et  al,  2005*  (7)   Continuous   97   0.70HR   (0.57-­‐0.88)   0.002   5  yrs  

 

Rodolico  et  al,  2005*  (7)   Low  vs.  High  (by  median)   97   2.28HR   (0.47-­‐11.09)   0.069   5  yrs  

 

Rodolico  et  al,  2004*  (64)   Low  vs.  High  (by  median)   97   20.48OR   (5.40-­‐80.33)   <0.0001   5  yrs  

CyclinD1   Rodolico  et  al,  2005  (7)   Pos.  or  Neg.   97   7.94HR   (2.18-­‐28.9)   0.002   5  yrs  

 

Rodolico  et  al,  2005*   Pos.  or  Neg.   97   13.13HR   (1.77-­‐91.89)   0.02     5  yrs  

 

Rodolico  et  al,  2005*  (7)   Pos.  or  Neg.   97   4.83HR   (0.99-­‐23.37)   0.02     5  yrs  

DNA  aneuploidy   Daniele  et  al,  1998  (66)   Aneuploid  vs.  Diploid   54   -­‐   -­‐   <0.001   -­‐  

PCNA   Daniele  et  al,  1998  (66)   LI=0.48   54   -­‐   -­‐   <0.001   -­‐  

n:  Sample  size,  OR:  Odds  ratio,  95%CI:  95%  Confidence  interval,  FUP:  Minimum  follow  up,  

HR:  Hazards  ratio,  OR:  Odds  ratio,  *:  multivariate  model,  all  studies  reported  delayed  

regional  recurrence    

 

Page 49: Final Mphil Thesis Lip Cancer Latest

49  

 

The  cellular  and  molecular  factors  investigated  as  potential  risk  factors  for  recurrence  

were  p27Kip1,  Cyclin  D1,  DNA  aneuploidy  and  proliferating  cell  nuclear  antigen  (PCNA).  

There  are  few  studies  investigating  these  factors  in  terms  of  predicting  recurrence.  If  

there  is  an  independent  association  the  expression  of  these  molecular  factors  could  

provide  further  prognostic  information  that  may  potentially  impact  on  management.  

 

p27Kip1  

p27Kip1  is  a  tumour  suppressor  gene.  Its  expression  is  detected  immunohistochemically  

using  the  monoclonal  antibody  K25020.(64)  p27Kip1  expression  is  documented  in  2  studies  

(Rodolico  et  al,  2005  (7)  and  Rodolico  et  al,  2004  (64))  as  a  predictor  of  DRR.  Both  studies  

found  an  interaction  with  p27Kip1  and  MTT  and  analysed  the  same  dataset.  Rodolico  et  al,  

2005  (7)  looked  at  time  to  event  and  Rodolico  et  al,  2004  (64)  looked  at  event  occurrence,  

where  the  event  was  DRR.    

 

The  median  expression  of  p27Kip1  was  found  to  be  19.7%  and  at  this  cut-­‐off  the  OR  for  

significantly  predicting  DRR  was  20.48  (95%CI:  5.40-­‐80.33;  P<0.0001).(64)  The  estimated  

HR  when  predicting  time  to  event  using  a  cut-­‐off  of  20%  expression  was  9.37  (P<0.0001).  

This  was  on  univariate  analysis  with  p27Kip1  expression  as  a  categorical  predictor.  The  

univariate  HR  for  p27Kip1  expression  as  a  continuous  variable  was  significant  with  HR:  

0.92(95%CI:  0.89-­‐0.96;  P<0.0001).(7)  This  HR  is  interpreted  as  a  fall  in  risk  by  8%  for  an  

increase  of  1  percent  in  p27Kip1  expression.  

 

On  multivariate  analysis,  p27Kip1  expression  as  a  continuous  variable  had  a  significant  HR:  

0.70  (95%CI:  0.57-­‐0.88;  P=0.002)  when  adjusted  for  tumour  size,  cyclic  D1  expression,  

MTT  and  MTT  interaction  with  p27Kip1  expression.  p27Kip1  in  a  categorical  multivariate  

analysis  had  a  borderline  significant  HR  of  2.28  (95%:  0.47-­‐11.09;  P=0.069)  when  adjusted  

for  the  same  variables.  The  HR  of  2.28  describes  an  increased  risk  associated  with  low  

expression  of  p27Kip1.  On  dichotomisation  there  is  a  loss  of  information,  which  explains  

Page 50: Final Mphil Thesis Lip Cancer Latest

50  

 

the  shift  from  highly  significant  to  that  of  borderline  significance.  Of  note  in  these  

analyses  for  categorical  analysis  a  low  p27Kip1  is  of  interest  and  a  high  p27Kip1  is  considered  

the  baseline,  whereas  on  continuous  analyses  the  HR  refers  to  the  fall  in  risk  for  1%  

increase  in  p27Kip1  expression.  

 

The  increase  in  HR  from  univariate  to  multivariate  suggests  that  even  after  adjusting  for  

key  variables  such  as  MTT  and  tumour  size,  p27Kip1  expression  is  significant.  This  result  

highlights  the  key  role  of  p27Kip1  in  predicting  DRR  independently  of  other  key  factors  

(MTT  and  tumour  size).  

 

Cyclin  D1    

Cyclin  D1  is  a  proto-­‐oncogene  whose  expression  is  upregulated  in  tumour  development.  

The  implication  of  analysing  this  variable  has  only  been  reported  in  one  study  (Rodolico  et  

al,  2005  (7)).  Cyclin  D1  expression  was  classified  by  the  intensity  of  nuclear  staining  within  

tumour  cells  and  the  percentage  that  were  positive.(7)  Cyclin  D1  was  assessed  

categorically  in  univariate  and  multivariate  analyses,  whereas  in  the  multivariate  analysis  

there  were  two  models;  one  adjusted  for  continuous  covariates  and  the  other  adjusted  

for  categorical  covariates.    

 

Univariately  the  HR  was  significant  at  7.94  (95%CI:  2.18-­‐28.9;  P=0.002),  which  indicates  a  

substantial  effect.  The  results  of  the  multivariate  models  vary  greatly  depending  on  

whether  the  remaining  covariates  were  categorically  or  continuously  coded.  Where  the  

remaining  variables  were  continuously  coded,  the  HR  for  Cyclin  D1  expression  was  

significant  at  13.13  (95%CI:  1.77-­‐91.89;  P=0.02)  and  where  they  were  categorically  coded,  

the  HR  was  also  significant  at  4.83  (95%CI:  0.99-­‐23.37;  P=0.02).  Even  though  the  P  values  

were  equal,  the  loss  of  information  from  continuous  to  categorical  classification  of  the  

remaining  covariates  warrants  using  the  model  where  confounding  variables  were  

Page 51: Final Mphil Thesis Lip Cancer Latest

51  

 

treated  as  continuous  variables.  Therefore  the  higher  HR  of  13.13  may  represent  the  true  

effect  size.  

 

DNA  aneuploidy  

DNA  ploidy  is  measured  by  comparing  the  ratio  of  DNA  content  of  the  tumour  cell  peak  to  

a  control  (DNA  index  (DI)).  Diploidy  is  normal  when  DI<1.25,  periploidy  is  defined  as  

1.25<DI<1.4,  and  aneuploidy  as  DI>1.4.  DNA  aneuploidy  is  more  frequently  reported  in  

poorly  differentiated  tumours  and  thus  associated  with  the  histological  grade  of  a  

tumour.(66)  

 

Daniele  et  al,  1998  (66)  reported  on  DNA  aneuploidy,  with  the  OR  significant  for  

predicting  DRR.  However,  there  are  some  points  of  contention  in  this  study.  Firstly,  

tumours  coded  as  periploid  were  not  shown  as  the  total  sample  size  for  calculating  a  P  

value  of  diploid  and  aneuploidy  add  to  the  total  sample  size  of  study.  Therefore  it  is  likely  

that  periploid  tumours  may  have  been  coded  as  diploid  although  no  details  were  given.  

Although  the  sample  size  is  small  with  2  cells  of  the  two-­‐by-­‐two  table  (2x2  table)  

containing  5  or  fewer  patients,  the  event  rate  in  the  aneuploidy  group  is  considerably  

higher.  Aneuploidy  may  be  another  important  histological  variable.  However,  the  impact  

of  this  variable  is  unknown,  as  there  were  no  multivariate  models  that  included  

histological  grade  to  confirm  whether  the  level  of  DNA  ploidy  is  an  independent  

determinant  of  outcome  in  lip  cancer.    

 

PCNA  

PCNA  is  detected  immunohistochemically  using  PC10  antibody.  PCNA  expression  is  

associated  with  a  rapid  tumour  growth  rate  and  is  associated  with  poor  prognosis  in  other  

malignant  tumours,  such  as  breast  cancer,  colorectal  cancer  and  oral  cancer.(66)  The  

association  in  Daniele  et  al,  1998  was  significant  (P<0.05),  with  the  event  rate  being  much  

Page 52: Final Mphil Thesis Lip Cancer Latest

52  

 

higher  in  patients  expressing  high  levels  of  PCNA.(66)  The  association  was  for  predicting  

DRR.  

 

In  conclusion,  these  4  cellular/molecular  factors  may  be  predictors  of  DRR.  However,  

further  studies  are  required  to  establish  the  role  of  molecular  variables  in  predicting  

outcomes  for  patients  with  lip  SCC.  Investigating  whether  these  factors  predict  recurrence  

independent  of  other  established  risk  factors  such  as  tumour  size,  MTT  or  histological  

grade  would  be  particularly  useful.  Currently  these  variables  play  no  role  in  clinical  

management.    

 

Perineural  invasion  

Table  12  Summary  of  results  for  perineural  invasion  

Study   Outcome   Cut  point   N   HR   95%CI   P  value   FUP  

Frierson  et  al,  1986  (6)   RR  at  presentation   Absent/  Present   186   -­‐   -­‐   <0.001   -­‐  

Rodolico  et  al,  2005  (7)   DRR   Absent/  Present   97   9.78   (2.64-­‐36.27)   <0.001   5  yrs  

Rodolico  et  al,  2004  (64)   DRR   Absent/  Present   97   -­‐   -­‐   0.008   5  yrs  

n:  Sample  size,  95%CI:  95%  Confidence  interval,  HR:  Hazard  ratio,  FUP:  Minimum  follow  

up,  DRR:  Delayed  regional  recurrence,  RR:  Regional  recurrence    

 

Perineural  invasion  (PNI)  is  the  invasion  of  tumour  cells  into  the  perineural  space.(6)  Four  

studies  have  analysed  PNI  as  a  predictor  of  DRR.  PNI  is  reported  in  only  a  minority  of  

patients  and  is  an  indicator  of  tumour  invasion,  increasing  the  likelihood  of  recurrence.    

 

Frierson  et  al,  1986  (6)  identified  the  presence  of  PNI  in  5%  of  patients  that  did  not  

experience  DRR,  in  comparison  PNI  was  detected  in  41%  of  patients  who  experienced  

Page 53: Final Mphil Thesis Lip Cancer Latest

53  

 

DRR,  which  was  a  significant  difference  (P<0.001)  with  no  OR  given.  In  this  study  11%  of  

patients  overall  had  PNI,  in  keeping  with  only  10-­‐15%  of  patients  having  this  reported  in  

other  non-­‐lip  cutaneous  SCC.(6)  

 

Daniele  et  al,  1998  (66)  reported  a  non-­‐significant  association  between  PNI  and  DRR,  but  

this  was  solely  due  to  the  fact  that  there  was  a  zero  cell  (there  were  no  patients  with  PNI  

that  were  recurrence  free)  so  that  a  P  value  was  unable  to  be  calculated.  The  analysis  may  

have  yielded  significant  results  associating  PNI  with  DRR  if  the  authors  had  implemented  a  

suitable  zero-­‐cell  methodology.  Since  this  study  did  not  use  a  suitable  zero-­‐cell  

methodology  the  non-­‐significant  association  may  not  be  correct  and  the  association  

therefore  remains  untested.  This  is  why  the  study  was  not  included  in  Table  12.  

 

Rodolico  et  al,  2004  (64)  and  Rodolico  et  al,  2005  (7)  commented  on  PNI  using  the  same  

dataset,  one  using  the  event  and  the  other  using  time  to  event,  respectively.  Rodolico  et  

al,  2004  (64)  analysed  predictors  of  the  occurrence  of  the  event  (DRR),  and  found  a  

significant  association  of  PNI  to  the  event.  Similar  to  Daniele  et  al,  1998  (66)  there  was  

only  1  patient  with  PNI  who  was  recurrence  free.  The  definition  of  PNI  and  its  assessment  

methods  were  not  given.    

 

Rodolico  et  al,  2005  (7)  looked  at  the  data  from  a  time  to  event  perspective  to  obtain  a  

HR.  PNI  was  only  assessed  in  a  univariate  model  and  reported  a  significant  HR:  9.78  

(95%CI:  2.64-­‐36.27;  P<0.001).  This  study  had  97  patients  with  a  minimum  follow  up  of  5  

yrs.  Here  the  cut-­‐off  for  the  variable  was  the  presence  or  absence  of  PNI.    

 

The  evidence  suggests  that  patients  with  PNI  are  more  likely  to  develop  recurrence  than  

patients  without  PNI.  However,  these  results  were  obtained  from  only  4  studies,  where  

the  incidence  of  PNI  is  only  10-­‐15%.  Larger,  better-­‐constructed  studies  are  required  

Page 54: Final Mphil Thesis Lip Cancer Latest

54  

 

before  the  evidence  is  conclusive.  Due  to  the  low  number  of  patients  with  PNI  who  

remained  recurrence  free  (e.g.  Daniele  et  al,  1998  (66)  and  Rodolico  et  al,  2004  (64)),  

studies  should  be  constructed  as  a  time  to  event  with  the  objective  of  obtaining  a  HR  via  

survival  analysis.    

 

Other  risk  factors  

Table  13  Summary  of  results  for  ulcerated  pattern  and  tumour  area  

Variable   Study   Cut  Point   n   OR   95%CI   P  value   FUP   Event  rate  

Ulcerated  pattern   Zitsch  et  al,  1999  (5)   Absent/  Present   1001   -­‐   -­‐   <0.05   5  yrs   4%  

Tumour  area   Zitsch  et  al,  1999  (5)   Absent/  Present   1001   1.17   (1.03-­‐1.32)   -­‐   5  yrs   4%  

n:  Sample  size,  OR:  Odds  ratio,  95%CI:  95%  Confidence  interval,  FUP:  Minimum  follow  up,  

all  studies  reported  delayed  regional  recurrence    

 

Lip  cancer  growing  in  an  ulcerated  pattern  at  presentation  was  identified  by  Zitsch  et  al,  

1999  (5)  as  a  significant  predictor  (P<0.05)  for  DRR  as  seen  in  Table  13,  with  no  patients  

experiencing  DRR  that  had  non-­‐ulcerated  lip  cancer  in  this  study.  This  was  a  large  study  

with  1001  patients  and  5  yrs  minimum  follow  up  however  the  event  rate  for  DRR  was  only  

4%.  This  suggests  even  with  the  large  sample  size  the  study  may  have  been  

underpowered.  

 

In  Zitsch  et  al,  1999  (5)  tumour  area  in  a  multivariate  model  with  age  and  localisation  had  

an  association  with  DRR.  The  mean  tumour  area  was  measured  and  compared  between  

recurring  and  non-­‐recurring  patients,  with  an  OR  of  1.17.  This  may  have  been  a  

statistically  significant  result,  as  the  OR  of  1  was  not  contained  within  the  confidence  

interval.  It  would  be  expected  that  if  tumour  size,  MTT  and  the  extent  of  invasion  are  

associated  to  DRR,  so  too  should  tumour  area.  

Page 55: Final Mphil Thesis Lip Cancer Latest

55  

 

Muscle  invasion  and  vascular  invasion  are  also  worth  noting.  Muscle  invasion  was  defined  

as  tumour  infiltrating  muscle  1  mm  or  more  as  measured  by  an  ocular  micrometer  in  

Frierson  et  al,  1986.(6)  40%  of  group  1  (patients  with  non-­‐metastasizing  carcinomas  at  

evaluation)  had  muscle  invasion,  whereas  in  group  2  (patients  with  metastasizing  

carcinomas  at  evaluation),  77%  had  muscle  invasion.(6)  An  analysis  of  the  data  was  not  

done  so  P  values  and  OR  were  not  quoted.  The  authors  found  vascular  invasion  difficult  to  

assess  due  to  inflammation  and  fibrosis.    

 

Survival  and  its  risk  factors  

The  5-­‐year  relative  survival  for  SCC  of  the  lip  was  90.9%  in  NSW  from  1999-­‐2003  using  the  

Cancer  Council  data.(10)  Relative  survival  compares  survival  of  patients  with  the  general  

population  of  the  same  age  group;  hence,  it  is  usually  higher  than  OS,  which  does  not  take  

age  into  consideration.  The  5-­‐year  CSS  statistic  from  the  National  Cancer  Database  in  the  

USA  was  91.1%  after  following  10,274  patients  for  that  period.  This  data  was  collected  by  

the  SEER  Program,  and  85.2%  of  these  patients  underwent  Sx  alone,  so  RTx  as  a  

treatment  was  under-­‐represented.  Therefore  this  survival  outcome  may  not  reflect  the  

patient  population  treated  with  lip  cancer.  The  reported  OS  is  less  than  CSS  in  lip  cancer  

as  the  majority  of  patients  tend  to  die  from  other  unrelated  causes.  The  correct  method  

to  calculate  survival  as  mentioned  is  to  ideally  use  a  competing  risks  survival  analysis.  

 

Zitsch  et  al,  1995  (2)  investigated  whether  variables  other  than  treatment  affected  

survival.  This  study  categorised  predictor  variables  and  compared  the  determinate  or  CSS  

for  each  category.  This  is  presented  in  Table  14.(2)  This  was  a  large  study  with  1047  

patients  and  a  recruitment  period  from  1940  to  1987.  However,  this  study  only  recorded  

75  deaths  (7.2%)  due  to  lip  cancer.    

 

In  this  article(2),  the  use  of  CSS  as  an  outcome  was  problematic.  CSS  is  potentially  biased  

by  the  number  of  deaths  not  due  to  lip  cancer  as  these  patients  are  censored.  Uneven  

Page 56: Final Mphil Thesis Lip Cancer Latest

56  

 

distribution  of  these  deaths  could  cause  uneven  censoring,  which  in  turn  could  lead  to  

bias.  For  example,  if  a  certain  risk  factor  causes  patients  to  die  for  a  reason  other  than  lip  

cancer,  then  although  OS  rates  are  worse,  the  CSS  would  improve.  

 

In  the  CSS  column  the  denominator  is  the  number  of  patients  in  that  group  (e.g.  number  

of  males  in  the  study).  The  numerator  is  the  number  of  patients  that  were  alive  at  the  end  

of  the  5-­‐yr  follow  up.  

 

The  article  reports  that  as  tumour  size  or  grade  rises,  there  is  a  decrease  in  CSS.  Regional  

or  distant  metastases  also  lead  to  a  lower  CSS.  This  is  valid  as  larger  tumour  size  and  

increasing  tumour  grade  are  associated  with  DRR,  which  is  itself  associated  with  higher  

mortality.  Site,  which  was  a  contentious  variable  in  predicting  DRR,  is  a  predictor  of  

survival  in  this  study.  This  may  confirm  that  sites  other  than  the  lower  lip  have  a  more  

aggressive  disease.  Gender  had  a  weak  association  but  this  could  be  due  to  the  small  

sample  size  and  the  small  proportion  of  women  in  the  study.    

 

 

 

 

 

 

 

 

 

 

Page 57: Final Mphil Thesis Lip Cancer Latest

57  

 

Table  14  Risk  factors  predicting  5  yr-­‐cause  specific  survival  in  lip  cancer  in  one  study  

Patient  variable   CSS   P  value  

Tumour  size  

 

<0.0015  

<1  cm   221/229    

 <2  cm   299/330    

 <3  cm   78/92    

 <4  cm   22/33    

 >4  cm   29/47    

       Tumour  grade  

 

<0.01  

I   429/455    

 II   85/101  

 III   11/19    

 IV   25/35    

 Adenopathy/Metastases   76/124     <0.001  

Radiation  therapy   226/260     <0.001  

Surgical  margins  clear  398/424    

<0.024  

Site  

 

0.043  

Upper  lip  or  commissure   20/26    

 Lower  lip  608/676    

 Gender  

 

0.112  

Male   652/732    

 Female   17/22    

 Table  courtesy  of  Zitsch  et  al,  1995  (2)  

Page 58: Final Mphil Thesis Lip Cancer Latest

58  

 

Analysis  of  the  Westmead  lip  cancer  dataset  

This  section  details  the  methods,  analysis  and  interpretation  of  results  on  patients  with  

SCC  of  the  lip.  This  is  a  study  of  27  years  duration  comprising  of  both  retrospective  and  

prospective  data.  This  dataset  recorded,  among  many  variables,  time  to  death  and  time  

to  recurrence  of  disease  from  the  date  of  diagnosis.    

 

Our  study  investigated  risk  factors  that  are  potentially  associated  with  time  to  recurrence  

of  disease  and  survival,  including  whether  different  treatments  altered  the  risk  of  the  

outcome.  This  study  was  motivated  by  the  need  to  determine  the  predictors  and  

prognostic  factors  for  determining  high  risk  patients  in  terms  of  time  to  recurrence  and  

survival,  so  that  they  may  potentially  be  identified  and  managed  accordingly.  

 

Materials  and  methods  

A  retrospective  dataset  of  patients  diagnosed  with  lip  SCC  treated  between  January  1980  

and  July  2007  at  Westmead  Hospital  was  analysed.  Data  collected  before  December  1997  

was  retrospective,  whilst  data  collected  after  that  date  was  prospective  in  the  sense  that  

patients  were  recorded  and  followed  up  prospectively.  All  patients  were  added  to  the  

study  after  assessment  in  a  multidisciplinary  head  and  neck  clinic.  

 

Patient  eligibility  

Patient  records  were  examined  and  if  all  the  inclusion  criteria  were  met,  they  were  

considered  eligible  for  the  study.  Additionally  if  any  of  the  exclusion  criteria  were  satisfied  

then  the  patient  was  removed  from  the  study  cohort.    

Page 59: Final Mphil Thesis Lip Cancer Latest

59  

 

Inclusion  criteria  

• Patients  who  presented  to  Westmead  Hospital  in  the  study  period  between  

January  1980  and  July  2007.  

• Patients  who  were  diagnosed  with  biopsy  proven  SCC  of  the  lip.  

• Patients  who  were  treated  at  Westmead  with  either  Sx,  RTx  or  Sx+RTx.  

 

Exclusion  criteria  

• Patients  whose  follow-­‐up  was  less  than  6  months,  unless  they  died  or  relapsed  

within  the  time  period  of  6  months,  in  which  case  patients  were  included  in  the  

survival  dataset.    

• Patients  dying  before  6  months  who  had  not  relapsed  were  excluded  from  the  

relapse  dataset.  

• Patients  previously  treated  elsewhere  before  presenting  to  the  Westmead  

Hospital.  

 

Treatment  

Treatment  delivered  was  either  RTx  or  Sx  or  a  combination  of  these.  If  excision  margins  

were  considered  inadequate  (e.g.  close  or  positive  margins)  then  a  recommendation  of  

adjuvant  local  RTx  (Sx+RTx)  was  often  made.  Clinicians  in  a  multidisciplinary  head  and  

neck  clinic  assigned  treatment  options.    

 

Methods  

All  collected  data  was  recorded  on  a  data  collection  form  and  entered  into  a  computer  

database  (SPSS).  The  final  database  was  cleaned  and  codified  in  a  manner  appropriate  for  

statistical  analysis.  Extreme  or  illogical  values  were  checked  and  where  necessary  

resolved  by  going  back  to  the  patient’s  file  or  using  other  sources  of  information,  such  as  

Page 60: Final Mphil Thesis Lip Cancer Latest

60  

 

electronic  patient  databases.  Illogical  values  that  needed  to  be  checked  were  tumour  size  

in  a  handful  of  patients  (less  than  10  patients)  where  the  tumour  size  status  (T  score)  did  

not  match  the  tumour  size  in  mm.  These  values  were  checked  with  the  patient  file  and  

confirmed  by  my  supervisor  to  ascertain  the  correct  value.    

 

Statistical  analyses  carried  out  in  this  chapter  are  divided  into  4  sections.  The  first  section  

is  the  analysis  of  baseline  demographics,  which  includes  relevant  cross  tabulations  of  the  

variables  in  the  dataset  concerning  treatment  and  outcome.  These  include  tumour  size,  

laterality,  location,  histological  grading,  gender,  age  and  smoking  status.  

 

The  second  section  relates  to  univariate  survival  analyses  of  predictors  for  survival  and  

recurrence.  The  third  section  looks  at  the  adjusted  effect  of  treatment  with  additional  

statistically  significant  variables  included  as  confounding  variables.  The  addition  of  such  

confounding  variables  needed  to  be  significant  with  the  inclusion  of  the  treatment  

comparison.  The  fourth  section  looks  at  risk  profile  modelling  with  survival  and  

recurrence  as  outcomes.  Separate  survival  risk  models  were  constructed  with  and  

without  treatment,  where  sufficient  predictors  were  available.  

 

Methods  of  univariate  analysis  

To  my  knowledge,  the  only  other  study  employing  time  to  event  methods  was  Rodolico  et  

al,  2005  (7).  This  study  however,  only  considered  the  association  of  baseline  predictors  on  

time  to  event  outcomes  and  did  not  consider  any  treatment  comparisons.  My  approach  

takes  into  account  the  order  of  events  (using  proportional  hazard  models)  and  thus  is  a  

potentially  more  powerful  method  than  some  of  the  standard  methods  used  in  the  

literature  that  model  the  OR.  Also  survival  analysis  accounts  for  censored  observations  in  

a  systematic  fashion,  whilst  modeling  the  OR  only  accounts  for  non-­‐events  as  a  

proportion  at  the  end  of  the  study.    This  adds  to  the  power  depending  on  the  

characteristics  of  the  dataset.    

Page 61: Final Mphil Thesis Lip Cancer Latest

61  

 

In  our  study  95/190  patients  were  censored  within  5  years  in  the  survival  dataset  and  

99/191  in  the  recurrence  dataset,  with  regards  to  death  and  recurrence  as  an  outcome  

respectively.  Patients  who  died  and  did  not  recur  were  considered  as  censored  in  the  

recurrence  dataset.    

 

Proportional  hazards  model  examines  the  risk  of  an  event  among  groups  of  patients  

determined  by  the  categories  of  the  variables  being  considered  for  analysis.  Associations  

between  exposures  and  the  outcome  risk  are  usually  expressed  as  HRs.  

 

Univariate  models  were  performed  to  test  the  statistical  significance  of  the  predictors  and  

treatment  comparisons  in  estimating  the  strength  of  any  association  between  these  

variables  and  the  outcome.  This  can  be  obtained  by  examining  whether  the  HRs  were  

statistically  different  from  unity  for  each  predictor.  A  univariate  analysis  aids  in  the  

selection  of  candidate  variables  into  a  multivariate  model  (whether  or  not  the  variable  is  

eventually  statistically  significant).  If  a  variable  was  significant  on  a  univariate  analysis  but  

not  significant  in  a  multivariate  analysis  then  the  perceived  association  observed  can  be  

better  explained  by  other  variables,  which  appear  in  the  model.  

 

For  those  variables  that  were  statistically  significant  and  comprised  of  only  two  groups,  

plots  showing  the  cumulative  proportion  experiencing  the  event  were  constructed  to  help  

visualise  survival  differences.  These  are  Kaplan  Meier  (KM)  plots  and  were  constructed  

according  to  the  guidelines  set  out  by  Pocock  et  al,  2002.(67)  The  plots  are  curtailed  at  5yr  

follow-­‐up  to  avoid  misleading  inferences  based  upon  the  tail  of  the  curves,  where  there  

are  fewer  patients  still  being  followed  up  in  the  cohort.  Also  5yr  recurrence/survival  rates  

are  useful  indicators  of  treatment  benefit  in  this  disease.  These  cumulative  incidence  

plots  allow  for  visualisation  of  the  differences  between  curves  when  the  event  rate  is  low,  

because  they  are  increasing  and  the  area  of  the  plot  above  the  curves  can  be  minimised.  

The  log-­‐rank  test  was  performed  on  all  the  dichotomous  predictors  in  the  univariate  

Page 62: Final Mphil Thesis Lip Cancer Latest

62  

 

analysis  to  test  for  differences  between  the  survival  curves.  A  HR,  95%  CI  and  a  P  value  

were  calculated  to  measure  the  effect  size  of  a  variable.  Finally  at  the  base  of  the  curve  

(below  the  x-­‐axis),  the  'Number  at  risk'  table  has  been  included  to  provide  the  number  of  

patients  contributing  information  at  each  time  point.  

 

Methods  for  adjusted  treatment  effect  

In  order  to  determine  whether  any  treatment  effect  is  sustained  after  accounting  for  

different  confounding  variables,  adjusted  treatment  effect  models  were  examined.  This  

was  done  for  each  of  the  four  treatments  comparisons,  with  two  corresponding  models,  

one  for  survival  and  the  other  for  recurrence.  Adjusted  treatment  effect  models  include  

statistically  significant  confounding  variables.  Confounding  variables  are  related  to  both  

the  outcome  (survival  or  recurrence)  and  the  predictors.    

 

Methods  of  risk  models  

Three  risk  models  were  developed  with  the  aim  of  understanding  disease  progression  

with  treatment  by  classifying  patients  into  risk  groups  using  risk  models  based  on  the  

impact  of  various  predictors,  prognostic  factors  and  treatment  comparisons.  Two  of  the  

risk  models  use  survival  as  an  outcome,  one  with  a  treatment  term  (i.e.  whether  or  not  

they  received  Sx  or  Sx+RTx)  and  the  other  without  a  treatment  term.  The  models  without  

treatment  were  developed  to  better  understand  the  impact  of  significant  baseline  

predictors  on  disease  progression  regardless  of  any  subsequent  treatment,  whereas  the  

model  including  the  treatment  comparison  was  for  understanding  the  contribution  of  a  

specific  treatment  on  disease  progression.  This  was  repeated  for  the  outcome  of  time  to  

recurrence.  

 

Patients  with  SCC  of  the  lip  treated  at  this  institution  (Westmead  Cancer  Care  Centre)  

may  be  more  likely  to  have  more  advanced  disease  (higher  risk  of  recurrence  and  poor  

Page 63: Final Mphil Thesis Lip Cancer Latest

63  

 

survival)  as  this  is  a  tertiary  referral  centre.  This  implies  there  may  be  patient  selection  

bias  and  institutional  bias  in  these  results.    

 

The  variables  included  in  a  risk  model  are  usually  those  that  are  significantly  associated  

with  the  outcome.  However,  variables  that  trend  towards  significance  may  also  be  added.  

The  treatment  comparison  was  limited  to  patients  treated  with  Sx  or  Sx+RTx  vs.  RTx  as  all  

patients  underwent  one  of  these  treatments.  For  identifying  risk,  a  prediction  score  using  

the  coefficients  from  the  corresponding  Cox  Proportional  Hazards  model  was  obtained  for  

each  patient.  The  median  value  of  this  prediction  score  was  then  selected  as  the  cut-­‐off  

point  and  this  was  used  to  classify  patients  into  high  risk  (those  with  a  prediction  score  

above  the  cut-­‐off  point)  and  low  risk  (those  with  a  prediction  score  below  the  cut-­‐off  

point).  Curves  showing  the  cumulative  proportion  experiencing  the  event  were  

constructed  to  illustrate  the  risk  models  based  on  the  cut-­‐off  point.  

 

The  risk  indicator  variable  was  constructed  whereby  patients  classified  as  high  risk  were  

assigned  a  1  and  low  risk  were  assigned  a  0.  A  cross  tabulation  of  the  risk  grouping  and  

the  event  of  death  or  being  alive  was  created  to  provide  an  understanding  of  how  well  

this  classification  predicted  outcome.  The  strength  of  this  classification  can  be  measured  

by  OR.  This  was  repeated  for  recurrence  (yes/no).    

 

In  order  to  test  the  adequacy  of  my  modelling  two  approaches  were  used  the  Gronnesby  

Borgan  (GB)  goodness  of  fit  test,  1996  (68)  and  the  May  and  Hosmer  (MH),  1998  (69)  

approach.    Asymptotically  (i.e.  with  a  large  number  of  events)  these  tests  are  equivalent,  

but  because  my  dataset  did  not  contain  many  events  both  approaches  were  reported.  

The  GB  goodness  of  fit  test  compares  the  observed  number  of  events  in  each  group  with  

the  expected  number  of  events  (obtained  from  martingale  residuals  which  is  a  complex  

mathematical  formula).  When  the  number  of  observed  events  is  close  to  the  expected  

number  of  events  the  test  is  non-­‐significant  suggesting  the  model  is  a  good  fit.(70)  

Page 64: Final Mphil Thesis Lip Cancer Latest

64  

 

The  MH  approach  adds  the  risk  indicator  variable  as  a  covariate  in  the  proportional  

hazards  model  and  tests  for  its  significance.  If  this  risk  indicator  variable  is  not  significant  

than  this  suggests  the  original  proportional  hazards  model  is  an  adequate  fit.  

 

Typically  risk  score  equations  comprise  of  coefficients,  which  have  a  number  of  significant  

digits.  It  is  then  helpful  to  construct  a  profile  index  (PI),  which  simplifies  the  weights  

attributed  to  each  of  the  variables  in  the  prediction  model.  This  allows  for  easier  

understanding  and  use  by  clinicians.  

 

Dataset  description  

Two  outcomes  (survival  and  recurrence),  four  different  treatment  comparison  (see  Table  

15),  11  predictors  (Table  16)  were  considered  and  yielded  three  risk  categorisation  

indicator  variables  for  the  three  risk  models.  Recurrence  was  defined  as  either  local  (at  

the  primary  site)  alone  or  regional  (lymph  nodes).  Survival  and  recurrence  were  chosen,  

as  they  are  the  important  time  points  in  the  progression  of  any  treated  cancer.    

 

Patients  underwent  either  Sx,  or  RTx  or  Sx+RTx.  The  comparison  of  Sx  alone  vs.  the  other  

treatments  was  not  performed  because  those  patients  receiving  Sx+RTx  were  principally  

surgical  candidates  and  combining  them  with  the  RTx  group  would  produce  a  group  of  

heterogeneous  patients  making  interpretation  difficult.    

 

 

 

 

 

Page 65: Final Mphil Thesis Lip Cancer Latest

65  

 

The  four  treatment  groups  devised  were  as  follows:  

Table  15  Treatment  definitions  

Treatment  Variables   Definition   Excludes  patient  group  who  received:  

Sx  vs.  RTx   Surgery  alone  vs.  Radiotherapy  alone   Adjuvant  Radiotherapy  

Sx  or  Sx+RTx  vs.  RTx   Any  surgery  vs.  Radiotherapy  alone     None  

Sx+RTx  vs.  Sx   Surgery  with  adjuvant  Radiotherapy  vs.  Surgery  alone   Radiotherapy  alone  

Sx+RTx  vs.  RTx   Surgery  with  adjuvant  Radiotherapy  vs.  Radiotherapy  alone   Surgery  alone  

 

Ten  variables  were  collected  that  were  relevant  to  all  groups  and  had  near  complete  

information.  Some  variables  only  relate  to  the  Sx  group  as  they  described  tumour  

characteristics  following  excision,  e.g.,  MTT,  which  was  impossible  to  measure  in  patients  

undergoing  RTx.  Only  three  of  the  variables  selected  had  missing  values  and  the  number  

of  missing  values  were  tumour  size  in  mm  (14/190),  well  differentiated  (36/190)  and  

smoking  status  (17/190).  The  remaining  variables  had  complete  information.    

 

Among  those  variables  considered,  tumour  size  has  been  extensively  investigated  in  the  

literature  and  5  out  of  7  studies  reported  a  significant  association  with  recurrence  where  

larger  tumours  predicted  for  recurrence.(3,  7,  39,  57,  61,  63,  64)  The  laterality  of  lip  SCC  

as  a  potential  predictor  of  recurrence  or  survival  was  not  reported  by  any  study.  The  site  

of  the  lip  cancer  (upper  vs.  lower  vs.  commissural)  has  been  investigated  in  one  study.(61)  

Histological  grade  has  been  investigated  in  4  studies  and  all  showed  a  significant  

association  with  recurrence.(7,  61,  64,  65)  Age  was  investigated  in  two  studies,  which  

reported  no  association  with  recurrence.(5,  61)  Smoking  has  not  been  investigated  with  

respect  to  recurrence,  but  pipe  smoking  is  a  risk  factor  for  developing  lip  cancer  in  a  

subset  of  patients.  The  relative  risk  of  developing  lip  cancer  was  higher  in  pipe  smokers  

then  smokers  of  other  forms  of  tobacco.(12)  Gender  was  investigated  in  4  studies,  which  

showed  no  association  between  gender  and  DRR,  or  tumour  size,  or  CSS  for  lip  cancer  

patients.(2,  5,  20,  62)  Therefore  we  have  investigated  the  following  11  variables.  

Page 66: Final Mphil Thesis Lip Cancer Latest

66  

 

Table  16  Patient  and  tumour  predictor  definitions  

Predictor  variables   Definition  

T1   Tumour  smaller  than  20  mm  in  longest  dimension  

≥T2   Tumour  equal  to  or  larger  than  20  mm  in  longest  dimension  

Left  side   Tumour  on  the  left  vs.  not  left  side.  

Size   Size  of  the  tumour  (histological  size  in  Sx  patients  and  clinical  size  in  RTx  patients)  

Size≥20mm   Size  greater  than  or  equal  to  20  mm  (binary  variable)  

Lower  lip   Tumour  on  lower  lip  vs.  (upper  lip  or  commissure)  

Well  diff   Well  differentiated  vs.  (moderately  or  poorly  differentiated)  

Gender   Gender  of  patient  

Age   Age  at  first  diagnosis  in  years  

Age≥70     Age  at  diagnosis  dichotomised  at  70  years  

Smoker   Smoker  or  ex-­‐smoker  vs.  never  smoked  

 

 

 

   

Page 67: Final Mphil Thesis Lip Cancer Latest

67  

 

Results  

Baseline  demographics  

The  baseline  demographics  were  tabulated  according  to  continuous  and  dichotomous  

predictors  for  the  survival  and  recurrence  models  using  preliminary  treatment  and  

outcome  groupings.    

 

Table  17  Summary  measures  on  age  of  patients  by  treatment  groups  

Age  at  diagnosis  (years)   N   Mean   St.  Dev.   Median   Min   Max  

Sx   98   58.688   17.096   60.242   17.483   88.578  

RTx   85   63.498   16.37   63.775   27.367   97.314  

Sx  +  RTx   24   64.88   16.587   69.283   29.931   86.844  

Overall   207   61.405   16.851   62.981   17.483   97.314  

St.  Dev.:  Standard  deviation,  Sx+RTx:  Surgery  and  adjuvant  radiotherapy  

 

 

 

 

 

 

 

 

Page 68: Final Mphil Thesis Lip Cancer Latest

68  

 

Dichotomous  variables  used  in  overall  survival  modelling  

Table  18  Baseline  dichotomised  variables  and  all  cause  mortality  

Variable   Alive  (n=142)   Sx  (n=89)   RTx  (n=79)   Sx+RTx  (n=22)   Total  (n=190)  

Male   106  (75%)   65  (46%)   63  (44%)   14  (10%)   142  

Female   36  (75%)   24  (50%)   16  (33%)   8  (17%)   48              

T1   114  (79%)   77  (53%)   48  (33%)   19  (13%)   144  

≥T2   28  (61%)   12  (26%)   31  (67%)   3  (7%)   46              

Lower  lip   124  (74%)   78  (47%)   72  (43%)   17  (10%)   167  

Upper  lip  or  Commissure   18  (78%)   11  (48%)   7  (30%)   5  (22%)   23  

Well  diff     60  (78%)   37  (48%)   30  (39%)   10  (13%)   77  

Moderately  diff   53  (82%)   37  (57%)   21  (32%)   7  (11%)   65  

Poorly  diff   8  (75%)   5  (42%)   2  (17%)   5  (42%)   12  

Unknown   21  (58%)   10  (28%)   26  (72%)   0  (0%)   36  

           

Left  Side   46  (79%)   29  (50%)   23  (40%)   6  (10%)   58  

Right  Side  or  Midline   96  (73%)   60  (45%)   56  (42%)   16  (12%)   132  

           

Smoker  (ex  or  current)   86  (77%)   51  (46%)   48  (43%)   13  (12%)   112  

Never  smoked   46  (75%)   31  (51%)   23  (38%)   7  (11%)   61  

Missing   10  (59%)   7  (41%)   8  (47%)   2  (12%)   17  

           

Age<70yrs   97  (81%)   61  (51%)   48  (40%)   11  (9%)   120  

Age≥70yrs   45  (64%)   28  (40%)   31  (44%)   11  (16%)   70  

           

Survival  risk  model  including  treatment  

         High  risk   50  (63%)   36  (46%)   31  (39%)   12  (15%)   79  

Low  risk   92  (83%)   53  (48%)   48  (43%)   10  (9%)   111  

 Survival  risk  model  excluding  treatment  

         High  risk   65  (66%)   36  (37%)   50  (51%)   12  (12%)   98  

Low  risk   77  (84%)   53  (58%)   29  (32%)   10  (11%)   92  

 Recurrence  risk  model  including  treatment  

         High  risk   81  (74%)   89  (81%)   0  (0%)   21  (19%)   110  

Low  risk   61  (77%)   0  (0%)   79  (100%)   0  (0%)   79  

 Diff:  Differentiated  (used  in  histological  grading),  Data  not  available  for  all  variables,  1  patient  excluded  from  recurrence  modelling  as  they  died  within  6  months,  before  recurring.    

Page 69: Final Mphil Thesis Lip Cancer Latest

69  

 

Univariate  models  

Survival  models  from  diagnosis  

Table  19  Univariate  results  for  overall  survival  

    Survival  from  diagnosis  to  death          

Variable   HR   95%CI   P  value   N   failures  (%n)  

Age  in  years   1.04   (1.019  -­‐  1.061)   <0.001   190   48  (25%)  

Age≥70  years     2.849   (1.566  -­‐  5.181)   0.001   190   48  (25%)  

T1  tumour   0.471   (0.26  -­‐  0.853)   0.013   190   48  (25%)  

Left  side   0.723   (0.372  -­‐  1.402)   0.336   190   48  (25%)  

Smoker  (ex  or  current)   0.832   (0.437  -­‐  1.581)   0.574   173   41  (24%)  

Male  gender   0.905   (0.457  -­‐  1.792)   0.775   190   48  (25%)  

Lower  lip   0.897   (0.352  -­‐  2.284)   0.82   190   48  (25%)  

Well  diff     1.067   (0.532  -­‐  2.14)   0.856   154   33  (21%)  

Treatment   HR   95%CI   P  value   N   failures  (%n)  

Sx  vs.  RTx   1.435   (0.752  -­‐  2.738)   0.274   168   40  (24%)  

Sx  or  Sx+RTx  vs.  RTx   1.557   (0.847  -­‐  2.862)   0.154   190   48  (25%)  

Sx+RTx  vs.  Sx   1.415   (0.625  -­‐  3.205)   0.406   111   30  (27%)  

Sx+RTx  vs.  RTx   2.034   (0.863  -­‐  4.793)   0.105   101   26  (26%)  

 HR:  Hazard  ratio,  95%CI:  95%  Confidence  interval,  Sx:  Surgery,  RTx:  Radiotherapy,  

Sx+RTx:  Surgery  and  adjuvant  radiotherapy,  Diff:  Differentiated,  %n:  failures  as  percent  of  

sample  size  

 

Each  row  represents  a  separate  univariate  comparison.  All  variables  satisfy  the  

proportional  hazards  assumption,  i.e.  the  ratio  of  the  KM  curves  is  approximately  

Page 70: Final Mphil Thesis Lip Cancer Latest

70  

 

constant  over  the  study  period.  One  of  the  properties  of  proportional  hazards  is  that  the  

values  of  the  predictors  are  independent  of  time.  Schoenfeld  has  devised  an  approach,  

which  allows  “residuals”  from  the  model  to  be  calculated  for  each  covariate.  If  the  

correlation  between  the  outcome  (time  to  event)  and  the  residual  for  a  particular  

covariate  is  not  significantly  different  from  zero  this  indicates  that  the  covariate  is  

independent  of  time  and  the  proportional  hazards  assumption  is  satisfied.(71)  

 

Table  19  shows  there  are  no  statistically  significant  treatment  comparisons  in  predicting  

survival  in  the  univariate  model.  I  will  investigate  this  further  with  the  addition  of  

potential  confounding  variables  and  using  time  dependent  Cox  regression.  However  the  

95%  CI  are  wide  for  these  treatment  comparisons.  Of  interest  is  the  treatment  

comparison  of  Sx+RTx  vs.  RTx,  in  which  the  p  value  is  0.105  and  the  true  effect  may  be  

low  as  0.86  (i.e.  a  14%  reduction  in  risk  of  death  for  Sx+RTx)  or  as  high  as  4.8  (a  4.8  fold  

increase  in  the  risk  of  death  for  Sx+RTx)  with  the  actual  effect  size  being  2  fold.  A  larger  

number  of  patients  may  well  produce  a  significant  result  for  this  trend  (P<0.05)  and  

further  investigation  of  this  comparison  may  be  warranted.  The  current  study  may  not  

have  an  adequate  power  to  detect  a  2-­‐fold  increase,  which  is  still  clinically  significant.    

 

Interpretation  of  risk  reduction  

If  the  estimated  HR  is  less  than  1  then  it  is  possible  to  calculate  the  risk  reduction  by  

subtracting  the  HR  from  one  and  expressing  it  as  a  percentage.  For  example  a  HR  of  0.75  

represents  a  100  X  (1-­‐0.75)=25%  reduction  in  the  risk  of  the  event.  A  HR  between  1  and  2  

is  interpreted  by  simply  subtracting  1  from  the  HR  and  expressing  the  result  as  a  

percentage.  Thus  a  HR  of  1.79  represent  a  100  X  (1.79-­‐1)=79%  increase  in  the  risk  of  the  

event.  A  HR  above  2  is  usually  interpreted  as  representing  a  2  fold  in  the  increase  in  risk.    

 

 

Page 71: Final Mphil Thesis Lip Cancer Latest

71  

 

Interpretation:  Univariate  Results  

Increasing  tumour  size,  increasing  age  at  diagnosis,  age  greater  than  70  years  and  

tumours  that  are  classified  as  T2  (>20mm)  were  significant  predictors  of  worse  survival.  A  

patient  whose  tumour  classification  was  T2  or  greater  had  approximately  a  2-­‐fold  

increase  in  the  risk  of  dying  at  any  given  time  compared  to  patients  with  T1  tumours.  This  

increase  in  risk  ranges  from  a  low  of  17%  to  a  high  of  3.85  fold.  

 

Patients  older  than  70  had  a  2.8  fold  increase  in  the  risk  of  dying  compared  to  those  

under  70.  The  increase  in  risk  ranges  from  a  low  of  56%  to  a  high  of  5.18  fold.  There  is  a  

4%  increase  in  the  risk  of  death  for  each  increased  year  of  age.  The  range  of  the  risk  

increase  is  from  2-­‐6%.  

 

These  variables  (except  for  age  as  a  continuous  variable)  are  presented  in  Figures  4  and  5  

together  with  the  corresponding  log-­‐rank  test.  

 

 

Page 72: Final Mphil Thesis Lip Cancer Latest

72  

 

Variable:  T1  

 Figure  4  Cumulative  proportion  experiencing  the  event  for  the  tumour  size  as  a  predictor  

of  survival  

 

From  Figure  4  patients  with  tumours  with  a  clinical  size  ≥  20  mm  had  a  decreased  survival.  

In  these  patients  (≥T2)  there  was  an  approximate  50%  reduction  in  the  risk  of  dying  

compared  to  if  the  tumour  was  smaller  than  20  mm  (T1).  This  is  a  significant  survival  

reduction  and  persists  throughout  the  entire  follow-­‐up  period.    

Logrank P value: 0.011

HR(≥T2:T1)=0.471 (95%CI: 0.26-0.853)

≥T2

T1

0.0

0.1

0.2

0.3

0.4

0.5

Cum

ulat

ive

prop

ortio

n ex

perie

ncin

g ev

ents

144 132 116 93 71 48T146 38 31 22 18 15≥T2

Numbers at risk

0 12 24 36 48 60Time from diagnosis (months)

Tumour size as a predictor of overall survival

Page 73: Final Mphil Thesis Lip Cancer Latest

73  

 

Variable:  Age≥70  (Age  greater  than  or  equal  to  70  years)  

 Figure  5  Cumulative  proportion  experiencing  the  event  for  the  variable  of  age  (age≥70  

years)  as  a  prognostic  indicator  of  survival  

 

Patients  older  than  70  had  a  2.85  fold  risk  increase  in  dying,  when  compared  to  patients  

below  70  years  of  age.  This  risk  reduction  for  those  patients  below  70  years  of  age  is  

statistically  significant.  

 

Other  variables  considered  were:  side  of  tumour  (left,  right),  smoking  status  (never  

smoked  or  smoked),  gender  (males,  females),  tumour  site  (lower  lip,  upper  lip,  or  

commissure)  and  tumour  differentiation  (well,  moderate,  or  poor).  A  univariate  analysis  

of  each  of  these  variables  did  not  show  any  statistical  significance.  

 

 

Logrank P value: <0.001

HR(Age≥70:<70)=2.849 (95%CI: 1.566-5.181)

Age≥70

Age<70

0.0

0.1

0.2

0.3

0.4

0.5

Cum

ulat

ive

prop

ortio

n ex

perie

ncin

g ev

ents

70 62 54 38 28 16Age<70120 108 93 77 61 47Age≥70

Numbers at risk

0 12 24 36 48 60Time from diagnosis (months)

Age as a predictor of overall survival

Page 74: Final Mphil Thesis Lip Cancer Latest

74  

 

Recurrence  models  from  diagnosis  

Table  20  Univariate  results  for  recurrence  modelling  

    Recurrence  from  Diagnosis  to  Death          

Variable   HR   95%CI   P  value   N   failures  (%n)  

Age  

 

1.006   (0.99  -­‐  1.022)   0.485   189   55  (29%)  

Age≥70   1.454    (0.847  -­‐  2.498)   0.175   189   55  (29%)  

T1  tumour   0.919   (0.492  -­‐  1.716)   0.79   189   55  (29%)  

Left  sided  tumour   1.319   (0.755  -­‐  2.304)   0.331   189   55  (29%)  

Smoker  (ex  or  current)   0.81   (0.454  -­‐  1.446)     0.477   172   49  (28%)  

Male   1.101   (0.579  -­‐  2.094)   0.77   189   55  (29%)  

Lower  lip   0.903   (0.407  -­‐  2.003)   0.802   189   55  (29%)  

Well  diff     0.688   (0.375  -­‐  1.263)     0.228   153   43  (28%)  

Treatment   HR   95%CI   P  value   N   failures  (n%)  

Sx  vs.  RTx   3.529   (1.882  -­‐  6.617)   <0.001   168   40  (24%)  

Sx  or  Sx+RTx  vs.  RTx   2.702   (1.444  -­‐  5.056)   0.002   190   48  (25%)  

Sx+RTx  vs.  Sx   0.071   (0.01  -­‐  0.515)   0.009   111   30  (27%)  

Sx+RTx  vs.  RTx   0.284   (0.037  -­‐  2.185)   0.227   101   26  (26%)  

 HR:  Hazard  ratio,  95%CI:  95%  Confidence  interval,  Sx:  Surgery,  RTx:  Radiotherapy,  

Sx+RTx:  Surgery  and  adjuvant  radiotherapy,  All  variables  satisfy  the  proportional  hazards  

assumption  

 

We  see  from  the  previous  analyses  that  apart  from  differences  in  the  treatment  

comparisons,  no  other  variables  were  significant  for  predicting  recurrence.  Three  of  the  

four  treatment  comparisons  were  statistically  significant.  When  presenting  the  HR  for  

Page 75: Final Mphil Thesis Lip Cancer Latest

75  

 

these  comparisons  the  second  treatment  detailed  refers  to  the  comparative  group.  For  

example  when  comparing  Sx  to  RTx  a  HR  of  3.5  suggests  that  patient  undergoing  Sx  have  

a  3.5  higher  risk  of  recurrence  compared  to  those  undergoing  RTx  (the  comparative  

group).  Similarly,  patients  undergoing  Sx  or  Sx+RTx  have  a  2.7  fold  increase  in  the  risk  of  

developing  recurrence  compared  to  those  receiving  RTx.  Patients  undergoing  Sx+RTx  have  

a  93%  lower  risk  of  recurrence  compared  to  the  Sx  group.  There  is  no  statistical  difference  

between  Sx+RTx  compared  to  those  receiving  RTx.  However  the  Sx+RTx  group  had  only  22  

patients  (and  a  fewer  number  of  recurrences)  and  this  could  partly  explain  the  non-­‐

significant  result.  

 

 

 

 

 

 

 

 

 

 

 

   

   

Page 76: Final Mphil Thesis Lip Cancer Latest

76  

 

Multivariate  analysis  

Treatment  comparison:  Patients  treated  with  Sx  vs.  RTx  

This  treatment  comparison  compares  patients  receiving  either  Sx  or  RTx  after  adjusting  

for  potential  confounding  variables.  

 

Table  21  Survival  and  recurrence  models  for  the  treatment  comparison  between  patients  

treated  with  Sx  alone  vs.  RTx  alone  

Variable   HR   95%CI   P  value   Number  of  patients  

  Survival  (Multivariate  analysis)  

Sx  vs.  RTx   2.275   (1.106-­‐4.679)   0.026   168  

T1   0.215   (0.100-­‐0.465)   <0.001    

Age   1.053   (1.029-­‐1.078)   <0.001    

  Recurrence  (Univariate  analysis)  

Sx  vs.  RTx   3.529   (1.882-­‐6.617)   <0.001   168  

HR:  Hazard  ratio,  95%CI:  95%  Confidence  interval,  Sx:  Surgery,  RTx:  Radiotherapy,  T1:  T1  

vs.  T2,  T3,  T4  (tumour  size);  Age  in  years.  All  variables  in  both  models  satisfy  the  

proportional  hazards  assumption  

 

From  Table  21,  after  adjusting  for  tumour  size  and  age,  there  is  a  2.3  fold  increase  in  risk  

of  dying  for  patients  receiving  Sx  compared  to  RTx  with  survival  as  the  outcome.  When  

tested  univariately  (Figure  6),  treatment  with  RTx  was  not  statistically  significant  

compared  to  Sx  with  respect  to  survival,  but  in  the  multivariate  model  this  was  

statistically  significant.  Tumour  size  and  the  age  at  diagnosis  were  also  statistically  

significant.  A  possible  explanation  for  this  apparent  anomaly  is  that  patients  undergoing  

Page 77: Final Mphil Thesis Lip Cancer Latest

77  

 

RTx  were  older  (from  Table  17  the  mean  age:  RTx:  63.5,  Sx:  58.7),  with  a  higher  

proportion  of  tumours  T2  or  greater  (RTx:  67%,  Sx:  26%).  

 

Note  in  the  univariate  analysis,  when  considering  recurrence  as  the  outcome,  treatment  

with  RTx  showed  a  significant  reduction  in  the  risk  of  recurrence  compared  to  treatment  

with  Sx  alone.  No  other  variables  were  significant.  

 

Survival  

 Figure  6  Cumulative  proportion  experiencing  the  event  (death)  for  Sx  alone  vs.  RTx  alone  

in  predicting  overall  survival  

 

The  survival  risk  for  patients  having  Sx  is  not  statistically  significantly  different  compared  

to  patients  undergoing  RTx.  The  two  survival  curves  cross  between  24  and  36  months  

twice.  The  P  value  for  this  comparison  is  P=0.271.  

 

Logrank P value: 0.271

HR(Sx:RTx)=1.435 (95%CI: 0.752-2.738)

Surgery

Radiotherapy

0.0

0.1

0.2

0.3

0.4

Cum

ulat

ive

prop

ortio

n ex

perie

ncin

g ev

ents

89 81 68 49 36 24Surgery only79 69 60 52 42 33Radiotherapy only

Numbers at risk

0 12 24 36 48 60Survival time from diagnosis (months)

Surgery vs. Radiotherapy (survival)

Page 78: Final Mphil Thesis Lip Cancer Latest

78  

 

Recurrence  

 Figure  7  Cumulative  proportion  experiencing  the  event  (recurrence)  for  Sx  alone  vs.  RTx  

alone  in  predicting  time  to  recurrence.  

 

Patients  who  underwent  RTx  had  a  lower  risk  of  recurrence  (LR  or  DRR)  compared  to  

those  who  received  Sx.  There  was  a  3.53  fold  increase  in  the  risk  of  recurrence  observed  

in  Sx  patients,  which  was  statistically  significant.  The  curves  did  not  separate  before  12  

months  after  which  a  distinct  benefit  becomes  evident  and  is  maintained  throughout  the  

rest  of  the  follow  up  period.  However,  despite  this  apparent  benefit  in  reduced  

recurrence  for  patients  undergoing  RTx,  this  did  not  translate  into  a  OS  benefit.  This  is  

because  these  patients  often  do  not  die  of  lip  cancer  but  die  of  some  other  cause  such  as  

heart  disease.  Our  database  was  not  linked  to  the  deaths  registry  nor  were  we  informed  

how  a  patient  died  and  therefore  we  could  not  determine  the  cause  of  death.  However  in  

the  literature  death  caused  by  lip  cancer  is  not  common.  

 

Logrank P value: <0.001

HR(Sx:RTx)=3.529 (95%CI: 1.882-6.617)Sx

RTx

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cum

ulat

ive

prop

ortio

n ex

perie

ncin

g ev

ents

89 71 42 27 19 11Sx patients79 61 53 44 34 25RTx patients

Number at risk

0 12 24 36 48 60Time to recurrence from diagnosis (months)

(recurrence)Surgery vs. Radiotherapy

Page 79: Final Mphil Thesis Lip Cancer Latest

79  

 

However,  patients  who  recur  have  increased  risk  of  death  compared  to  those  who  do  not  

recur.  This  was  found  by  examining  recurrence  dates  as  a  time  varying  covariate  in  

survival  analysis.  Patients  who  recur  have  2.03  times  increased  risk  of  death  compared  to  

those  who  had  not  recurred.  This  was  statistically  significant.    (HR:  2.03;  95%CI:  1.13-­‐3.66;  

P=0.018).    

 

Treatment  comparison:  Patients  treated  with  Sx  or  Sx+RTx  compared  to  RTx  

This  comparison  refers  to  those  patients  who  had  any  Sx  compared  to  those  receiving  

RTx.  All  patients  are  represented  in  this  analysis.    

 

Table  22  Survival  and  recurrence  models  for  treatment  comparison  between  patients  

treated  with  Sx  alone  or  with  adjuvant  RTx  vs.  RTx  alone  

 Variables   HR   95%CI   P  value  

Survival  (Multivariate  analysis)  

Sx  or  Sx+RTx  vs.  RTx   2.512   (1.274-­‐  4.954)   0.008  

T1   0.183   (0.091-­‐0.367)   <0.001  

Age   1.050   (1.029-­‐1.073)   <0.001  

Recurrence  (Univariate  analysis)  

Sx  or  Sx+RTx  vs.  RTx   2.702   (1.444-­‐5.056)   0.002  

Sx:  Surgery,  RTx:  Radiotherapy,  Sx+RTx:  Surgery  and  adjuvant  radiotherapy,  T1:  T1  vs.  T2,  

T3,  T4  (tumour  size);  Age  in  years.  

 

After  adjusting  for  tumour  size  and  age,  there  was  a  2.5  fold  increase  in  the  risk  of  dying  

for  patients  having  Sx  or  Sx+RTx  compared  to  RTx  (Table  22).  On  univariate  analysis  RTx  

was  not  statistically  significant  from  Sx  or  Sx+RTx  with  respect  to  survival,  but  in  the  

Page 80: Final Mphil Thesis Lip Cancer Latest

80  

 

multivariate  model  this  comparison  was  statistically  significant.  The  possible  explanation  

for  this  is  similar  to  that  for  Sx  vs.  RTx  as  previously  mentioned,  i.e.  patients  receiving  RTx  

were  older  than  those  having  Sx  and  of  similar  age  to  those  having  Sx+RTx  (from  Table  17  

the  mean  age:  RTx:  63.5,  Sx+RTx:  64.9,  Sx:  58.7).  There  were  a  markedly  higher  

proportion  of  ≥T2  tumours  in  the  RTx  cohort  as  well  (T2  proportion:  RTx:  67%,  Sx:  26%,  

Sx+RTx  7%).  Tumour  size  and  the  age  at  diagnosis  are  also  statistically  significant  in  

predicting  survival  on  univariate  analysis.    

In  the  recurrence  model  there  was  a  2.7  fold  increase  in  risk  of  recurrence  for  patients  

receiving  Sx  or  Sx+RTx  compared  to  those  receiving  RTx.  No  other  variables  were  

significant.  

 

Below  are  the  curves  showing  the  cumulative  proportion  experiencing  death  or  

recurrence  for  the  treatment  comparison  of  Sx  or  Sx+RTx  vs.  RTx  and  the  corresponding  

logrank  tests.    

 

 

 

 

 

 

 

 

 

 

 

Page 81: Final Mphil Thesis Lip Cancer Latest

81  

 

Survival  

 Figure  8  Cumulative  proportion  experiencing  the  event  for  Sx  or  Sx+RTx  vs.  RTx  alone  in  

predicting  survival  

 

There  was  no  statistically  significant  difference  between  patients  who  received  RTx  

compared  to  those  who  received  Sx  or  Sx+RTx  with  respect  to  OS.  However,  Figure  8  

shows  the  two  curves  cross  at  approximately  24  months.  To  explore  this  further,  a  

proportional  hazards  model  was  fitted  where  the  time  axis  was  divided  at  24  months  and  

treatment  effects  estimate  before  and  after  this  cut-­‐off  point.  This  is  referred  to  as  a  time  

dependent  Cox  analysis  and  the  results  are  given  in  Table  23(a).    

 

 

 

 

Logrank P value: 0.151

HR(Sx or Sx+RTx: RTx) =1.557 (95%CI: 0.847-2.862)

Sx or Sx+RTx

RTx

0.0

0.1

0.2

0.3

0.4

Cum

ulat

ive

prop

ortio

n ex

perie

ncin

g ev

ents

111 101 87 63 47 30Sx or Sx+RTx patients79 69 60 52 42 33RTx patients

Number at risk

0 12 24 36 48 60Survival time from diagnosis (months)

(overall survival)Surgery +/- adjuvant radiotherapy vs. Radiotherapy

Page 82: Final Mphil Thesis Lip Cancer Latest

82  

 

Table  23(a)  Time  dependent  Cox  analysis  at  24  months  

Sx  or  Sx+RTx  vs.  RTx   HR   95%CI   P  value  

<24  months   0.438   (0.143  -­‐  1.338)   0.147  

≥  24  months   2.776   (1.250  -­‐  6.165)   0.012  

HR:  Hazard  ratio,  95%CI:  95%  Confidence  interval,  Sx:  Surgery,  RTx:  Radiotherapy,  Sx+RTx:  

Surgery  and  adjuvant  radiotherapy  

 

Table  23(a)  shows  that  OS  between  patients  having  Sx  or  Sx+RTx  vs.  RTx  was  not  

significantly  different  before  2  years  of  follow  up  although  there  is  a  56%  benefit  for  

patients  receiving  Sx  or  Sx+RTx.  However,  after  2  years  there  is  a  2.8  fold  increase  in  the  

risk  of  death  for  patients  receiving  Sx  or  Sx+RTx  and  this  increase  in  risk  was  significant.  

This  may  be  because  patients  undergoing  RTx  were  older  and  after  removing  those  who  

could  not  survive  at  least  2  years  (i.e.  those  who  were  very  sick  to  start  with  from  multiple  

co-­‐morbidities)  the  remaining  healthier  cohort  may  have  benefitted  more  from  RTx  as  

opposed  to  those  receiving  Sx  or  Sx+RTx.    

 

Table  23(b)  shows  that  there  are  75%  and  77%  patients  surviving  longer  than  2  

years  in  the  RTx  and  Sx  or  Sx+RTx  cohorts  respectively.  Of  those  patients  surviving  

more  than  2  years  those  who  were  treated  with  RTx  alone  had  improved  survival  

compared  to  the  other  cohorts.    

 

 

 

 

 

Page 83: Final Mphil Thesis Lip Cancer Latest

83  

 

Table  23(b)  Summary  of  patients;  based  on  2  yr  survival.  

Treatment   Alive  >  2yrs   N   Age   Range  

RTx   Alive  ≥  2  yrs  with  followup   59   60.6   27-­‐97  

RTx   Died  <  2  yrs   8   75.2   55-­‐93  

RTx   Censored  and  followup  <  2  yrs     12   69.8   45-­‐93  

 

Sx  or  Sx+RTx   Alive  ≥  2  yrs  with  followup   86   60.9   17-­‐88  

Sx  or  Sx+RTx   Died  <  2  yrs   5   69.5   58-­‐81  

Sx  or  Sx+RTx   Censored  and  followup  <  2  yrs   20   53.5   20-­‐81  

Sx:  Surgery,  RTx:  Radiotherapy,  Sx+RTx:  Surgery  and  adjuvant  radiotherapy,  n:  number  of  

patients,  yrs:  years;  Age  in  years.  

Recurrence  

 Figure  9  Cumulative  proportion  experiencing  the  event  for  Sx  or  Sx+RTx  vs.  RTx  alone  in  

predicting  recurrence.  

 

Logrank P value:0.001

HR(Sx or Sx+RTx:RTx)=2.702 (95%CI: 1.444-5.056)

Sx or Sx+RTx

RTx

0.0

0.1

0.2

0.3

0.4

0.5

Cum

ulat

ive

prop

ortio

n ex

perie

ncin

g ev

ents

110 91 60 40 29 16Sx or Sx+RTx patients79 61 53 44 34 25RTx patients

Number at risk

0 12 24 36 48 60Time to recurrence from diagnosis (months)

(recurrence)Surgery +/- adjuvant radiotherapy vs. Radiotherapy

Page 84: Final Mphil Thesis Lip Cancer Latest

84  

 

Figure  9  shows  a  significant  difference  in  time  to  recurrence  for  patients  who  received  

RTx  compared  to  Sx  or  Sx+RTx.  There  was  a  2.7  fold  increase  in  the  risk  of  recurrence  for  

patients  receiving  Sx  or  Sx+RTx  compared  to  patients  having  RTx.  In  the  first  year  of  follow  

up  there  was  no  discernable  difference  between  the  two  groups  as  the  curves  are  

essentially  the  same.  

 

Treatment  comparison:  Patients  receiving  Sx+RTx  vs.  Sx.  

Table  24  Adjusted  survival  and  recurrence  models  for  the  treatment  comparison  between  

patients  receiving  Sx+RTx  vs.  Sx.  

 Variable   HR   95%CI   P  value  

Survival  (Univariate  analysis)  

Sx+RTx  vs.  Sx   1.415   (0.625-­‐3.205)   0.406  

Recurrence  (Multivariate  analysis)  

Sx+RTx  vs.  Sx   0.059   (0.008-­‐0.434)   0.005  

Age   1.019   (1.000-­‐1.038)   0.050  

HR:  Hazard  ratio,  95%CI:  95%  Confidence  interval,  Sx:  Surgery,  Sx+RTx:  Surgery  and  

adjuvant  radiotherapy,  Age  is  in  years.  

 

This  treatment  comparison  is  different  to  the  previous  treatment  comparison  in  that  

Sx  is  being  compared  to  Sx+RTx  and  all  patients  in  this  comparison  have  undergone  

surgery,  whereas  the  previous  comparison  was  between  those  patients  who  had  

received  surgery  (+/-­‐  RTx)    versus  those  not  having  any  surgery.  

 

In  the  model  for  recurrence,  age  did  not  satisfy  the  proportional  hazards  assumption  

(P=0.02).  However,  I  still  chose  to  include  age  in  the  multivariate  model,  as  its  significance  

was  borderline.    

Page 85: Final Mphil Thesis Lip Cancer Latest

85  

 

Table  24  did  not  show  any  difference  in  survival  for  patients  having  Sx+RTx  compared  to  

those  having  Sx.  There  were  no  other  variables  that  were  significantly  related  to  survival.  

Patients  who  underwent  Sx+RTx  had  a  94%  lower  risk  of  recurrence  compared  to  patients  

who  were  treated  by  Sx  alone  after  adjusting  for  age.  This  risk  reduction  was  also  

statistically  significant.  Age  in  this  model  was  of  borderline  significance  (P=0.05)  and  there  

was  a  2%  increase  in  risk  of  recurrence  for  each  year  of  age.    

 

Below  are  the  estimated  survival  and  recurrence  curves  showing  the  cumulative  

proportion  experiencing  death  or  recurrence  and  the  corresponding  log-­‐rank  test  

comparing  Sx+RTx  vs.  Sx.  

 

Survival  

 

Figure  10  Cumulative  proportion  experiencing  the  event  for  Sx+RTx  vs.  Sx  alone  in  

predicting  survival  

Logrank P value: 0.403HR(Sx+RTx:Sx)=1.415 (95%CI: 0.625-3.205)

Sx+RTx

Sx

0.0

0.1

0.2

0.3

0.4

Cum

ulat

ive

prop

ortio

n ex

perie

ncin

g ev

ents

22 20 19 14 11 6Sx+RTx patients89 81 68 49 36 24Sx patients

Number at risk

0 12 24 36 48 60Survival time from diagnosis (months)

(overall survival)Surgery and adjuvant radiotherapy vs. Surgery

Page 86: Final Mphil Thesis Lip Cancer Latest

86  

 

Figure  10  shows  the  curves  for  Sx+RTx  and  Sx  overlapping  up  until  24  months  of  follow  

up,  where  after  they  separate.  However,  the  log-­‐rank  test  was  not  statistically  significant.  

The  separation  observed  between  the  two  groups  after  24  months  is  also  not  statistically  

significant  (P=0.403)  as  demonstrated  with  a  time  dependent  Cox  result.  

   

Recurrence  

 

Figure  11  Cumulative  proportion  experiencing  recurrence  for  Sx+RTx  vs.  Sx  

 

Patients  having  Sx+RTx  had  a  significantly  lower  recurrence  rate  with  a  risk  reduction  of  

93%  compared  to  those  who  having  Sx  alone.  It  should  be  noted  however  that  the  

number  of  patients  in  the  Sx+RTx  group  was  small  (21  patients,  ¼  of  the  number  in  the  Sx  

group).  This  unbalanced  selection  of  patients  and  the  ensuing  number  of  events  in  each  

group  may  potentially  explain  the  wider  CIs  for  the  HR  (effect  size).  

Logrank P value: <0.001HR(Sx+RTx:Sx)=0.071 (95%CI: 0.01-0.515)

Sx

Sx+RTx

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cum

ulat

ive

prop

ortio

n ex

perie

ncin

g ev

ents

21 20 18 13 10 5Sx+RTx patients89 71 42 27 19 11Sx patients

Number at risk

0 12 24 36 48 60Time to recurrence from diagnosis (months)

(recurrence)Surgery and adjuvant radiotherapy vs. Surgery

Page 87: Final Mphil Thesis Lip Cancer Latest

87  

 

Treatment  comparison:  Patients  receiving  Sx+RTx  vs.  RTx  

Table  25  Adjusted  survival  and  recurrence  models  for  the  treatment  comparison  between  

patients  receiving  Sx+RTx  vs.  RTx  

 Variable   HR   95%CI   P  value  

Survival  (Multivariate  analysis)  

Sx+RTx  vs.  RTx   3.112   (1.189-­‐8.143)   0.021  

T1   0.342   (0.140-­‐0.834)   0.018  

 Recurrence  (Univariate  analysis)  

Sx+RTx  vs.  RTx   0.284   (0.037-­‐2.185)   0.227  

HR:  Hazard  ratio,  95%CI:  95%  Confidence  interval,  RTx:  Radiotherapy,  Sx+RTx:  Surgery  and  

adjuvant  radiotherapy.  T1:  T1  vs.  T2,  T3,  T4  (tumour  size);  All  variables  in  both  models  

satisfied  the  proportional  hazards  assumption.  

 

Table  25  shows  that  for  recurrence  there  was  no  statistical  difference  between  the  

Sx+RTx  and  RTx  groups.  There  were  no  other  significant  variables  related  to  recurrence.  

Patients  who  had  RTx  alone  had  an  improved  survival  compared  to  those  who  had  Sx+RTx  

after  adjusting  for  tumour  size.  Recall  that  on  a  univariate  analysis  this  comparison  was  

not  statistically  significant.  There  is  a  higher  proportion  of  patients  with  T1  tumours  in  

the  Sx+RTx  group  compared  to  the  RTx  group  (87%  vs  60%).  Patients  with  T1  

tumours  were  associated  with  longer  survival  (HR:0.471,  Figure  4).    

 

Exploring  Subgroups  

In  the  subgroup  of  patients  with  >T1  tumours  the  treatment  comparison  of  Sx+RTx  vs  

RTx  was  significant,  favouring  RTx,  but  this  treatment  comparison  was  not  significant  

Page 88: Final Mphil Thesis Lip Cancer Latest

88  

 

in  patients  with  only  T1  tumours.  Also  when  not  adjusting  for  T  stage  there  was  no  

significant  difference  between  Sx+RTx  or  RTx.  

 

In  the  Sx+RTx  cohort  the  comparison  of  (T1  vs  >T1)  in  predicting  survival  was  

significant,  with  a  94%  reduction  in  the  rate  of  death  in  patients  with  T1  tumours  

compared  to  patients  with  >T1  tumours.  This  was  not  seen  in  the  RTx  cohort.  Pooling  

all  patients  in  the  study  (including  the  Sx  cohort  as  well)  patients  with  T1  tumours  

had  demonstrated  a  statistical  significant  reduction  in  the  risk  of  death.    

 

This  implies  that  the  outcome  of  patients  selected  to  receive  RTx  alone  in  our  study  is  

not  influenced  by  tumour  size,  even  though  patients  who  received  Sx+RTx  and  had  T1  

tumours  had  better  outcomes.  However,  the  subgroups  result  is  still  within  the  play  

of  chance.  Also  RTx  and  Sx+RTx  are  not  significantly  different  in  terms  of  survival  in  

patients  with  T1  tumours.      

     

Patients  who  underwent  Sx+RTx  had  a  3.11  fold  increase  in  risk  of  death  (poorer  survival)  

compared  to  patients  receiving  RTx  in  this  model,  which  was  adjusted  for  tumour  size.  

The  proportion  of  tumours  greater  than  T1  was  higher  in  the  RTx  group  (Sx+RTx:7%,  

RTx:64%).    

 

Curves  showing  the  cumulative  proportion  experiencing  the  event  for  survival  and  

recurrence  on  univariate  models  for  Sx+RTx  vs.  RTx  are  shown  below.  

 

 

Page 89: Final Mphil Thesis Lip Cancer Latest

89  

 

Survival  

 

Figure  12  Cumulative  proportion  experiencing  the  event  for  Sx+RTx  vs.  RTx  alone  in  

predicting  survival  

 

There  was  no  significant  difference  between  the  Sx+RTx  and  RTx  treatment  arms.  The  

curves  cross  at  approximately  24  months  after  which  they  separate  so  a  time  dependent  

Cox  analysis  was  performed  using  a  partition  of  the  time  axis  at  24  months  shown  in  Table  

26.  Here,  there  is  a  significant  4.02  fold  increase  in  survival  risk  after  24  months  with  

patients  receiving  RTx  compared  to  those  receiving  Sx+RTx,  but  no  difference  up  to  24  

months.    

 

The  power  of  survival  analysis  is  dependent  on  the  number  of  events  in  each  group.  The  

Sx+RTx  group  had  8  deaths  compared  to  the  RTx  group  having  18  deaths.  The  low  total  

number  of  events  and  uneven  event  distribution  between  groups  diminishes  the  

statistical  power  of  the  study.  

Logrank P value: 0.098HR(Sx+RTx:RTx)=2.034 (95%CI: 0.863-4.793)

Sx+RTx

RTx

0.0

0.1

0.2

0.3

0.4

Cum

ulat

ive

prop

ortio

n ex

perie

ncin

g ev

ents

22 20 19 14 11 6Sx+RTx patients79 69 60 52 42 33RTx patients

Number at risk

0 12 24 36 48 60Survival time from diagnosis (months)

(overall survival)Surgery and adjuvant radiotherapy vs. Radiotherapy

Page 90: Final Mphil Thesis Lip Cancer Latest

90  

 

Table  26  Time  dependent  Cox  analysis  at  24  months  

Sx+RTx  vs.  RTx   HR   95%CI   P  value  

<24  months   0.433   (0.054  -­‐  3.459)   0.429  

≥  24  months   4.023   (1.431  -­‐  11.308)   0.008  

HR:  Hazard  ratio,  95%CI:  95%  Confidence  interval,  RTx:  Radiotherapy,  Sx+RTx:  Surgery  and  

adjuvant  radiotherapy  

 

Recurrence  

 

Figure  13  Cumulative  proportion  experiencing  the  event  for  Sx+RTx  vs.  RTx  alone  in  

predicting  recurrence  

 

Figure  13  shows  the  curves  relating  to  RTx  and  Sx+RTx  to  be  distinctly  different,  however,  

this  was  not  statistically  different.  This  lack  of  difference  could  possibly  be  due  to  low  

Logrank P value: 0.197HR(Sx+RTx:RTx)=0.284 (95%CI: 0.037-2.185)

RTx

Sx+RTx

0.00

0.05

0.10

0.15

0.20

Cum

ulat

ive

prop

ortio

n ex

perie

ncin

g ev

ents

21 20 18 13 10 5Sx+RTx patients79 61 53 44 34 25RTx patients

Number at risk

0 12 24 36 48 60Time to recurrence from diagnosis (months)

(recurrence)Surgery and adjuvant radiotherapy vs. Radiotherapy

Page 91: Final Mphil Thesis Lip Cancer Latest

91  

 

numbers  of  patients  and  low  failure  rates  in  both  treatment  groups.  This  is  seen  in  the  

number  at  risk  table,  which  shows  the  few  patients  in  the  Sx+RTx  arm  and  the  lack  of  

steps  (i.e.  events)  in  the  Sx+RTx  curve.    

 

Risk  modelling  

So  far  I  have  identified  the  prognostic  factors  and  treatment  comparisons  impacting  on  

survival  and  recurrence.    These  are  namely  whether  the  patient  received  Sx  or  Sx+RTx  or  

RTx,  the  tumour  size  and  the  patient’s  age.  These  variables  are  now  considered  in  

developing  risk  models  in  order  to  help  classify  patients  based  on  their  risk  of  survival  and  

recurrence.    

 

The  only  treatment  comparison  that  is  based  on  all  patients  is  Sx  or  Sx+RTx  vs.  RTx  and  

only  this  comparison  was  used  in  risk  modelling  as  developed  below.  If  models  were  

developed  for  other  comparisons:  (a)  a  substantial  number  of  patients  would  be  

excluded,  for  example  the  comparison  Sx  vs.  RTx  would  exclude  21  patients  and  (b)  the  

distribution  of  patients  between  the  treatment  groups  would  be  highly  skewed,  e.g.  21  vs.  

79  patients.  

 

For  the  outcome  of  recurrence,  since  there  were  no  other  significant  variables  so  only  a  

model  with  treatment  was  developed.  

 

Risk  variables  in  this  study  were  defined  as  variables  that  relate  to  the  patient  or  the  

patient’s  tumour,  or  the  patient’s  treatment.  These  variables  also  may  effect  the  

outcomes  of  recurrence  or  survival.  Risk  variables  were  included  if  they  were  statistically  

or  near  statistically  significant  in  their  association  with  survival  or  recurrence  using  

backward  survival  analysis.  

Page 92: Final Mphil Thesis Lip Cancer Latest

92  

 

A  Cox  proportional  hazards  model  was  performed  using  the  identified  variables  in  order  

to  estimate  the  coefficient  (the  natural  log  of  the  HR)  for  each  variable.  Using  these  

coefficients  for  each  patient  a  linear  prediction  score  was  calculated  using  the  patient  

values  for  each  variable.  A  cut-­‐off  point  was  chosen  which  classified  patients  into  high  and  

low  risk  groups  based  on  the  median  value  of  the  predictive  score.  The  appropriateness  of  

this  cut-­‐off  point  was  confirmed  by  examining  whether  the  log-­‐rank  test  between  the  

high  and  the  low  groups  was  statistically  significant.  

 

The  log-­‐rank  test  is  used  to  show  the  summary  of  the  difference  between  the  observed  

and  the  expected  number  of  events  at  each  time  point  when  an  event  occurs.  The  

expected  number  of  events  in  each  group  is  a  function  of  the  total  number  of  events  and  

sample  size  for  each  group.  The  null  hypothesis  that  the  log-­‐rank  test  addresses  is  that  

the  true  population  survival  curves  of  two  or  more  groups  are  the  same.  This  is  inferred  

by  comparing  the  observed  and  the  expected  number  of  events  for  each  group.(72)  This  

analysis  however  only  demonstrated  whether  or  not  the  cut-­‐off  point  significantly  

separates  the  two  groups.  In  order  to  investigate  the  strength  of  the  association  the  

following  approach  was  adopted.  Patients  were  classified  into  high  risk  or  low  risk  and  a  

2x2  table  created  of  the  recurrence  status.  This  was  also  repeated  using  the  survival  

status.  From  this  2x2  table  an  OR  and  a  95%  CI  were  estimated.  

 

The  May-­‐Hosmer  (MH)  goodness  of  fit  test  was  used  to  test  the  adequacy  of  the  risk  

model  (based  on  the  linear  predictor  of  risk  variables).  The  broad  recommendation  is  that  

at  least  5  variables  are  present  in  any  risk  model  and  as  we  could  not  identify  this  number  

of  significant  variables  a  second  goodness  of  fit  test,  the  GB  goodness  of  fit  test  not  

requiring  a  minimum  number  of  variables  was  also  performed.  The  GB  goodness  of  fit  test  

assumes  that  a  model  with  good  fit,  for  each  group,  should  have  an  expected  outcome  as  

predicted  by  the  model  similar  to  the  observed  outcome.  The  expected  outcome  is  

calculated  from  the  residuals  from  the  model.(68)  The  residuals  can  be  interpreted  as  the  

difference  between  the  observed  deaths  and  expected  deaths  at  each  time  point.(73)  

Page 93: Final Mphil Thesis Lip Cancer Latest

93  

 

To  calculate  the  MH  goodness  of  fit  test  the  following  approach  is  used.  

(a) An  appropriate  Cox  proportional  hazard  model  is  identified.  

(b) The  risk  indicator  variable  (high  and  low  risk)  is  added  as  an  extra  variate  to  the  

model.  

(c) The  Cox  proportional  hazard  model  is  refitted  with  the  variables  in  (a)  together  

with  the  risk  indicator  variable  in  (b).  

 

If  the  coefficient  for  the  risk  indicator  is  not  statistically  significant,  this  suggests  that  the  

original  variables  satisfactorily  explain  the  outcome  and  the  model  is  an  adequate  fit.(69)  

 

To  help  the  interpretation  and  subsequent  classification  the  coefficients  were  simplified  

(including  rounding).  This  simplification,  however,  was  performed  so  that  the  

classification  of  patients  into  risk  groups  was  preserved.  The  values  of  the  simplified  cut-­‐

off  point  and  coefficients  are  displayed  in  the  profile  index  (PI)  column  in  the  tables  

below.  

Survival  model  with  treatment  

Table  27  Proportional  hazards  model  for  the  survival  risk  model  including  treatment  

comparison  

Variable   Coef.   P  value   95%CI   PI  

Sx  or  Sx+RTx  vs.  RTx   0.817   <0.05   (0.147  -­‐  1.487)   4  

≥T2   1.413   <0.05   (0.727  -­‐  2.100)   8  

Age≥70   1.287   <0.05   (0.659  -­‐  1.915)   6  

Cut-­‐off  point   1.3           7  

Coef.:  Coefficient,  Std.  Err.:  Standard  error,  95%CI:  95%  Confidence  interval,  PI:  Profile  

index,  Sx:  Surgery,  RTx:  Radiotherapy,  Sx+RTx:  Surgery  and  adjuvant  radiotherapy  

Page 94: Final Mphil Thesis Lip Cancer Latest

94  

 

 

All  variables  in  the  model  satisfy  the  proportional  hazards  assumption.  The  risk  grouping  

using  the  cut-­‐off  point  also  satisfies  the  proportional  hazards  assumption  in  a  univariate  

model.    

 

A  high-­‐risk  patient  is  defined  by  factors  of  the  PI  (including  treatment,  tumour  size  and  

age)  adding  up  to  more  than  the  cut-­‐off  point  PI  of  7.  Table  27  shows  that  to  be  classified  

as  a  high  risk  patient  the  tumour  size  had  to  be  more  than  20  mm  in  largest  dimension  or  

that  the  patient  was  over  the  age  of  70  years  and  had  received  Sx,  with  or  without  

adjuvant  RTx.    

 

Table  28  shows  the  occurrence  of  death  of  patients  according  to  low  risk  and  high-­‐risk  

groups  and  an  OR,  which  represents  the  ratio  of  the  odds  of  dying  among  high  and  low  

risk  groups.  This  is  obtained  using  a  2x2  table.  

 

Table  28  2x2  table  for  risk  grouping  

 Risk  group   Alive   Dead  

Low  risk   92   19  

High  risk     50   29  

Odds  ratio   OR:  1.84   P=0.002  

 

 

 

 

Page 95: Final Mphil Thesis Lip Cancer Latest

95  

 

Table  29  contains  the  result  of  the  log-­‐rank  test  comparing  the  risk  groups  to  determine  if  

the  cut  point  sufficiently  divides  the  groups.  

 

Table  29  Logrank  test  validating  the  risk  group  cut-­‐off  point  

Risk  group   Events  observed   Events  expected  

Low  risk   19   29.12  

High  risk   29   18.88  

Total   48   48  

  P  value   0.0025  

Null  hypothesis:  Events  observed  are  equal  to  events  expected  in  low  risk  and  high-­‐risk  

groups  

The  GB  goodness  of  fit  shows  good  fit  of  the  model  to  the  data  and  in  Table  30  we  see  

that  the  model  accurately  predicts  the  observed  events  in  each  group.  

 

Table  30  Gronnesby-­‐Borgan  goodness  of  fit  test  

Group   Exp  dead   Obs  dead   z  =  (O-­‐E)/ 𝐸   P   N   Score  cut   P.I.  cut  

Low  risk   14.7199   19   1.116   0.87   111   1.3   7  

High  risk   33.2801   29   -­‐0.742   0.23   79   1.3   7  

Obs:  Observed,  Exp:  Expected,  O:  Observed,  E:  Expected,  P.I.  cut:  Profile  index  cut-­‐off  

point  Null  hypothesis:  Events  observed  are  equal  to  events  expected  in  low  risk  and  high-­‐

risk  groups.  A  non-­‐significant  P  value  indicates  good  fit.  

 

 

Page 96: Final Mphil Thesis Lip Cancer Latest

96  

 

The  cumulative  proportion  of  patient  experiencing  the  event  (survival)  in  the  two  risk  

categories  is  shown  in  Figure  14.  

 

Figure  14  Risk  model  of  survival  for  patients  who  have  been  treated  

 

Figure  14  shows  a  significant  difference  between  the  two  risk  groups  in  terms  of  survival.  

High-­‐risk  patients  have  a  2.42  fold  risk  increase  in  terms  of  decreased  survival  compared  

to  low  risk  patients.    

 

When  the  MH  goodness  of  fit  test  was  performed  a  number  of  desirable  criteria  were  not  

met.  Firstly  the  minimum  number  of  variables  in  the  model  should  be  five  (I  only  

identified  three),  secondly  the  risk  score  should  be  ideally  divided  into  quintiles,  but  this  

was  impractical  in  my  situation  due  to  the  small  number  of  variables.  However,  the  MH  

goodness  of  fit  test  was  performed  for  completeness.    

 

Logrank P value: 0.003HR(High Risk:Low Risk)=2.416 (95%CI: 1.338-4.36)

High Risk

Low Risk

0.0

0.1

0.2

0.3

0.4

Cum

ulat

ive

prop

ortio

n ex

perie

ncin

g ev

ents

79 71 62 44 33 24High Risk patients111 99 85 71 56 39Low Risk patients

Number at risk

0 12 24 36 48 60Survival time from diagnosis (months)

- including treatment variable (Sx or Sx+RTx vs. Rtx) as a risk factorSurvival risk model

Page 97: Final Mphil Thesis Lip Cancer Latest

97  

 

Table  31  May-­‐Hosmer  goodness  of  fit  test  

Variable   Coef.   Std.  Err.   Z   P  value   95%CI  

Sx  or  Sx+RTx  vs.  RTx   1.251   0.378   3.3   0.001   (0.509  -­‐  1.993)  

≥T2   2.359   0.526   4.49   <0.001   (1.329  -­‐  3.389)  

Age≥70   1.909   0.409   4.67   <0.001   (1.108  -­‐  2.710)  

Risk  indicator  (RI)   -­‐1.219   0.533   -­‐2.29   0.022   (-­‐2.264  -­‐  -­‐0.175)  

Coef.:  Coefficient,  Std.  Err.:  Standard  Error,  95%CI:  95%  Confidence  Interval,  PI:  Profile  

index,  Sx:  Surgery,  RTx:  Radiotherapy,  Sx+RTx:  Surgery  and  adjuvant  radiotherapy,  Test  

does  not  indicate  good  fit  as  P  value  for  RI  is  significant.  

 

In  Table  31,  I  present  the  coefficients  of  the  log  HRs  as  the  linear  prediction  score  is  a  

function  of  the  coefficient  from  the  model  rather  than  the  HRs  themselves.  Ideally  the  

coefficient  for  the  risk  score  (RI)  should  not  be  statistically  significant  for  a  good  fit.  In  this  

case  however,  it  was  statistically  significant  which  is  probably  due  to  the  small  number  of  

variables  in  the  model  and  using  only  2  risk  groupings.  

 

Survival  model  not  including  treatment  

This  model  helps  classify  the  risk  of  patients  prior  to  receiving  any  treatment.  The  survival  

risk  model  excluding  the  treatment  variable  in  Table  32  shows  the  PI  and  cut-­‐off  point.  

Patients  with  tumour  size  greater  than  20  mm  in  largest  dimension  or  age  greater  than  70  

years  are  at  high  risk.  Both  variables  are  significant  predictors  in  the  survival  model.  

 

 

 

 

Page 98: Final Mphil Thesis Lip Cancer Latest

98  

 

Table  32  Proportional  hazards  model  for  the  survival  risk  model  excluding  treatment  

comparison  

Variable   Coef.   P  value   95%CI   PI  

≥T2   1.074   0.001   (0.450  –  1.699)   1  

Age≥70   1.298   <0.001   (0.667  –  1.928)   1.2  

Cut-­‐off  point   ≥1           1  

Coef.:  Coefficient,  Std.  Err.:  Standard  error,  95%CI:  95%  Confidence  interval,  PI:  Profile  

index  

 

All  variables  in  the  model  in  Table  32  satisfy  the  proportional  hazards  assumption.  The  

risk  grouping  also  satisfies  the  proportional  hazards  assumption  in  a  univariate  model.  

 

Table  33  shows  the  2x2  table  from  which  the  OR  is  calculated  and  the  corresponding  

significance  for  the  association  of  the  risk  indicator  variable  and  occurrence  of  death.  

 

Table  33  Chi-­‐squared  test  for  risk  grouping  

Risk  group   Alive   Dead  

Low  risk   77   15  

High  risk   65   33  

Odds  ratio   OR:  2.61   P=0.006  

 

 

The  log-­‐rank  test  in  Table  34  shows  that  the  two  risk  groups  (high  and  low  risk)  have  

different  outcomes  with  respect  to  survival  and  this  is  statistically  significant.  

Page 99: Final Mphil Thesis Lip Cancer Latest

99  

 

Table  34  Logrank  test  validating  the  risk  group  cut-­‐off  point  

  Events  observed   Events  expected  

Low  risk   15   24.74  

High  risk   33   23.26  

Total   48   48  

    P  value   0.0042  

 

 

Figure  15  Risk  model  of  survival  excluding  treatment  variable  as  a  risk  factor  

Figure  15  shows  a  significant  difference  in  survival  between  the  two  risk  groups.  High-­‐risk  

patients  had  a  2.44  fold  increase  in  risk  of  dying  (worse  survival)  compared  to  low  risk  

patients.    

Logrank P value: 0.004HR(High Risk:Low Risk)=2.442 (95%CI: 1.299-4.589)

High Risk

Low Risk

0.0

0.1

0.2

0.3

0.4

Cum

ulat

ive

prop

ortio

n ex

perie

ncin

g ev

ents

98 89 79 58 44 30High Risk patients92 81 68 57 45 33Low Risk patients

Number at risk

0 12 24 36 48 60Survival time from diagnosis (months)

- excluding treatment variable as a risk factorSurvival risk model

Page 100: Final Mphil Thesis Lip Cancer Latest

100  

 

The  GB  goodness  of  fit  test  in  Table  35  is  satisfied,  indicating  an  adequate  fit  of  the  

developed  risk  model  to  the  data.  The  expected  outcome  predicted  by  the  model  is  not  

significantly  different  to  the  observed  outcome,  indicating  an  adequate  fit.    

 

Table  35  Gronnesby-­‐Borgan  goodness  of  fit  test  

Group   Exp  dead   Obs  dead   z  =  (O-­‐E)/ 𝐸   P  value   N   Score  cut   P.I.  cut  

Low  risk   11.255   15   1.116   0.87   92   <1.05   <1  

High  risk   36.745   33   -­‐0.618   0.27   98   >1.05   ≥1  

 Obs:  Observed,  Exp:  Expected,  O:  Observed,  E:  Expected,  P.I.  Cut:  Profile  index  cut-­‐off  

point  

 

The  MH  goodness  of  fit  once  again  was  not  satisfied  as  the  risk  indicator  (RI)  term  in  Table  

36  was  statistically  significant.  The  RI  term  is  coded  1  for  high-­‐risk  patients  and  0  for  low  

risk  patients.  Again  this  is  probably  due  to  the  number  of  variables  predicting  risk  being  

less  than  5,  together  with  the  low  number  of  events  in  each  classification  of  risk  and  

because  there  are  only  2  risk  groupings.  

Table  36  May-­‐Hosmer  goodness  of  fit  test  

Variable   HR   Std.  Err.   Z   P  value   95%CI  

≥T2   6.142   2.595   4.3   <0.001   (2.683  -­‐  14.058)  

Age≥70   9.239   4.655   4.41   <0.001   (3.442  -­‐  24.801)  

RI   0.234   0.144   -­‐2.36   0.019   (0.07  -­‐  0.784)  

 HR.:  Hazard  ratio,  Std.  Err.:  Standard  error,  95%CI:  95%  Confidence  Interval,  RI:  Risk  

indicator  variable  

Page 101: Final Mphil Thesis Lip Cancer Latest

101  

 

Recurrence  model  with  treatment  

Table  37  shows  the  proportional  hazards  model  for  the  proposed  risk  model  with  

recurrence  as  an  outcome  and  treatment  included  

 

Table  37  Proportional  hazards  model  for  the  recurrence  risk  model  including  treatment  

comparison  

Variable   Coef.   Std.  Err.   Z   P  value   95%CI   P.I.    

Sx  or  Sx+RTx  vs.  RTx   1.091   0.329   3.32   0.001   (0.446  -­‐  1.737)   2.5  

≥T2   0.426   0.329   1.29   0.196   (-­‐0.219  -­‐  1.072)   1  

Age≥70   0.426   0.278   1.53   0.125   (-­‐0.118  -­‐  0.97)   1  

Cut-­‐off  point   1                   2.1  

Coef.:  Coefficient,  Std.  Err.:  Standard  error,  95%CI:  95%  Confidence  interval,  PI:  Profile  

index  

Note:  All  variables  in  model  satisfy  the  proportional  hazards  assumption.  The  risk  

grouping  also  satisfies  the  proportional  hazards  assumption  in  a  univariate  model.  

 

Patients  having  Sx  alone  or  Sx+RTx  were  at  higher  risk  of  developing  recurrence.  No  other  

patient  or  tumour  factors  were  significant  in  determining  the  risk  of  a  patient.  However,  

patients  with  a  tumour  larger  than  20  mm  and  age  ≥  70  years  had  increased  risk  although  

these  factors  did  not  affect  the  classification  of  risk,  because  their  contribution  to  the  PI  

was  not  sufficient  to  alter  the  risk  classification.  Age  and  tumour  size  were  also  not  

significant  in  the  proportional  hazard  model  in  Table  37,  but  were  included  because  of  the  

size  of  the  coefficient  (0.426),  which  may  lead  to  more  informed  risk  discrimination  

among  patients.  

 

Page 102: Final Mphil Thesis Lip Cancer Latest

102  

 

Table  38  shows  the  association  between  risk  groups  and  recurrence.  Here  the  OR  is  

calculated  with  a  P  value  for  this  risk  indicator  variable.  

 

Table  38  Chi-­‐squared  test  for  risk  grouping  

  No  Recurrence   Recurrence  

Low  risk   66   13  

High  risk   68   42  

Odds  ratio   OR:3.14   P=0.001  

 

 

Table  39  Logrank  test  for  the  risk  group  cut-­‐off  point.  

  Events  Observed   Events  Expected  

Low  risk   13   24.85  

High  risk   42   30.15  

Total   55   55  

    P  value   0.0012  

 

A  statistically  significant  log  rank  test  is  seen  in  Table  39  indicating  that  the  rate  of  

recurrence  is  different  in  the  two  risk  groups.  

 

Page 103: Final Mphil Thesis Lip Cancer Latest

103  

 

 

Figure  16  Risk  model  of  time  to  recurrence  

 

Figure  16  shows  a  significant  difference  in  risk  of  recurrence  between  the  two  risk  groups.  

High-­‐risk  patients  had  a  2.7  fold  increase  in  the  risk  of  recurrence  compared  to  low  risk  

patients.  This  risk  reduction  was  observed  after  the  12-­‐month  follow-­‐up  period.  Until  12  

months  the  high  risk  and  low  risk  groups  share  similar  levels  of  risk  as  the  curves  

essentially  overlap.  

 

Table  40  has  the  GB  goodness  of  fit  test,  which  shows  adequate  fit  as  the  expected  

number  of  events  as  determined  by  the  model  was  equal  to  the  observed  number  of  

events  (P=0.5).  In  this  model  the  risk  indicator  variable  when  added  to  the  original  model  

(as  done  previously)  was  dropped  due  to  collinearity,  which  prevented  the  MH  goodness  

of  fit  test  being  performed.  

 

Logrank P value: 0.001HR(High Risk:Low Risk)=2.702 (95%CI: 1.444-5.056)

High Risk

Low Risk

0.0

0.1

0.2

0.3

0.4

0.5

Cum

ulat

ive

prop

ortio

n ex

perie

ncin

g ev

ents

110 91 60 40 29 16High Risk patients79 61 53 44 34 25Low Risk patients

Number at risk

0 12 24 36 48 60Time to recurrence from diagnosis (months)

- including treatment variable (Sx or Sx+RTx vs. RTx) as a risk factorRecurrence risk model

Page 104: Final Mphil Thesis Lip Cancer Latest

104  

 

Table  40  Gronnesby-­‐Borgan  goodness  of  fit  test  

Group   Exp  dead   Obs  dead   z  =  (O-­‐E)/ 𝐸   P   N   Score  cut   P.I.  cut  

Low  risk   13   13   0   0.50   79   <1   2.1  

High  risk   42   42   0   0.50   110   ≥1   2.1  

 Obs:  Observed,  Exp:  Expected,  O:  Observed,  E:  Expected,  P.I.  Cut:  Profile  index  cut-­‐off  

point  

 

 

 

 

 

 

 

 

 

 

 

 

Page 105: Final Mphil Thesis Lip Cancer Latest

105  

 

Discussion  

In  this  section  there  will  be  general  discussion  relating  to  the  study  design.  Note  that  the  

significant  patient  and  tumour  factors  associated  with  survival  or  recurrence  are  1)  

tumour  size  and  2)  age  at  diagnosis.  These  factors  will  be  discussed  by  comparing  my  

study  to  the  literature;  and  then  the  confounding  effect  they  have  on  treatment  

comparisons  will  be  noted.  Also,  the  results  of  these  treatment  comparisons  will  be  

viewed  in  light  of  the  summary  of  treatment  outcomes  documented  in  the  literature  

review.  Finally,  the  impact  of  risk  modelling  will  be  discussed.    

 

The  order  of  level  of  evidence  for  clinical  studies,  according  to  the  US  Preventive  Services  

Task  Force,  is  as  follows:  

▪ Level  I:  Evidence  obtained  from  at  least  one  properly  designed  randomized  

controlled  trial.  ▪ Level  II-­‐1:  Evidence  obtained  from  well-­‐designed  controlled  trials  without  

randomization.  ▪ Level  II-­‐2:  Evidence  obtained  from  well-­‐designed  cohort  or  case-­‐control  analytic  

studies,  preferably  from  more  than  one  center  or  research  group.  ▪ Level  II-­‐3:  Evidence  obtained  from  multiple  time  series  with  or  without  the  

intervention.  Dramatic  results  in  uncontrolled  trials  might  also  be  regarded  as  this  type  of  evidence.  

▪ Level  III:  Opinions  of  respected  authorities,  based  on  clinical  experience,  

descriptive  studies,  or  reports  of  expert  committees.(70)    

 

Our  study  is  a  cohort  or  observational  study  and  is  therefore  Level  II-­‐2  evidence.  This  is  

because  there  are  potentially  uncontrolled  biases,  which  if  they  exist  can  only  be  partly  

addressed  via  statistical  means.  Therefore,  any  inferences  regarding  treatment  benefit  

are  considered  exploratory  and  would  ideally  require  independent  confirmation  in  a  well-­‐

designed  controlled  trial  or,  failing  that,  additional  observational  studies.  Nevertheless  

Page 106: Final Mphil Thesis Lip Cancer Latest

106  

 

the  hypothesis  generating  nature  of  this  current  study  raises  potential  questions,  which  

are  of  interest  to  clinicians  for  future  investigation  and  patient  risk  classification.  

 

RCTs  provide  the  highest  level  of  evidence  for  treatment  benefit  and  comparisons  of  

potential  prognostic  factors  as  they  eliminate  or  balance  bias  by  virtue  of  the  process  of  

randomisation.  This  however  is  not  the  case  with  observational  studies  and  the  degree  of  

bias  can  generally  not  be  quantified.  For  example  in  the  current  study,  patients  with  

larger  tumours  may  have  been  excluded  from  Sx  and  thus  differences  between  Sx  and  RTx  

could  be  confounded  by  tumour  size  as  well  as  treatment.  This  may  not  be  completely  

accounted  for  in  an  adjusted  statistical  analysis.  As  another  example,  after  the  diagnosis  

of  lip  cancer,  the  tumour  is  staged  and  then  patient  characteristics  are  evaluated  to  

determine  the  patient’s  suitability  for  Sx  and/or  RTx.  Those  who  undergo  Sx  are  perhaps  

more  suitable  for  Sx  over  RTx,  leading  to  a  selection  bias  and  thereby  making  comparisons  

difficult  to  interpret.  

 

Another  potential  bias  found  in  this  study  is  that  of  referral  bias.  Referral  bias  occurs  

when  patients  are  preferentially  referred  to  an  institute  (such  as  Westmead  Hospital  

where  this  study  was  completed)  as  there  may  not  be  sufficient  expertise  or  facilities  in  

other  centres.  Therefore,  patients  with  lip  cancer  presenting  to  Westmead  Cancer  Care  

Centre  have  a  higher  probability  of  presenting  with  more  advanced  tumours,  or  be  sicker  

patients,  and  are  often  more  complicated  to  treat.  This  referral  bias  may  also  vary  in  

degree  with  different  treatment  options  as  patients  undergoing  RTx  require  centres  to  

have  RTx  facilities,  whereas  Sx  may  be  performed  without  such  infrastructure,  perhaps  in  

day  only  surgical  units.  

 

Tumour  size  

Tumour  size  as  a  predictor  of  recurrence  and  mortality  has  been  investigated  in  the  

literature.  In  one  study  by  Rodolico  et  al  2005  (7),  there  were  97  subjects  with  a  follow  up  

Page 107: Final Mphil Thesis Lip Cancer Latest

107  

 

of  5  years  looking  at  time  to  recurrence.  This  study  had  half  the  sample  size  of  my  study  

and  documented  13  regional  failures  with  no  mention  of  local  failure.  The  reported  failure  

rate  was  half  that  of  my  study.  The  HR  comparing  patients  with  T1  tumours  to  higher  than  

T1  was  significant  with  estimated  HR  of  15.21  (95%CI:  2.25-­‐94.18;  P=0.0033),  whereas  in  

my  study  this  was  not  a  significant  association.  This  may  be  because  in  my  study  only  45  

of  the  189  patients  had  a  tumour  size  greater  than  T1.  Also  the  cut-­‐off  of  20  mm  may  be  

inappropriate  in  finding  statistically  significant  results.  This  is  because  tumour  size  

recorded  as  a  continuous  variable  was  statistically  significant  in  my  study  (HR:  1.025;  

95%CI:  1.006-­‐1.046;  P=0.009).  A  cut-­‐off  of  20  mm  leads  to  only  a  minority  of  patients  

above  the  cut-­‐off  and  many  below,  which  may  decrease  the  power  of  the  analysis  

because  of  uneven  groupings.  Note  that  both  my  study  and  the  study  by  Rodolico  et  al  

2005  had  only  15-­‐25%  of  patients  with  tumours  larger  than  T1.  Despite  this  uneven  

grouping,  both  studies  reported  a  significant  result,  although  my  result  was  only  

significant  when  using  tumour  size  as  a  continuous  variable.  

 

The  study  by  Rodolico  et  al  2005  also  looked  at  tumour  size  as  a  continuous  variable  and  

found  a  HR  not  markedly  significantly  different  to  my  study  (HR  =  1.09;  95%CI:  1.05-­‐1.13;  

P<0.001).  Another  study  (64)  using  the  same  dataset  as  the  previous  study  (7)  also  found  

a  significant  association  between  tumour  size  and  recurrence  using  logistic  regression  

instead  of  survival  analysis.  Here  the  occurrence  of  the  event,  rather  than  the  order  in  

which  events  occur,  was  important  (i.e.  the  data  were  analysed  using  logistic  regression  

with  binary  data  rather  than  proportional  hazards  regression  with  time-­‐to-­‐event  data).  

 

A  large  1001  patient  study  with  34  recurrences  documented  tumour  size  dichotomised  at  

3  cm  as  statistically  significant  in  predicting  for  relapse.(5)  In  this  study  local  control  was  

not  reported.  The  analysis  of  data  in  this  current  thesis  looks  at  both  local  and  regional  

control  together.  This  is  important  as  morbidity  and  mortality  can  arise  from  both  local  

and  regional  relapse.  Also  this  1001  patient  study  reported  an  OR  and  looked  only  at  the  

occurrence  of  relapse  and  not  time  to  recurrence.  The  cut-­‐off  they  chose  was  arbitrary  

Page 108: Final Mphil Thesis Lip Cancer Latest

108  

 

and  not  justified,  as  they  did  not  mention  why  they  chose  it.  This  makes  it  difficult  to  

compare  the  results  from  this  study  in  the  literature  to  the  analysis  in  this  thesis.    

 

Another  study  (57),  analysed  local  control  only  and  reported  a  significant  P  value,  

although  the  cut-­‐off  in  tumour  size  associated  with  the  final  reported  P  value  was  not  

mentioned  and  could  have  been  from  any  of  the  many  cut-­‐offs  they  used  to  tabulate  their  

groups  of  patients.  Both  these  studies  (5,  57)  also  documented  tumour  size  to  be  

associated  with  regional  control  and  the  analysis  in  this  thesis  found  tumour  size  (as  a  

continuous  measure)  to  be  associated  with  local  and  regional  control.    

 

Time  to  recurrence  accounts  for  the  order  of  an  event  occurring  when  comparing  groups,  

rather  than  just  the  number  of  events  occurring,  making  time  to  recurrence  more  

informative.  The  analysis  pertaining  to  this  thesis  was  only  the  second  study  in  the  

literature  to  comment  on  time  to  recurrence  for  this  particular  predictor.    

 

Only  one  study  has  investigated  tumour  size  as  a  predictor  of  survival.(2)  Survival  was  

measured  by  the  number  of  deaths  rather  than  survival  time  in  this  study.  The  study  

comments  on  CSS  (dying  from  the  lip  cancer),  not  as  a  HR  but  as  the  percentage  who  

survived.  This  study  had  a  CSS  for  tumour  size  greater  than  3  cm  at  64%  (95%CI:  52%-­‐

74%)  and  less  than  3  cm  of  92%  (95%CI:  89%-­‐  94%)  at  last  follow  up.  In  my  study  tumour  

size  was  a  predictor  of  survival  (time  to  death  of  any  cause).  Also  in  my  study  there  were  

few  deaths  due  to  lip  cancer  itself.  Both  studies  lead  to  the  same  conclusion  that  

increasing  tumour  size  is  associated  with  a  worse  survival.    

 

Age  at  diagnosis  

There  are  two  studies  (5,  61)  in  the  literature  that  investigated  age  as  a  prognostic  factor  

of  recurrence.  However,  no  studies  looked  at  age  as  a  prognostic  factor  of  time  to  

Page 109: Final Mphil Thesis Lip Cancer Latest

109  

 

recurrence,  death  or  survival.  One  study  enrolled  251  patients  with  a  5-­‐year  minimum  

follow-­‐up.(61)  The  authors  developed  a  multiple  logistic  regression  model  with  age,  

tumour  area  (the  area  of  lip  covered  by  the  tumour  in  square  cm)  and  localisation  of  the  

tumour.  They  reported  age  to  have  a  non  significant  OR  (1.013OR;  95%CI:  0.97-­‐1.06).(61)  

 

Another  study  also  commented  on  age,(5)  and  used  age  at  40  years  old  as  a  cut-­‐off.  The  

study  reported  that  age  was  not  a  predictor  of  recurrence  (P=0.99).  It  is  interesting  to  

note  that  age  did  not  impact  on  recurrence  and  this  was  also  supported  in  my  study,  since  

it  may  dismiss  the  hypothesis  that  younger  patients  recur  earlier  because  they  have  a  

more  aggressive  tumour.  There  were  very  few  young  patients  aged  below  40  in  my  study.  

This  makes  it  difficult  to  test  whether  patients  below  40  were  more  likely  to  recur.  

Importantly  older  people  did  not  develop  recurrence  earlier  either.  The  range  and  

distribution  of  age  as  a  variable  is  important.  In  my  study  the  mean  age  was  61.4  +/-­‐  16.9  

(Standard  deviation).  Therefore  the  age  distribution  may  be  too  narrow  to  pickup  any  

difference  in  outcomes  due  to  age.  

 

No  studies  have  examined  age  as  a  prognostic  factor  of  survival  in  lip  cancer  patients.  My  

study  showed  that  increasing  age  was  associated  with  worsening  survival.  This  was  seen  

with  age  as  both  a  continuous  and  also  a  binary  variable  where  age  was  dichotomised  at  

70  years.    

 

In  summary,  both  tumour  size  and  age  are  associated  with  survival  in  patients  with  lip  

cancer,  while  only  tumour  size  (measured  as  a  continuous  variable)  is  associated  with  

recurrence.  

 

Treatment  comparison:  Sx  vs.  RTx  

Survival  for  a  patient  after  RTx  alone  was  higher  than  if  they  had  Sx  alone  when  adjusted  

for  both  tumour  size  and  age.  T1  tumours  were  associated  with  better  survival;  whereas  

Page 110: Final Mphil Thesis Lip Cancer Latest

110  

 

those  patients  with  higher  age  at  diagnosis  had  poorer  survival.  In  addition,  this  

treatment  comparison  was  not  significant  univariately  using  the  log-­‐rank  and  the  

significant  P  value  was  only  obtained  after  adjusting  for  age  and  size  of  tumour.  This  was  

somewhat  expected  as  from  the  baseline  demographics  the  RTx  patients  were  slightly  

older  and  had  larger  tumours  compared  to  Sx  patients.  The  proportion  of  patients  over  

the  age  of  70  was  as  follows  (RTx:  39.2%  &  Sx:  31.5%).  Also  the  proportion  of  patients  

with  tumour  size  greater  than  T1  was  as  follows  (RTx:  39.2%  &  Sx:  13.5%).  This  suggests  

that  tumour  size  and  age  may  be  significant  confounding  variables  in  the  survival  model.    

 

The  Sx  vs.  RTx  treatment  comparison  was  significant  for  recurrence,  where  patients  

receiving  RTx  alone  had  a  more  favourable  outcome  compared  to  Sx  alone.  Therefore  

from  the  data  in  this  thesis,  patients  who  had  RTx  had  better  survival  and  less  recurrence  

when  compared  to  Sx  patients,  even  though  these  patients  were  older  and  had  larger  

tumours.  The  caveat  here  as  mentioned  is  that  this  is  an  observational  study  that  is  

subject  to  more  bias  than  if  it  were  a  RCT.    

 

Referring  to  the  medical  literature  on  this  treatment  comparison  (see  Summary  of  

treatment  outcome  section  in  this  thesis),  patients  who  underwent  Sx  had  an  81.9%  5yr  

OS  (95%CI:  80.1%-­‐83.7%).  This  CI  overlaps  with  that  of  RTx  which  had  a  79.9%  5  yr  OS  

(95%CI:  77.4%  -­‐  82.4%).  There  were  15  studies  with  a  total  of  1550  patients  documenting  

on  5  yr  OS  for  Sx,  whereas  for  RTx  there  were  only  10  studies  with  943  patients.  Note  that  

the  CI  widths  are  both  below  5%,  indicating  a  precise  estimate.  However  my  study  found  

patients  receiving  RTx  to  have  improved  survival  compared  to  Sx  after  adjusting  for  

tumour  size.  Most  studies  in  the  literature  did  not  adjust  for  tumour  size  and  age.  Also  

few  studies  in  the  literature  discussed  OS  in  terms  of  survival  time  rather  than  the  

occurrence  of  death.  Therefore  my  study  may  not  be  directly  comparable  as  it  uses  time  

to  death  as  an  outcome.    

 

Page 111: Final Mphil Thesis Lip Cancer Latest

111  

 

In  contrast  with  respect  to  recurrence,  patients  having  Sx  had  increased  LRC  compared  to  

RTx  patients  with  CI  that  do  not  overlap.  Sx  patients  had  89.8%  5yr  LRC  (95%CI:  91.6%  -­‐  

87.9%),  whereas  RTx  patients  had  85.3%  5yr  LRC  (95%CI:  88.3%  -­‐  82.2%).  This  suggests  

that  Sx  patients  may  have  better  LRC  than  RTx  although  the  95%  CIs  overlap.  This  is  in  

contrast  to  my  study  and  illustrates  that  my  data  has  different  findings  from  that  of  other  

studies.  This  could  be  due  to  a  number  of  factors.  However,  at  Westmead  patients  

undergoing  RTx  generally  had  larger  tumour  sizes  compared  to  those  undergoing  Sx  with  

tumour  size  found  to  be  a  key  predictor  of  recurrence.  Also  we  evaluated  time  to  

recurrence  rather  than  the  event  of  recurrence  so  my  results  cannot  be  directly  

correlated  to  the  literature  in  the  above-­‐mentioned  summary.  Note  that  there  were  very  

few  articles  in  the  literature  looking  at  time  to  recurrence.  

 

Treatment  comparison:  Sx  and  Sx+RTx  vs.  RTx  

This  treatment  comparison  is  between  patients  having  any  Sx,  which  includes  Sx  alone  

and  patients  who  received  Sx+RTx,  compared  to  patients  who  received  RTx  alone.  The  

treatment  effect  is  significant  with  RTx  associated  with  an  increased  survival  and  a  

decreased  rate  of  recurrence  when  adjusted  for  tumour  size  and  age  in  the  survival  

models.  The  log-­‐rank  test  shows  the  treatment  comparison  is  not  statistically  significant  

in  the  survival  model,  because  this  does  not  adjust  for  confounding  variables.  Although  

after  a  time  dependent  Cox  analysis  this  treatment  comparison  becomes  significant  after  

24  months  but  not  prior  to  this.  

 

The  recurrence  model  for  Sx  or  Sx+RTx  vs.  RTx  treatment  comparison  is  statistically  

significant.  The  log-­‐rank,  which  is  unadjusted,  is  significant  with  separated  curves  of  the  

cumulative  proportion  experiencing  an  event.  Despite  patients  having  Sx  being  younger  

and  having  smaller  tumours,  patients  receiving  RTx  still  had  a  lower  risk  of  recurrence,  as  

seen  in  the  unadjusted  recurrence  model.  

 

Page 112: Final Mphil Thesis Lip Cancer Latest

112  

 

In  addition,  age  was  not  a  significant  confounding  variable  in  the  recurrence  model  and  as  

such  was  not  included  as  a  confounding  variable.  

 

Treatment  comparison:  Sx+RTx  vs.  Sx  

The  treatment  comparison  between  Sx+RTx  and  Sx  revealed  no  statistically  significant  

difference  in  survival.  However,  in  the  model  dealing  with  recurrence  after  adjusting  for  

age  there  was  a  statistically  significant  effect.  The  HR  for  this  treatment  comparison  was  

0.059,  indicating  that  patients  treated  with  Sx+RTx  had  a  risk  reduction  of  94.1%  

compared  to  Sx.  This  risk  reduction  was  seen  in  both  recurrence  models  (with  and  

without  adjustment).  Age  is  included  in  the  recurrence  model  as  a  confounding  variable  

as  it  is  a  significant  variable  when  included  in  the  model.  

 

There  was  no  survival  difference  between  patients  treated  with  Sx+RTx  or  Sx,  but  it  must  

be  noted  that  most  of  the  deaths  in  this  cohort  were  not  due  to  lip  cancer  but  from  

another  cause,  which  accentuates  the  importance  of  the  recurrence  model.    

 

In  the  literature  from  the  summary  of  results  by  treatment,  the  CIs  for  5yr  OS  regarding  Sx  

and  Sx+RTx  overlap  therefore  showing  no  difference.  Sx  had  an  81.9%  5yr  OS  (95%CI:  

80.1%  -­‐  83.7%),  whereas  Sx+RTx  had  72%  (95%CI:  56.2%  -­‐  87.8%).  Sx  had  15  studies  with  

1550  patients,  whereas  Sx+RTx  had  only  2  studies  with  18  patients.  Therefore  the  Sx+RTx  

estimate  is  likely  to  be  imprecise  as  this  is  a  relatively  small  sample  of  patients  and  the  CI  

is  wide,  making  any  comparison  not  practical.  

 

Regarding  recurrence,  the  CIs  for  Sx  and  Sx+RTx  also  overlap.  Sx  had  89.8%  5yr  LRC  

(95%CI:  87.9%  -­‐  91.6%)  and  Sx+RTx  had  95.3%  5yr  LRC  (95%CI:  88.3%  -­‐  100%).  Sx  had  10  

studies  with  947  patients,  whereas  Sx+RTx  only  had  4  studies  with  47  patients.  Note  that  

Sx+RTx  had  a  higher  LRC  estimate  (95.3%)  but  due  to  a  smaller  sample  size,  the  estimate’s  

Page 113: Final Mphil Thesis Lip Cancer Latest

113  

 

CIs  were  wider.  With  more  studies  it  may  be  possible  that  the  literature  could  reflect  the  

results  found  in  my  study  whereby  patients  undergoing  Sx+RTx  had  a  lower  risk  of  

recurrence.    

 

Treatment  comparison:  Sx+RTx  vs.  RTx  

This  treatment  comparison  is  between  patients  who  had  Sx+RTx  and  patients  who  

underwent  RTx  alone.  In  the  model  dealing  with  survival  as  an  outcome,  RTx  patients  had  

increased  survival  compared  to  Sx+RTx  patients  after  adjusting  for  tumour  size  with  a  

statistically  significant  HR.  This  treatment  comparison  had  a  P  value  of  P=0.09  on  the  log-­‐

rank  test,  which  may  have  been  significant  had  there  been  more  patients  in  the  adjuvant  

group  as  the  unadjusted  HR  was  greater  than  2.  The  proportion  of  patients  with  tumours  

larger  than  T1  was  as  follows  (RTx:  39%,  Sx+RTx:  14%).  Therefore  patients  having  RTx  had  

larger  tumours  and  increasing  tumour  size  was  associated  with  poorer  survival.  This  

makes  tumour  size  a  confounding  variable  in  the  model  analysing  Sx+RTx  vs.  RTx  with  

regards  to  survival.  Despite  the  confounding  variable  being  present,  when  a  univariate  

time  dependent  Cox  analysis  was  carried  out  this  treatment  comparison  was  statistically  

significant  after  24  months  (univariately)  and  favoured  RTx.    

 

There  was  a  large  but  non-­‐significant  difference  in  the  recurrence  models  favouring  the  

treatment  Sx+RTx  with  a  HR=0.285  which  is  approximately  a  72%  risk  reduction.  Tumour  

size  was  an  important  confounding  variable  in  the  model  with  survival  as  an  outcome  but  

was  not  present  in  the  model  with  recurrence  as  an  outcome  and  age  was  also  not  

present  in  either  models.    

 

In  the  literature,  the  CIs  for  Sx+RTx  and  RTx  overlapped  indicating  no  significant  

difference.  However  there  were  only  2  studies  with  a  total  of  18  patients  in  the  Sx+RTx  

arm.  RTx  had  10  studies  with  a  total  of  943  patients.  Sx+RTx  had  an  estimate  of  72.0%  5  yr  

OS  (95%CI:  56.2%  -­‐  87.8%),  whereas  RTx  had  79.9%  5  yr  OS  (95%CI:  77.4%  -­‐  82.4%).  Since  

Page 114: Final Mphil Thesis Lip Cancer Latest

114  

 

there  were  so  few  patients  in  the  Sx+RTx  arm  it  is  not  practical  to  make  this  comparison.  

My  study  provides  some  guidance  on  this  comparison  in  that  after  24  months  of  follow  up  

patients  receiving  RTx  had  improved  survival  compared  to  Sx+RTx.  

 

Patients  having  Sx+RTx  had  95.3%  5  yr  LRC  (95%CI:  88.3%  -­‐  100%)  and  RTx  had  85.3%  5yr  

LRC  (95%CI:  82.2%  -­‐  88.3%).  Sx+RTx  had  4  studies  with  43  patients  and  RTx  had  5  studies  

with  504  patients.  With  more  studies  in  the  Sx+RTx  group  there  is  likely  to  be  a  significant  

difference,  where  Sx+RTx  will  result  in  better  LRC  than  RTx.  My  study  did  not  find  a  

significant  HR  with  this  treatment  comparison  most  likely  also  due  to  low  sample  size  in  

the  Sx+RTx  arm  however  the  direction  of  the  HR  was  the  same  as  that  seen  in  literature.    

 

Risk  models  

The  risk  models  in  this  thesis  are  designed  to  classify  patients  into  risk  groups  based  on  

their  patient,  treatment  and  tumour  factors  with  the  outcome  of  survival  or  recurrence.  

 

There  are  two  survival  risk  models:  one  including  a  treatment  comparison,  and  one  

without  a  treatment  comparison.  As  discussed,  the  survival  model  without  a  treatment  

comparison  is  used  to  classify  risk  in  patients  not  yet  assigned  to  a  treatment.  This  is  done  

to  quantify  the  risk  of  a  patient  regardless  of  the  treatment  they  undergo.  The  model  

therefore  gives  an  understanding  of  which  risk  factors  are  attributable  to  a  high-­‐risk  lip  

cancer  patient.    

 

The  survival  model  including  a  treatment  comparison  is  used  to  classify  patients  into  risk  

groups  after  they  have  undergone  a  specific  treatment.  The  treatment  comparison  adds  

more  information  to  the  classification  of  risk  in  patients.    

Page 115: Final Mphil Thesis Lip Cancer Latest

115  

 

There  is  only  one  recurrence  risk  model  and  this  includes  a  treatment  comparison.  There  

were  insufficient  patient  and  tumour  factors  of  predictive  value  to  construct  a  recurrence  

risk  model  excluding  the  treatment  comparison.  Only  the  Sx  or  Sx+RTx  vs.  RTx  treatment  

comparison  was  used  as  all  patients  were  represented  in  this  comparison.  This  also  avoids  

multiple  testing  which  would  inflate  the  type-­‐1  error  if  all  treatment  comparisons  were  

assessed.  To  my  knowledge  there  is  no  evidence  in  the  literature  regarding  risk  models  on  

lip  cancer  and  this  makes  my  study  novel  in  this  respect.  

 

Only  two  groups  were  allocated  in  the  risk  model  with  one  cut-­‐off  point  due  to  the  

minimal  number  of  predictors  in  the  model.  This  is  not  in  accordance  with  the  paper  by  

May  and  Hosmer,  1998  (69)  that  recommends  at  least  five  groups  for  a  200  patient  

database  or  more.  Due  to  the  event  distribution  among  the  few  variables,  this  was  not  

practical.  

 

Risk  model:  Survival  with  treatment  

In  this  risk  model,  three  variables  are  included.  They  are  the  treatment  comparison  Sx  or  

Sx+RTx  vs.  RTx,  the  tumour  variable  ≥T2  (which  is  positive  for  tumours  greater  than  T1,  

i.e.  largest  dimension  greater  than  20  mm)  and  the  patient  variable  age  ≥70.    

 

If  the  patient’s  tumour  size  was  ≥T2  they  were  automatically  in  the  high-­‐risk  group.  If  they  

have  a  T1  tumour  then  to  be  classified  as  high  risk  they  must  be  both  over  70  years  of  age  

and  have  had  Sx  either  alone  or  followed  by  adjuvant  RTx.    

 

Interestingly  the  size  of  the  tumour  is  the  main  risk  factor  that  predicts  survival  and  also  

independently  determines  risk.  The  implication  here  is  that  regardless  of  the  treatment  

undergone  by  the  patient,  if  the  patient  has  a  T2  or  higher  tumour  classification  then  they  

are  at  high  risk  in  terms  of  survival.    

Page 116: Final Mphil Thesis Lip Cancer Latest

116  

 

Treatment  with  Sx  or  Sx+RTx  and  an  age  >70  in  combination  are  required  to  define  a  poor  

prognosis  in  patients  with  T1  tumours.  Therefore  patients  diagnosed  at  <70  years  of  age  

and  not  treated  with  Sx  or  Sx+RTx  are  not  at  low  risk  in  terms  of  survival.  Similarly  

patients  >70  years  of  age  at  diagnosis  who  were  treated  by  RTx  were  classified  as  low  risk  

also.  

 

Risk  model:  Survival  without  treatment  

This  risk  model  did  not  include  a  treatment  comparison.  It  is  useful  for  classifying  patients  

based  on  patient  and  tumour  factors  alone.  There  are  only  two  variables  of  interest  in  this  

model  and  both  are  independent  risk  factors  in  determining  high  risk.  They  are:  ≥T2  

status  (tumour  greater  than  T1)  and  age  ≥70.  Either  one  being  present  is  enough  to  

classify  a  patient  as  high  risk.    

 

Patients  over  the  age  of  70  with  T1  tumours  are  classified  as  high  risk  based  on  patient  

and  tumour  factors  and  this  inherent  risk  does  not  change  with  treatment.  However  

when  classifying  patients  based  on  patient,  tumour  and  treatment  factors  if  the  same  

patient  was  to  be  treated  by  RTx  then  they  would  be  classified  as  low  risk.  This  is  an  

interesting  distinction  to  be  made  as  for  this  cohort  RTx  may  be  more  effective  than  Sx.  

This  is  likely  because  older  people  with  perhaps  multiple  co-­‐morbidities  are  less  suitable  

for  Sx  and  its  associated  anaesthetic  risk.    

 

The  two  survival  models  developed  can  be  used  to  aid  in  clinical  decision-­‐making.  The  

survival  prognostic  risk  model  not  taking  into  account  treatment  guides  a  clinician  in  

determining  risk  for  the  patient,  to  help  determine  treatment  choice.  This  is  a  baseline  

risk  and  is  also  useful  in  determining  patient  eligibility  for  RCTs.    

 

Page 117: Final Mphil Thesis Lip Cancer Latest

117  

 

The  second  model  is  the  survival  prognostic  risk  model  that  takes  into  account  treatment  

given.  This  model  allows  the  risk  to  be  determined  accounting  for  potential  treatment  

choice.  If  the  risk  level  of  the  patient  changes  based  on  potential  treatment,  this  can  aid  

the  clinician  in  deciding  on  patient  management.  Note  prognostic  risk  modeling  that  this  

is  not  the  only  criterion  for  treatment  selection.  

 

From  the  survival  risk  models  in  this  study,  the  following  can  be  inferred.  If  the  patient  

has  a  tumour  size  greater  than  T1  then  they  are  classified  as  high  risk,  regardless  of  other  

characteristics.  If  they  are  older  than  70  years  of  age  and  have  a  T1  tumour  they  also  have  

a  high  baseline  risk.  If  these  patients  are  treated  with  radiotherapy  alone,  then  their  risk  

changes  from  a  high  baseline  risk  to  low  risk  after  radiotherapy  treatment.    

 

Risk  model:  Recurrence  with  treatment  

Due  to  lack  of  sufficient  patient  or  tumour  risk  factors  only  one  recurrence  model  could  

be  constructed  and  this  incorporates  a  treatment  comparison.  The  Sx  or  Sx+RTx  vs.  RTx  

treatment  comparison  is  the  only  risk  factor  that  independently  and  necessarily  classifies  

a  patient  for  risk  of  recurrence,  with  Sx  or  Sx+RTx  being  associated  with  high  risk.  

Regardless  of  other  risk  factors,  if  the  patient  received  RTx  alone,  they  would  be  in  the  

low-­‐risk  category  for  developing  recurrence.  Once  again  this  does  not  imply  that  all  

patients  should  be  treated  with  RTx  as  this  is  not  a  RCT  and  the  patient  may  not  be  

suitable  for  RTx.    

 

Other  risk  factors  that  add  to  risk  but  do  not  independently  attribute  to  high  risk  are  ≥  70  

years  of  age  and  having  tumour  >T1.    

   

Page 118: Final Mphil Thesis Lip Cancer Latest

118  

 

Conclusion  

In  this  thesis  the  risk  factors  for  developing  lip  cancer,  and  predictors  of  recurrence  and  

survival  have  been  discussed  and  analysed.  A  summary  of  treatment  results  based  on  

multiple  outcomes  was  also  performed.  Based  on  a  literature  review  the  risk  factors  were  

re-­‐evaluated  using  the  Westmead  data  with  respect  to  survival  and  risk  of  recurrence  as  

outcomes.  I  report  tumour  size  and  age  as  significant  predictors  of  survival  and  

recurrence.    

 

My  study  also  found  that  patients  undergoing  RTx  had  an  increased  survival  and  

decreased  risk  of  developing  recurrence  compared  to  Sx.  The  literature  suggests  that  Sx  is  

associated  with  achieving  a  better  LRC  then  with  RTx  but  this  finding  was  not  statistically  

significant  from  the  summary  of  treatment  outcomes  in  the  literature  review.  Note  that  

the  majority  of  studies  investigating  treatment  outcomes  for  lip  cancer  did  not  account  

for  the  order  of  recurrence  or  death  (time  to  event)  among  the  treatment  outcomes  but  

rather  looked  at  the  total  counts  (using  an  OR).  The  order  of  event  occurrence  is  

important  as  the  associated  HR  reflects  the  risk  of  recurrence  or  mortality  throughout  the  

study  follow-­‐up,  whereas  an  OR  from  total  counts  reflects  the  final  risk  at  conclusion  of  

the  follow-­‐up.  Therefore  time  to  event  studies  may  be  more  informative.  

 

Furthermore,  in  respect  to  survival,  patients  undergoing  RTx  had  larger  tumours  and  were  

older  at  diagnosis.  Both  tumour  size  and  age  are  predictors  of  worse  survival.  Larger  

tumour  size  is  also  a  predictor  of  recurrence  although  patients  undergoing  RTx  had  lower  

rates  of  recurrence  compared  to  Sx  patients  in  my  study.  Therefore  despite  the  

confounding  variable  distribution  (tumour  size  and  age)  favouring  patients  having  Sx,  

patients  experienced  a  better  survival  and  lower  risk  of  recurrence  if  they  had  RTx.  

 

Page 119: Final Mphil Thesis Lip Cancer Latest

119  

 

Sx+RTx  did  not  appear  to  improve  survival  compared  to  Sx,  however  there  was  a  94.1%  

risk  reduction  of  recurrence.    

 

The  risk  models  constructed  in  this  study  do  not  have  enough  variables  or  risk  categories  

to  adequately  classify  risk  for  patients  diagnosed  with  lip  cancer.  The  risk  models  would  

need  to  be  validated  on  another  lip  cancer  cohort  to  determine  their  generalisability.    

 

These  results  may  assist  in  the  design  of  future  RCTs  for  comparing  treatments.  I  suggest  

such  trials  should  be  stratified  according  to  age  and  tumour  size.  However  there  is  no  

equipoise  to  devise  an  RCT.  Equipoise  is  lacking  because  patients  with  large  tumours  are  

more  likely  to  receive  RTx.  Similarly  it  is  common  to  perform  Sx  for  small  tumours  in  order  

to  avoid  the  consequences  of  RTx  such  as  extended  treatment  and  local  side  effects.  

Therefore  there  is  little  common  ground  for  the  treatments  to  be  compared.    

 

More  studies  that  report  on  Sx+RTx  patients  are  needed  for  better  estimates  of  their  

outcomes.  Currently  there  are  only  a  few  studies  all  with  relatively  lower  patient  numbers  

dealing  with  Sx+RTx  patients.  Therefore  this  current  study  adds  to  the  existing  literature  

for  Sx+RTx  patients  by  providing  more  information  on  the  outcome  for  Sx+RTx  patients  

regarding  survival  and  recurrence.  

 

Future  studies  should  also  comment  on  a  HR  and  have  standardised  reporting  for  better  

comparison  between  studies.  This  includes  agreeing  on  a  common  cut-­‐off  for  age  and  

tumour  size  and  also  performing  analyses  on  continuous  measures  of  tumour  size  and  

age.  There  should  also  be  more  studies  using  multivariate  analyses  as  factors  such  as  

tumour  size  and  age  are  confounding  variables  that  need  to  be  adjusted  for  when  making  

treatment  comparisons.  Analysis  should  include  histological  data  where  possible  as  this  

could  also  be  a  potential  confounding  variable.    

Page 120: Final Mphil Thesis Lip Cancer Latest

120  

 

Bibliography  

1.   http://www.icd9data.com/2008/Volume1/140-­‐239/140-­‐149/140/default.htm.  2.   Zitsch  RP,  3rd,  Park  CW,  Renner  GJ,  Rea  JL.  Outcome  analysis  for  lip  carcinoma.  Otolaryngology  -­‐  Head  &  Neck  Surgery.  1995  Nov;113(5):589-­‐96.  3.   Hosal  IN,  Onerci  M,  Kaya  S,  Turan  E.  Squamous  cell  carcinoma  of  the  lower  lip.  American  Journal  of  Otolaryngology.  1992  Nov-­‐Dec;13(6):363-­‐5.  4.   http://www.upmccancercenters.com/cancer/oral/staging.html.  5.   Zitsch  RP,  3rd,  Lee  BW,  Smith  RB.  Cervical  lymph  node  metastases  and  squamous  cell  carcinoma  of  the  lip.  Head  &  Neck.  1999  Aug;21(5):447-­‐53.  6.   Frierson  HF,  Jr.,  Cooper  PH.  Prognostic  factors  in  squamous  cell  carcinoma  of  the  lower  lip.  Human  pathology.  1986  Apr;17(4):346-­‐54.  7.   Rodolico  V,  Aragona  F,  Cabibi  D,  Di  Bernardo  C,  Di  Lorenzo  R,  Gebbia  N,  et  al.  Overexpression  of  cyclin  D1  and  interaction  between  p27Kip1  and  tumour  thickness  predict  lymph  node  metastases  occurrence  in  lower  lip  squamous  cell  carcinoma.  Oral  Oncol.  2005  Mar;41(3):268-­‐75.  8.   Moore  SR,  Allister  J,  Roder  D,  Pierce  AM,  Wilson  DF.  Lip  cancer  in  South  Australia,  1977-­‐1996.  Pathology.  2001  May;33(2):167-­‐71.  9.   http://www.abs.gov.au/ausstats/[email protected]/0/41D20C166D76BC1ECA256EC2007F2DEC?OpenDocument.  10.   http://www.cancerinstitute.com.au/cancer_inst/publications/pdfs/cancer-­‐incidence-­‐mortality-­‐prevalence-­‐2005.pdf.  11.   Yako-­‐Suketomo  H,  Marugame  T.  Comparison  of  time  trends  in  lip  cancer  incidence  (1973-­‐97)  in  East  Asia,  Europe  and  USA,  from  Cancer  Incidence  in  Five  Continents,  Vols  IV-­‐VIII.  Japanese  journal  of  clinical  oncology.  2008  Jun;38(6):456-­‐7.  12.   de  Visscher  JG,  van  der  Waal  I.  Etiology  of  cancer  of  the  lip.  A  review.  International  journal  of  oral  and  maxillofacial  surgery.  1998  Jun;27(3):199-­‐203.  13.   http://www.cancersa.org.au/cms_resources/documents/Monograph2v2.pdf.  14.   Reid  BC,  Winn  DM,  Morse  DE,  Pendrys  DG.  Head  and  neck  in  situ  carcinoma:  incidence,  trends,  and  survival.  Oral  Oncology.  2000  Sep;36(5):414-­‐20.  15.   Antoniades  DZ,  Styanidis  K,  Papanayotou  P,  Trigonidis  G.  Squamous  cell  carcinoma  of  the  lips  in  a  northern  Greek  population.  Evaluation  of  prognostic  factors  on  5-­‐year  survival  rate-­‐-­‐I.  European  Journal  of  Cancer.  1995  Sep;Part  B,  Oral  Oncology.  31B(5):333-­‐9.  16.   Mora  RG,  Perniciaro  C.  Cancer  of  the  skin  in  blacks.  II.  A  review  of  thirty-­‐six  black  patients  with  squamous  cell  carcinoma  of  the  lip.  Journal  of  the  American  Academy  of  Dermatology.  1982  Jun;6(6):1005-­‐9.  17.   Yamaguchi  Y,  Takahashi  K,  Zmudzka  BZ,  Kornhauser  A,  Miller  SA,  Tadokoro  T,  et  al.  Human  skin  responses  to  UV  radiation:  pigment  in  the  upper  epidermis  protects  against  DNA  damage  in  the  lower  epidermis  and  facilitates  apoptosis.  FASEB  J.  2006  Jul;20(9):1486-­‐8.  18.   Bilkay  U,  Kerem  H,  Ozek  C,  Gundogan  H,  Guner  U,  Gurler  T,  et  al.  Management  of  lower  lip  cancer:  a  retrospective  analysis  of  118  patients  and  review  of  the  literature.[see  comment].  Annals  of  Plastic  Surgery.  2003  Jan;50(1):43-­‐50.  19.   Boddie  AW,  Jr.,  Fischer  EP,  Byers  RM.  Squamous  carcinoma  of  the  lower  lip  in  patients  under  40  years  of  age.  Southern  Medical  Journal.  1977  1977  Jun;70(6):711-­‐2.  20.   Vukadinovic  M,  Jezdic  Z,  Petrovic  M,  Medenica  LM,  Lens  M.  Surgical  management  of  squamous  cell  carcinoma  of  the  lip:  analysis  of  a  10-­‐year  experience  in  223  patients.  J  Oral  Maxillofac  Surg.  2007  Apr;65(4):675-­‐9.  

Page 121: Final Mphil Thesis Lip Cancer Latest

121  

 

21.   Fabbrocini  G,  Russo  N,  Pagliuca  MC,  Delfino  M,  Staibano  S,  Molea  G,  et  al.  p53,  cyclin-­‐D1,  PCNA,  AgNOR  expression  in  squamous  cell  cancer  of  the  lip:  a  multicenter  study.  Photodermatology,  photoimmunology  &  photomedicine.  2000  Aug;16(4):172-­‐7.  22.   Doll  R,  Peto  R,  Boreham  J,  Sutherland  I.  Mortality  in  relation  to  smoking:  50  years'  observations  on  male  British  doctors.  BMJ.  2004  Jun  26;328(7455):1519.  23.   van  Leeuwen  MT,  Grulich  AE,  McDonald  SP,  McCredie  MR,  Amin  J,  Stewart  JH,  et  al.  Immunosuppression  and  other  risk  factors  for  lip  cancer  after  kidney  transplantation.  Cancer  Epidemiol  Biomarkers  Prev.  2009  Feb;18(2):561-­‐9.  24.   Perea-­‐Milla  Lopez  E,  Minarro-­‐Del  Moral  RM,  Martinez-­‐Garcia  C,  Zanetti  R,  Rosso  S,  Serrano  S,  et  al.  Lifestyles,  environmental  and  phenotypic  factors  associated  with  lip  cancer:  a  case-­‐control  study  in  southern  Spain.  British  journal  of  cancer.  2003  Jun  2;88(11):1702-­‐7.  25.   Kornevs  E,  Skagers  A,  Tars  J,  Bigestans  A,  Lauskis  G,  Libermanis  O.  5  year  experience  with  lower  lip  cancer.  Stomatologija.  2005;7(3):95-­‐8.  26.   Kutluhan  A,  Kiri  M,  Kaya  Z,  Kisli  E,  Yurtta  V,  Icli  M,  et  al.  Squamous  cell  carcinoma  of  the  lower  lip  and  supra-­‐omohyoid  neck  dissection.  Acta  Chirurgica  Belgica.  2003  Jun;103(3):304-­‐8.  27.   Babington  S,  Veness  MJ,  Cakir  B,  Gebski  VJ,  Morgan  GJ.  Squamous  cell  carcinoma  of  the  lip:  is  there  a  role  for  adjuvant  radiotherapy  in  improving  local  control  following  incomplete  or  inadequate  excision?  ANZ  Journal  of  Surgery.  2003  Aug;73(8):621-­‐5.  28.   Yildirim  S,  Giderolu  K,  Aydogdu  E,  Avci  G,  Akan  M,  Akoz  T.  Composite  anterolateral  thigh-­‐fascia  lata  flap:  a  good  alternative  to  radial  forearm-­‐palmaris  longus  flap  for  total  lower  lip  reconstruction.  Plastic  &  Reconstructive  Surgery.  2006  May;117(6):2033-­‐41.  29.   Jaquet  Y,  Pasche  P,  Brossard  E,  Monnier  P,  Lang  FJW.  Meyer's  surgical  procedure  for  the  treatment  of  lip  carcinoma.  European  Archives  of  Oto-­‐Rhino-­‐Laryngology.  2005  Jan;262(1):11-­‐6.  30.   Jeng  S-­‐F,  Kuo  Y-­‐R,  Wei  F-­‐C,  Su  C-­‐Y,  Chien  C-­‐Y.  Reconstruction  of  extensive  composite  mandibular  defects  with  large  lip  involvement  by  using  double  free  flaps  and  fascia  lata  grafts  for  oral  sphincters.  Plastic  &  Reconstructive  Surgery.  2005  Jun;115(7):1830-­‐6.  31.   Lo  Russo  D,  Agostini  V,  Frosini  P.  [Carcinoma  of  the  lip:  a  retrospective  study  of  86  cases].  Acta  Otorhinolaryngologica  Italica.  1990  Sep-­‐Oct;10(5):447-­‐51.  32.   Gooris  PJ,  Maat  B,  Vermey  A,  Roukema  JA,  Roodenburg  JL.  Radiotherapy  for  cancer  of  the  lip.  A  long-­‐term  evaluation  of  85  treated  cases.  Oral  Surgery  Oral  Medicine  Oral  Pathology  Oral  Radiology  &  Endodontics.  1998  Sep;86(3):325-­‐30.  33.   McCombe  D,  MacGill  K,  Ainslie  J,  Beresford  J,  Matthews  J.  Squamous  cell  carcinoma  of  the  lip:  a  retrospective  review  of  the  Peter  MacCallum  Cancer  Institute  experience  1979-­‐88.  Australian  &  New  Zealand  Journal  of  Surgery.  2000  May;70(5):358-­‐61.  34.   de  Visscher  JG,  Botke  G,  Schakenraad  JA,  van  der  Waal  I.  A  comparison  of  results  after  radiotherapy  and  surgery  for  stage  I  squamous  cell  carcinoma  of  the  lower  lip.  Head  &  Neck.  1999  Sep;21(6):526-­‐30.  35.   Wilson  R,  Jackson  J,  Rassekh  C.  A  study  of  squamous  cell  carcinoma  of  the  lip  at  West  Virginia  University  Hospitals  from  1980-­‐2000.  West  Virginia  Medical  Journal.  2005  Sep-­‐Oct;101(5):217-­‐9.  36.   Beauvois  S,  Hoffstetter  S,  Peiffert  D,  Luporsi  E,  Carolus  JM,  Dartois  D,  et  al.  Brachytherapy  for  lower  lip  epidermoid  cancer:  tumoral  and  treatment  factors  influencing  recurrences  and  complications.  Radiotherapy  &  Oncology.  1994  Dec;33(3):195-­‐203.  37.   Tombolini  V,  Bonanni  A,  Valeriani  M,  Zurlo  A,  Vitturini  A.  Brachytherapy  for  squamous  cell  carcinoma  of  the  lip.  The  experience  of  the  Institute  of  Radiology  of  the  University  of  Rome  "La  Sapienza".  Tumori.  1998  Jul-­‐Aug;84(4):478-­‐82.  38.   Cowen  D,  Thomas  L,  Richaud  P,  Pierre  F,  Pigneux  J.  [Cancer  of  the  lips.  Results  of  the  treatment  of  299  patients].  Annales  d  Oto-­‐Laryngologie  et  de  Chirurgie  Cervico-­‐Faciale.  1990;107(2):121-­‐5.  

Page 122: Final Mphil Thesis Lip Cancer Latest

122  

 

39.   Heller  KS,  Shah  JP.  Carcinoma  of  the  lip.  American  Journal  of  Surgery.  1979  Oct;138(4):600-­‐3.  40.   Petrovich  Z,  Kuisk  H,  Tobochnik  N,  Hittle  RE,  Barton  R,  Jose  L.  Carcinoma  of  the  lip.  Archives  of  Otolaryngology.  1979  Apr;105(4):187-­‐91.  41.   Wu  XL.  [Choice  of  the  treatment  for  lip  carcinoma-­‐-­‐an  analysis  on  74  cases].  Chung-­‐Hua  Chung  Liu  Tsa  Chih  [Chinese  Journal  of  Oncology].  1985  Sep;7(5):357-­‐60.  42.   Giuliani  M,  D'Amore  L,  Guiliani  L,  Tordiglione  P.  [Critical  review  of  121  squamous  cell  epitheliomas  of  the  lip.  Role  of  surgery  in  the  treatment  of  primary  lesions  and  of  the  loco-­‐regional  lymph  nodes].  Minerva  Chirurgica.  1989  Jul  31;44(13-­‐14):1745-­‐9.  43.   Ngan  RKC,  Wong  RKY,  Tang  FNF,  Tang  DLC.  Curative  radiotherapy  for  early  cancers  of  the  lip,  buccal  mucosa,  and  nose-­‐-­‐a  simple  interstitial  brachytherapy  technique  employing  angiocatheters  as  carriers  for  Iridium-­‐192  wire  implants.  Hong  Kong  Medical  Journal.  2005  Oct;11(5):351-­‐9.  44.   Aslay  I,  Kucucuk  S,  Kemikler  G,  Kurul  S,  Hafiz  G,  Ozbay  I,  et  al.  Effectiveness  of  brachytherapy  in  the  treatment  of  lip  cancer:  a  retrospective  study  at  the  istanbul  university  oncology  institute.  Advances  in  Therapy.  2005  Jul-­‐Aug;22(4):395-­‐406.  45.   Orecchia  R,  Rampino  M,  Gribaudo  S,  Negri  GL.  Interstitial  brachytherapy  for  carcinomas  of  the  lower  lip.  Results  of  treatment.  Tumori.  1991  Aug  31;77(4):336-­‐8.  46.   Luna-­‐Ortiz  K,  Guemes-­‐Meza  A,  Villavicencio-­‐Valencia  V,  Mosqueda-­‐Taylor  A.  Lip  cancer  experience  in  Mexico.  An  11-­‐year  retrospective  study.  Oral  Oncology.  2004  Nov;40(10):992-­‐9.  47.   Hemprich  A,  Muller  RP.  Long-­‐term  results  in  treating  squamous  cell  carcinoma  of  the  lip,  oral  cavity,  and  oropharynx.  International  Journal  of  Oral  &  Maxillofacial  Surgery.  1989  Feb;18(1):39-­‐42.  48.   Califano  L,  Zupi  A,  Massari  PS,  Giardino  C.  Lymph-­‐node  metastasis  in  squamous  cell  carcinoma  of  the  lip.  A  retrospective  analysis  of  105  cases.  International  Journal  of  Oral  &  Maxillofacial  Surgery.  1994  Dec;23(6  Pt  1):351-­‐5.  49.   van  der  Wal  JE,  de  Visscher  JG,  Baart  JA,  van  der  Waal  I.  Oncologic  aspects  of  vermilionectomy  in  microinvasive  squamous  cell  carcinoma  of  the  lower  lip.  International  journal  of  oral  and  maxillofacial  surgery.  1996  Dec;25(6):446-­‐8.  50.   Beltrami  CA,  Desinan  L,  Rubini  C.  Prognostic  factors  in  squamous  cell  carcinoma  of  the  oral  cavity.  A  retrospective  study  of  80  cases.  Pathology,  Research  &  Practice.  1992  Jun;188(4-­‐5):510-­‐6.  51.   Miltenyi  L,  Sallay  A,  Dezsi  Z,  Matolay  G,  Szatai  I,  Borbely  T,  et  al.  [Results  of  radiation  therapy  of  cancer  of  the  lip  (author's  transl)].  Strahlentherapie.  1980  Mar;156(3):162-­‐6.  52.   de  Visscher  JG,  Grond  AJ,  Botke  G,  van  der  Waal  I.  Results  of  radiotherapy  for  squamous  cell  carcinoma  of  the  vermilion  border  of  the  lower  lip.  A  retrospective  analysis  of  108  patients.  Radiother  Oncol.  1996  Apr;39(1):9-­‐14.  53.   Cerezo  L,  Liu  FF,  Tsang  R,  Payne  D.  Squamous  cell  carcinoma  of  the  lip:  analysis  of  the  Princess  Margaret  Hospital  experience.  Radiotherapy  &  Oncology.  1993  Aug;28(2):142-­‐7.  54.   Holmkvist  KA,  Roenigk  RK.  Squamous  cell  carcinoma  of  the  lip  treated  with  Mohs  micrographic  surgery:  outcome  at  5  years.  Journal  of  the  American  Academy  of  Dermatology.  1998  Jun;38(6  Pt  1):960-­‐6.  55.   Cruse  CW,  Radocha  RF.  Squamous  cell  carcinoma  of  the  lip.  Plastic  &  Reconstructive  Surgery.  1987  Dec;80(6):787-­‐91.  56.   dos  Santos  LR,  Cernea  CR,  Kowalski  LP,  Carneiro  PC,  Soto  MN,  Nishio  S,  et  al.  Squamous-­‐cell  carcinoma  of  the  lower  lip:  a  retrospective  study  of  58  patients.  Sao  Paulo  Medical  Journal  =  Revista  Paulista  de  Medicina.  1996  Mar-­‐Apr;114(2):1117-­‐26.  57.   de  Visscher  JG,  Gooris  PJ,  Vermey  A,  Roodenburg  JL.  Surgical  margins  for  resection  of  squamous  cell  carcinoma  of  the  lower  lip.  International  journal  of  oral  and  maxillofacial  surgery.  2002  Apr;31(2):154-­‐7.  

Page 123: Final Mphil Thesis Lip Cancer Latest

123  

 

58.   Rao  DN,  Shroff  PD,  Chattopadhyay  G,  Dinshaw  KA.  Survival  analysis  of  5595  head  and  neck  cancers-­‐-­‐results  of  conventional  treatment  in  a  high-­‐risk  population.  British  Journal  of  Cancer.  1998  May;77(9):1514-­‐8.  59.   Blomgren  I,  Blomqvist  G,  Lauritzen  C,  Lilja  J,  Peterson  LE,  Holmstrom  H.  The  step  technique  for  the  reconstruction  of  lower  lip  defects  after  cancer  resection.  A  follow-­‐up  study  of  165  cases.  Scandinavian  Journal  of  Plastic  &  Reconstructive  Surgery  &  Hand  Surgery.  1988;22(1):103-­‐11.  60.   Brown  L,  Cai  T,  Dasgupta  A.  Interval  Estimation  for  a  Binomial  Proportion.  Statistical  Science.  2001;16(2):101-­‐33.  61.   Fernandez-­‐Angel  I,  Rodriguez-­‐Archilla  A,  Aneiros  Cachaza  J,  Munoz  Medina  M,  Serrano  Ortega  S.  Markers  of  metastasis  in  lip  cancer.  European  Journal  of  Dermatology.  2003  May-­‐Jun;13(3):276-­‐9.  62.   de  Visscher  JG,  van  den  Elsaker  K,  Grond  AJ,  van  der  Wal  JE,  van  der  Waal  I.  Surgical  treatment  of  squamous  cell  carcinoma  of  the  lower  lip:  evaluation  of  long-­‐term  results  and  prognostic  factors-­‐-­‐a  retrospective  analysis  of  184  patients.  Journal  of  Oral  &  Maxillofacial  Surgery.  1998  Jul;56(7):814-­‐20;  discussion  20-­‐1.  63.   McGregor  GI,  Davis  NL,  Hay  JH.  Impact  of  cervical  lymph  node  metastases  from  squamous  cell  cancer  of  the  lip.  Am  J  Surg.  1992  May;163(5):469-­‐71.  64.   Rodolico  V,  Barresi  E,  Di  Lorenzo  R,  Leonardi  V,  Napoli  P,  Rappa  F,  et  al.  Lymph  node  metastasis  in  lower  lip  squamous  cell  carcinoma  in  relation  to  tumour  size,  histologic  variables  and  p27Kip1  protein  expression.  Oral  Oncol.  2004  Jan;40(1):92-­‐8.  65.   Rodolico  V,  Daniele  E,  Leonardi  V,  Marra  G,  Luciani  A,  Settineri  G,  et  al.  Node  status  in  lower  lip  squamous  cell  carcinoma  in  relation  to  tumor  size,  histological  variables  and  DNA  ploidy.  Anticancer  research.  1998  Mar-­‐Apr;18(2A):911-­‐4.  66.   Daniele  E,  Rodolico  V,  Leonardi  V,  Tralongo  V.  Prognosis  in  lower  lip  squamous  cell  carcinoma:  assessment  of  tumor  factors.  Pathology,  research  and  practice.  1998;194(5):319-­‐24.  67.   Pocock  SJ,  Clayton  TC,  Altman  DG.  Survival  plots  of  time-­‐to-­‐event  outcomes  in  clinical  trials:  good  practice  and  pitfalls.  Lancet.  2002  May  11;359(9318):1686-­‐9.  68.   Grønnesby  JK,  Borgan  Ø.  A  method  for  checking  regression  models  in  survival  analysis  based  on  the  risk  score.  Lifetime  Data  Analysis.  [10.1007/BF00127305].  1996;2(4):315-­‐28.  69.   May  S,  Hosmer  DW.  A  Simplified  Method  of  Calculating  an  Overall  Goodness-­‐of-­‐Fit  Test  for  the  Cox  Proportional  Hazards  Model.  Lifetime  Data  Analysis.  [10.1023/A:1009612305785].  1998;4(2):109-­‐20.  70.   Force  USPST.  Guide  to  clinical  preventive  services:  report  of  the  U.S.  Preventive  Services  Task  Force.:  DIANE  Publishing;  1989.  71.   SCHOENFELD  D.  Partial  residuals  for  the  proportional  hazards  regression  model.  Biometrika.  1982  April  1,  1982;69(1):239-­‐41.  72.   http://en.wikipedia.org/wiki/Logrank_test.  73.   Therneau  TM,  Grambsch  PM,  Fleming  TR.  Martingale-­‐Based  Residuals  for  Survival  Models.  Biometrika.  1990;77(1):147-­‐60.