fiatechreport sept2 2009 revised shockley · 2017. 6. 21. ·...

17
FIATECH – Element 8 Technology and Knowledge Enabled Workforce 1 Attracting the Next Generation Attracting the Next Generation A Multi A Multi dimensional Simulation Framework for Construction dimensional Simulation Framework for Construction Education Education Ling Xiao 1 , M. Subramaniam 2 , James Goedert, 3 Deepak Khazanchi 4 , Johnette Shockley 5 1 Graduate Research Assistant, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE 68182. 2 Associate Professor, Computer Science Department, University of Nebraska at Omaha, Omaha, NE 68182. 3 Interim Director for Research and Industry Relations, College of Engineering, Construction Systems, University of Nebraska—Lincoln, Omaha, NE 68182. 4 Associate Dean for Academic Affairs and Professor of Information Systems and Quantitative Science, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE 68182. 5 U.S. Army Engineer Research and Development Center, Office of Technology Transfer and Outreach, Omaha, NE, 68182. Introduction Introduction The need for new instructional methods to attract students to the areas of engineering, construction, science, technology, and mathematics is wellrecognized. Today’s students are wellversed in informationtechnologyenabled games and other virtual environments and often equate virtual reality with handson experience. Recent advances in information technology (IT) fields, especially in the areas of interactive simulation and gaming, have opened unique opportunities for construction educators to attract the next generation by incorporating virtual reality into mainstream instruction. “Students involved in the architecture, engineering and construction disciplines are often faced with the challenge of visualizing and understanding the complex spatial and temporal relationships involved in designing threedimensional structures” (Nicolic, Jaruhar, and Messner 2009). Simulation games may provide a mechanism to reduce the learning curve if the simulations are intrinsic to actual reallife projects. Students trained using realworld examples placed in computer based simulations will further their progress toward becoming valued professionals. The FIATECH project described in this paper is a preliminary attempt at building such an ITenabled infrastructure for construction education. The proposed infrastructure consists of a simulationbased learning game focusing on the “3Cs” (cooperation, collaboration, competition) and designed to make learning construction concepts more engaging. Background Background Smith (2000) indicates that it is “fashionable” to distinguish data, information, and knowledge. Smith further states that “data placed within some interpretive context acquires meaning and value” and that “knowledge is the collection of information into concepts meaningful to individuals or groups.” Goodhue and Thompson (1995) indicate that “for many system users, utilization is more a function of how jobs are designed than the quality or usefulness of systems, or the attitudes of

Upload: others

Post on 14-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

1  

Attracting  the  Next  GenerationAttracting  the  Next  Generation    

A  MultiA  Multi -­‐-­‐ dimensional  Simulation  Framework  for  Construction  dimensional  Simulation  Framework  for  Construction  

EducationEducation    

Ling  Xiao1,  M.  Subramaniam2,  James  Goedert,3  Deepak  Khazanchi4,  Johnette  Shockley5  

1Graduate  Research  Assistant,  College  of  Information  Science  and  Technology,  University  of  Nebraska  at  Omaha,  Omaha,  NE  68182.  

2Associate  Professor,  Computer  Science  Department,  University  of  Nebraska  at  Omaha,  Omaha,  NE  68182.  3Interim  Director  for  Research  and  Industry  Relations,  College  of  Engineering,  Construction  Systems,  University  of  Nebraska—Lincoln,  Omaha,  NE  68182.  

4Associate  Dean  for  Academic  Affairs  and  Professor  of  Information  Systems  and  Quantitative  Science,  College  of  Information  Science  and  Technology,  University  of  Nebraska  at  Omaha,  Omaha,  NE  68182.    

5U.S.  Army  Engineer  Research  and  Development  Center,  Office  of  Technology  Transfer  and  Outreach,  Omaha,  NE,  68182.  

IntroductionIntroduction    

The  need  for  new  instructional  methods  to  attract  students  to  the  areas  of  engineering,  construction,  science,   technology,   and   mathematics   is   well-­‐recognized.   Today’s   students   are   well-­‐versed   in  

information-­‐technology-­‐enabled   games   and   other   virtual   environments   and   often   equate   virtual  reality  with  hands-­‐on  experience.  Recent  advances  in  information  technology  (IT)  fields,  especially  in  the  areas  of  interactive  simulation  and  gaming,  have  opened  unique  opportunities  for  construction  

educators  to  attract  the  next  generation  by  incorporating  virtual  reality  into  mainstream  instruction.  “Students  involved  in  the  architecture,  engineering  and  construction  disciplines  are  often  faced  with  

the   challenge   of   visualizing   and   understanding   the   complex   spatial   and   temporal   relationships  involved  in  designing  three-­‐dimensional  structures”  (Nicolic,  Jaruhar,  and  Messner  2009).    

Simulation   games   may   provide   a   mechanism   to   reduce   the   learning   curve   if   the   simulations   are  intrinsic  to  actual  real-­‐life  projects.  Students  trained  using  real-­‐world  examples  placed  in  computer-­‐

based   simulations  will   further   their   progress   toward   becoming   valued   professionals.   The   FIATECH  project  described  in  this  paper  is  a  preliminary  attempt  at  building  such  an  IT-­‐enabled  infrastructure  for   construction   education.   The   proposed   infrastructure   consists   of   a   simulation-­‐based   learning  

game   focusing   on   the   “3Cs”   (cooperation,   collaboration,   competition)   and   designed   to   make  learning  construction  concepts  more  engaging.    

BackgroundBackground  

Smith   (2000)   indicates   that   it   is   “fashionable”   to   distinguish   data,   information,   and   knowledge.  Smith   further   states   that   “data   placed   within   some   interpretive   context   acquires   meaning   and  

value”  and  that  “knowledge  is  the  collection  of  information  into  concepts  meaningful  to  individuals  or  groups.”  Goodhue  and  Thompson  (1995)  indicate  that  “for  many  system  users,  utilization  is  more  

a   function  of  how   jobs  are  designed   than   the  quality  or  usefulness  of   systems,  or   the  attitudes  of  

Page 2: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

2  

users  toward  using  them.”  Their  information  systems  (IS)  research  provides  insight  into  the  linkage  between  information  systems  and  individual  performance,  focusing  on  two  primary  objectives:    

(1)  To  propose  a  comprehensive  theoretical  model  that  incorporates  valuable  insights  from  two  

complementary  streams  of  research,  and    

(2)  To  empirically  test  the  core  of  the  model.    

Goodhue  and  Thompson  (1995)  also  develop  a  measure  of  task-­‐technology  fit  that  consists  of  eight  factors:  quality,  locatability,  authorization,  compatibility,  ease  of  use/training,  production  timeliness,  systems  reliability,  and  relationship  with  users.  They  define  technologies  as  tools  used  by  individuals  

to  carry  out  their  tasks.  Tasks  are  broadly  defined  as  the  actions  carried  out  by  individuals  in  turning  inputs   into   outputs.   “Technologies   must   be   utilized   and   fit   the   task   they   support   to   have  performance   impact”   (Goodhue   and   Thompson   1995).   Zigurs   et   al.   (1998)   present   an   analogous  

model  operating  at  the  group  level.  

“Although  knowledge  management  (KM)  is  well  established  in  the  construction  industry,  experience  management  (EM)  is  a  new  concept  in  information  systems.  Knowledge  management  is  a  collection  

of   processes   governing   creation,   storage,   reuse,   maintenance,   dissemination   and   utilization   of  knowledge”  (Lin  2009).  “Since  knowledge  sharing  and  reusing  can  reduce  project  time  and  cost  and  improve   management   performance,   knowledge   management   is   becoming   more   important   than  

ever   in   the  construction   industry”   (Hu,  2008).   “However,  knowledge   is   separated  and  scattered   in  construction  projects,  and  each  construction  project  is  managed  independently  and  separately.  “The  knowledge  acquisition,  and  sharing  across  projects,  becomes  impossible  when  the  employee  moves  

from   one   company   to   another”   (Hu   2008).   Smith   (2000),   referencing   Hubert   and   Dreyfus   (1984),  further   categorizes   knowledge   as   “explicit  or   tacit.”   Nonaka   (1994)   defines   explicit   knowledge   or  codified   knowledge   as   knowledge   that   can   be   easily   articulated   in   formal   language.   Nonaka   and  

Takeuchi  (1995)  refine  this  definition  to  include  grammatical  statements,  mathematical  expressions,  specifications,   and   manuals.   Explicit   knowledge   can   be   easily   shared   but   is   removed   from   direct  experience.  “An  example  of   explicit   construction   knowledge   can  be  object   based,   i.e.,   as   patents,  

software  code,  databases,  technical  drawings  and  blueprints,  chemical  and  mathematical  formulas,  business   plans,   and   statistical   reports,   or   rule   based,   i.e.,   expressed   as   rules,   routines,   and  procedures”   (Stenmark   2009).   An   example   of   how   explicit   knowledge   can   be   used   is   found   in  

computer-­‐aided   design   (CAD),   where   the   designer   creates   architectural   and   engineering   plans   by  employing  graphics  software  that  “draws”  from  information  commonly  used  in  the  industry.    

Tacit   knowledge   is   developed   from   direct   experience   and   action   and   is   often   referred   to   as  knowledge-­‐in-­‐practice  (Smith  2000).  “The  importance  of  tacit  knowledge  in  organizational   learning  

and  innovation  has  become  the  focus  of  considerable  attention  in  the  recent  literature”  (Lam  2000).  “The  construction  industry  increasingly  employs  4D  CAD  models  for  detailed  schedule  reviews,  but  commercial   applications   currently   used   for   creating   these   4D   models   are   often   inadequate   for  

construction   engineering   education   due   to   their   inability   to   concurrently   create   and   review  schedules”   (Nikolic,   Shrimant,   and  Messner   2009).   Effective   transfer   of   tacit   knowledge   generally  

Page 3: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

3  

requires   extensive   personal   contact   and   trust.1  Lin   (2009)   concurs  with   these   findings,   suggesting  that  our  industry’s  educational  strategy  must  encourange  and  reward  tacit  knowledge  transfer  from  

senior   and   experienced   construction   and   engineering   professionals   “to   enrich   training   andto   enrich   training   and    

educational  experience  contenteducational  experience  content ..”    

The   IT-­‐enabled   infrastructure   for   construction   education   proposed   by   this   paper   builds   on   a   long  and  rich  history  of  earlier  simulation-­‐based  learning  tools,   including  those  employed  in  the  area  of  astronomy  (Stickel  et  al.  1994),  flight  simulation  software  (Boeing,  NASA  2009),  and  socio-­‐technical  

simulators   for   urban   infrastructure   (Liu,   Subramaniam,   and   Marathe   2003)   (Lowry   and    Subramaniam  1998).    

“During   construction,   project  managers   constantly   review  actual   project   performance  and   resolve  any   discrepancies   between   as-­‐planned   and   as-­‐built   progress.   However,   it   is   not   always   easy   to  

perform   these   activities   since   numerous   individuals   and   parties   are   involved   in   a   typical   project”  (Lee   and   Rojas   2009).   Karamchedu   (2005)   defines   this   decision-­‐making   process   as   the   “craft   of  thinking,”  further  stating,  “from  the  execution  context  viewpoint,  each  block  is  no  longer  a  mere  set  

of   tasks  with   inputs  and  outputs,  but   is  a  context  unto   itself.  Each  stage  has  a  decision   threshold.  Decisions  are   to  be  made  within  a  context   that   transforms   it   to   the  next  context.  The  progression  

occurs  when  the  decision  threshold  is  crossed  and  thus  the  project  moves  forward.”  

““ It   has   often   been   said   that   a   person   real ly   doesn’t   understand   something  It   has   often   been   said   that   a   person   real ly   doesn’t   understand   something   unti l   he  unti l   he  

teaches   it   to   someone   else.   Actual ly   a   person   doesn’t   real ly   understand   something  teaches   it   to   someone   else.   Actual ly   a   person   doesn’t   real ly   understand   something  

unti l   he   can   teach   it   to   a   computer,   i .e . ,   expresses   it   as   an   algorithm…   the   attempt  unti l   he   can   teach   it   to   a   computer,   i .e . ,   expresses   it   as   an   algorithm…   the   attempt  

to   formalize   things   as   a lgorithms   leads   to   a  much   deeper   understanding   than   i f  wto   formalize   things   as   a lgorithms   leads   to   a  much   deeper   understanding   than   i f  we  e  

s imply  try  to  understand  things   in  the  tradit ional  way.s imply  try  to  understand  things   in  the  tradit ional  way. ””    —(Quoted  from  Knuth,  1973;    in  Kunz  et  al.  2002)  

Engineering  and   construction  design   consists  of  many   interdependent  decisions   (Lewis,  Chen,   and  Schmidt  2007).  “An  understanding  of  project  sequencing  and  value  can  be  portrayed  as  a  series  of  options   and   their   consequences”   (Jackson   2008).   However,   Lin   (2009)   finds   that   “…few   suitable  platforms   have   been   developed   to   assist   engineers   in   sharing   their   experiences   when   needed.”  

“Project  complexity   requires   that   large  decisions  be  divided   into  smaller  ones,”  but  “project  value  often   lies   at   the   intersections   of   these   separate   and   specialized   knowledge   disciplines”   (Rechtin  1991).  “State-­‐of-­‐the-­‐art  visual  aids  have  been  developed  with  advanced  computer  technology  such  

as   computer   animation,   virtual   reality,   and   4D   CAD”   (Lee   and   Rojas   2009).   Some   have   proven  successful.  In  2002,  Stanford  students  from  the  Center  for  Integrated  Facility  Engineering  universally  reported   after   graduation   that   their   experiences   provided   a   unique   and   far-­‐reaching   view   of   the  

practice  and  issues   in  the  use  of   IT   in  construction  engineering  and  research.  “Students  appreciate  

                                                                                                                         1  Wikipedia,  The  Free  Encyclopedia,  s.v.,  “Tacit  knowledge,”  

http://en.wikipedia.org/w/index.php?title=Tacit_knowledge&oldid=305452954  (accessed  August  1,  2009).  

Page 4: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

4  

the   opportunity   to   develop   their   own   practical   test   cases,   use   modern   computer   methods,   and  validate  their  work  in  industrial  settings”  (Kunz  et  al.  2002).  Davis  et  al.  (2009)  describe  these  virtual  

environments   as   “metaverses”   defined   as   “immersive   three-­‐dimensional   virtual   worlds   in   which  people  interact  as  avatars  with  each  other  and  with  software  agents,  using  the  metaphor  of  the  real  world  but  without   its  physical   limitations.”  Owens  et  al.   (2009)   recognize   that   “virtual  worlds  and  

their   technology   capabilities   can   help   virtual   teams   find   new   ways   to   face   the   challenges   of  managing  a  global  IT  workforce.”    

Nikolic,   Shrimant,   and   Messner   (2009)   investigated   the   effectiveness   of   a   visual   construction  simulator   to   allow   students   to   create   and   review   construction   schedules   simultaneously   while  

interacting   with   a   3D  model.   “The   next   research   step   is   to   extend   the   functionality   of   the   visual  construction   simulator   and   add   project-­‐based   constraints   that   will   allow   students   to   explore  possibilities   and   consequences  of  decision  making,  evaluate   construction  options,  and  understand  

how  to  optimize  construction  processes”  (Nikolic,  Shrimant,  and  Messner  2009).    

The  effort  to  develop  an  IT-­‐enabled  infrastructure  discussed  in  this  paper  used  these  encapsulated  fact  components   to  scale   the  technology  so  that  students  can  obtain  hands-­‐on  experience  on  real  problems.   Experience  management   in   construction   projects   promotes   an   integrated   approach   to  

creating,   capturing,   sharing,   and   reusing   profession-­‐based   domain   knowledge   obtained   from  previous   projects   (Lin   2009).   The   approach   taken   by   FIATECH   is   based   on   deductive   synthesis  (Manna   and   Waldinger   1992)   and   formulates   situation-­‐specific   solutions   by   applying   automated  

inference  technologies  on  codified  construction  domain  facts  obtained  from  domain  experts.    

Page 5: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

5  

Infrastructure  OverviewInfrastructure  Overview    

The  architecture  of   the  proposed   IT-­‐enabled   infrastructure   for   construction  education   is   shown   in  Figure  1.    

 Figure  1.  ArchitectureFigure  1.  Architecture    

The   architecture   comprises   three   main   interacting   engines—a   learning   engine,   an  

evaluation/guidance   engine,   and   a   consistency   engine—along   with   a   knowledge   repository  containing   fact   components   and   problem-­‐solving   tactics.   Additionally,   the   architecture   is   Web-­‐enabled  and  allows  users   to  create  their  own  online  wikis   to  share  experiences  as  well  as  retrieve  

knowledge  by  Web  searches.    

Each   learning   experience   is  modeled   as   a   problem-­‐solving   activity  where   the   solutions   are   a   pre-­‐determined   sequence   of   situations.   Starting   from   an   initial   situation,   users   perform   actions   by  interacting  with   the   system   to   transition   to   the   next   situation.   User   actions   in   each   situation   are  

evaluated   by   the   evaluation/guidance   engine,   which   compares   them   with   existing   actionable  solution  plans  to  create  scored  situations.  Scores,  along  with  explanations,  are  communicated  to  the  

users.    

In   each   problem-­‐solving   session,   a   solution   plan   is   extracted   from   the   knowledge   repository   by  identifying  the  initial  and  final  situations  for  each  problem.  Re-­‐planning  is  performed  whenever  user  actions  deviate  from  the  existing  solution  plan.  Each  extracted  solution  plan  is  communicated  to  the  

learning   engine   and   adapted   by   the   learning   engine   based   on   the   learning   modes   to   create  

TacticsTactics

Fact Fact

ModulesModules

FactoidsFactoids

Learning Learning

EngineEngine

SupervisSupervis

eded UnsuperviseUnsupervise

dd

Ivised

Consistency Consistency EngineEngine

Scored Scored

SituationsSituations

Evaluation Evaluation

Engine/GuidanEngine/Guidan

ce Enginece Engine

ExplanatioExplanatio

nsns

Tactics

Shortcuts, Factoids

Actions

Actionable solution plans, replay capsules

Actionable solution plans

Solutions

Re-plan/Match

Situations

ReinforcReinforc

eded

Page 6: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

6  

actionable   solution  plans.   These  plans   are   in   turn   given   to   the  evaluation/guidance  engine,  which  uses  them  to  assign  scores  to  user  actions.  

The   consistency   engine   in   the   proposed   system   is   used   to   consistently   evolve   the   knowledge  

repository  based  on  Web   resources.  The  engine  uses  an  automated   reasoning   tool   to  ensure   that  each  additional  piece  of  information  is  a  conservative  extension  of  the  existing  knowledge.  

The   proposed   system   is   highly   configurable   in   terms   of   user   skill   levels   as   well   as   the   different  learning   modes.   User   skill   levels   of   novice,   medium,   and   expert   are   supported.   These   levels  

constrain  the  privileges  as  well  as  the  help  provided   in  problem  solving;   for   instance,  only  system-­‐certified   experts   can   update   the   knowledge   repository.   Supervised,   reinforced,   and   unsupervised  learning  modes   are   supported.   The   supervised   learning  mode   creates   system-­‐prompted   solutions  

that   users  must   successfully   replay.   The   reinforced   learning  mode   is   the   same   as   the   supervised  mode,   except   that   certain   steps   have   barriers   that   must   be   replayed   without   system   help.   The  unsupervised   learning  mode   requires   users   to   provide   time-­‐bound   solutions   to  meet   the   current  

project  constraints.  Additionally,  users  may  either  play  the  system  in  a  practice  mode  where  sample  competitions   with   the   system   are   supported,   or   use   a   tournament   mode   that   supports   multi-­‐user/team  competitions  with  randomly  generated  situational  emergencies.  

On   the   impact   on   student   learning….   “Wendy   Newstetter,   one   of   the   founding  members   of  On   the   impact   on   student   learning….   “Wendy   Newstetter,   one   of   the   founding  members   of  

the  Performance  Based  Learning  team  at  Georgia  Tech,  reports  that  solving  problems  on  the  the  Performance  Based  Learning  team  at  Georgia  Tech,  reports  that  solving  problems  on  the  

frontiers   of   sc ience   that   other   experts   are   trying   to   solve   at   the   same   t ifrontiers   of   sc ience   that   other   experts   are   trying   to   solve   at   the   same   t ime,   does   two  me,   does   two  

things:   i t  motivates   students   tremendously,  and  has  a  very   interesting   impact  on   identity.  A  things:   i t  motivates   students   tremendously,  and  has  a  very   interesting   impact  on   identity.  A  

major   problem  with   students   going   into   the   sciences   and   being   sustained   is   that   they   don’t  major   problem  with   students   going   into   the   sciences   and   being   sustained   is   that   they   don’t  

identify  with   the   kind   of   act iv ity   they   are   being   asked   to  identify  with   the   kind   of   act iv ity   they   are   being   asked   to   do.  Whereas,  when   you   give   them  do.  Whereas,  when   you   give   them  

complicated   mult icomplicated   mult i -­‐-­‐ dimensional,   interdiscipl inary   problems   from   the   real   world,   their  dimensional,   interdiscipl inary   problems   from   the   real   world,   their  

imagination   is  sparked.  They  begin  to  say   ’ I  can  see  myself  doing  this. ’  So  problem  solving   is  imagination   is  sparked.  They  begin  to  say   ’ I  can  see  myself  doing  this. ’  So  problem  solving   is  

about  motivation  and   identity,  about  engaginabout  motivation  and   identity,  about  engaging  students  through  the  excitement  and  fantasy  g  students  through  the  excitement  and  fantasy  

of  trying  to  solve  those  problems.”  of  trying  to  solve  those  problems.”      

—(Project  Kaleidoscope  2006;  reported  in  Narum  2008  )  

Knowledge  Repository  and  Problem  SolvingKnowledge  Repository  and  Problem  Solving    

Domain   expertise   is   codified   as   facts   using   extended   first-­‐order   logic   and   expert-­‐supplied  explanation  tags.  Each  fact  has  a  pre-­‐situation,  a  post-­‐situation,  and  a  series  of  actionable  steps  to  

reach   the   latter   from   the   former.   Facts   are   combined   to   form   fact   component—compositions   of  facts   starting   and   ending   in   situations.   Facts   may   be   composed   using   a   variety   of   composition  

operators,   including   sequencers,   decision-­‐trees,   and   iterators.   An   example   of   the   codified  knowledge  for  residential  housing  is  given  in  Figure  2.  

Page 7: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

7  

Figure  2.  Codif ied  knowledge  for  residential  housingFigure  2.  Codif ied  knowledge  for  residential  housing    

The  knowledge  repository  is  used  to  create  actionable  steps  to  reach  a  goal  solution  from  the  given  situation.  Each  solution  is  a  composition  of  fact  components  whose  pre-­‐situation  satisfies  the  given  

situation   and   whose   post-­‐situation   satisfies   the   goal   situation.   Solutions   are   compiled   into   a  sequence  of  actionable  steps  to  form  an  actionable  solution  plan.    

Each  project  usually  has  more  than  one  possible  solution  and  solution  plan.  Alternative  solutions  are  ranked   based   on   cost,   time,   and   other   expert-­‐specified   constraints.   Structure-­‐sharing   among  

solution  plans  is  used  to  compactly  represent  all  alternatives.  User  actions  are  guided  and  evaluated  based  on  actionable  solution  plans.  

LearningLearning -­‐-­‐ModeMode -­‐-­‐ Specified  Solution  DeliverySpecified  Solution  Delivery    

Each   solution   plan   is   customized   in   accordance   with   the   learning   mode   to   achieve   systematic  

learning.   To   do   this,   a   replay   capsule   is   created   from   each   solution   plan   by   annotating   each  actionable  step  in  the  plan  with  learning  attributes  such  as  explanation  tags,  pitfalls,  and  rollbacks.  Explanation   tags   provide   instructional   and   informative   rationale   for   each   step.   Pitfalls   highlight  

common  errors,  and  rollbacks  provide  error  recovery  for  repetitive  learning.  

In  the  supervised  learning  mode,  the  replay  capsule  is  auto-­‐generated  for  the  optimal  solution.  Each  actionable  step   in   the  capsule   is  played  out   to  users  with  explanations,  pitfalls,  and   rollbacks.  The  users  replay  the  step  and  are  restricted  to  relevant  actions.  The  system  play  and  user  replay  can  be  

repeated  as  needed  based  on  user  request.  

Page 8: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

8  

In   the  reinforced  mode,  replay  capsule  steps  are  populated  with  barriers   that  can  be  crossed  only  upon   successful   completion.   Barrier   steps   are   selected   using   domain   expertise.   The   system   also  

supports  a  single-­‐step  reinforced  learning  mode  where  a  barrier  is  added  to  each  step.  The  system  provides  hints/demonstrations  to  help  cross  barriers.  

Unsupervised   learning  modes   support   incremental  maintenance   and   repair   of   solution   plans.   The  system  is  an  implicit  player  in  these  modes.  The  system  creates  and  maintains  replay  capsules  up  to  

a  predefined  limit.  Sets  of  capsules  become  active  based  on  observed  user  actions.  User  actions  are  compared  with  those  in  the  active  capsules  and  assigned  scores.  Unexpected  user  actions  that  block  progress   are   repaired   by   rolling   back   the   predecessor   step.   In   this   mode,   emergencies   are  

automatically  created  to  challenge  the  users.  An  emergency  is  a  system  action  that  is  unexpected  or  belongs  to  an  inactive  capsule.  

Collaboration  and  CompetitionCollaboration  and  Competition    

Lin   (2009)   demonstrates   the   effective   integration   of   a   Web-­‐based   assistant   people-­‐based   map  

experience   management   (APMEM)   system   into   high-­‐technology   construction   projects   in   Taiwan.  Zhang   and   El-­‐Diraby   (2009)   propose   a   role   and   ontology/taxonomy   for   construction   product   and  process  modeling   that  may  evolve  with   the   social  or   semantic  web.   In   this  example,   collaborative  

learning   is  enabled  by  allowing  users  to  share  solutions  that  they  discover   in  a  particular  problem-­‐solving   session.   Unknown   fact   component   compositions   leading   to   a   goal   situation   may   be  discovered   by   peers,   for   instance,   by   performing   a   sequence   of   unexpected   actions.   These  

compositions   called   tactics,   can   be   added   to   the   knowledge   repositories.   Tactics   may   also   be  discovered  from  Web  resources  such  as  mailing   lists  and  Wikipedia®  and  added  to  the  knowledge  repository.  These  may  be  used  to  make  progress  from  a  blocked  situation  and/or  to  learn  a  new  goal  

situation.  

The   system   is   Web-­‐enabled   and   supports   integrated   peer   blog   forums   that   can   be   used   to   try  unexpected  actions  that  result  in  better  solutions  and  enhance  domain  expertise.  The  information  in  such  blogs  can  be  in  the  form  of  either  structured  logs  that  describe  starting  and  ending  situations  

and   actions,   or   annotations.   Moderated   informal   logs   (internal   wikis)   are   also   supported.   Such  information  must  be  manually  interpreted  by  experts  to  enhance  the  codified  domain  expertise.  For  instance,  an  expert  may  recommend  the  addition  of  an  excavator  with  a  jaw  crusher  attachment  for  

demolition  work.  

Enhancing  domain  expertise  using  Web  resources   is  a  challenging  problem  and   involves  validating  the  new  fact  components  and  maintaining  the  overall  consistency  of  all  fact  components.  Validation  

is   performed   by   consulting  with   domain   experts   and   also   by   using   reasoning   tools   for   automatic  verification  whenever   possible.   To   ensure   practical   consistency   of   the   knowledge   repository,   new  knowledge   is   limited   to   conservative   extensions   of   the   existing   knowledge,   i.e.,   new   facts   cannot  

contradict  existing  ones  but  may  change  their  optimality.  

The   game-­‐based   environment   with   scores   fosters   competitive   learning.   The   users   can   engage   in  tournaments  that  are  customized  based  on  the  evaluation  metric  as  well  as  the  type  of  opponent.  

Page 9: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

9  

Users  may  compete  based  on  metrics  such  as  duration  or  cost   to  complete   the  project.  They  may  also   set   difficulty   levels   reflecting   time   required   to   play   a   step,   predefined   resource   limits,   and  

emergencies.  The  system,  other  users,  or  teams  may  be  chosen  as  opponents.    

Additionally,   role-­‐based  competitions  are  supported.  For   instance,  users  may  choose  roles  such  as  architect  or  contractor  in  both  individual  and  team  competitions.  They  may  also  choose  opponents  who  play  specific  roles.  In  team  tournaments,  the  system  acts  as  proxy  for  the  other  roles.  

Prototype  IPrototype  Implementationmplementation    

Figure  3  shows  an  Adobe®  Flash®  Player  screenshot  from  the  prototype  game  software.  Users  select  learning  modes  via  the  Configuration  button.  This  prototype  is  operational  and  has  been  tested  on  some  residential  housing  examples  provided  by  domain  experts.  

Figure  3.  A  snapshot  of  the  prototypeFigure  3.  A  snapshot  of  the  prototype    

The   prototype   was   implemented   using   Adobe   Flash   CS3   Professional   software   and   incorporates  

visual   content   generated  by  Google™  SketchUp™   sketching   software.   It   currently   supports   two   to  four  parallel  activities  in  each  project.  Currently,  only  the  supervised  and  unsupervised  modes  have  

been  implemented;  the  reinforced  mode  will  be  added  once  it   is  populated  with   information  from  domain   experts.   The  prototype   supports   only   individual   players   but   can  be  modified   for   group  or  collaborative   use.   The   prototype   has   been   successfully   exercised   on   aspects   of   residential   home  

construction,   using   domain   expertise   obtained   via   personal   communications   in   2009   with   James  Goedert  and  Young  Cho,  members  of  the  Department  of  Engineering  at  the  University  of  Nebraska.    

Initial   use   of   this   prototype   indicates   that   choosing   the   appropriate   abstraction   is   crucial   to  capturing  domain  expertise.  The  current  use  of  first-­‐order  logic,  while  appropriate,  can  be  improved  

Page 10: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

10  

by   using   syntactic   sugar   and   pre-­‐defined   predicates   to   enable   domain   experts   to   validate   the  knowledge.  Lessons  learned  about  the  prototype’s  ease  of  use  and  gaming  aspects  are  ongoing.  

The  prototype  scenario  starts  with  a  sample  video  showing  a  house  sample,  as  in  Figure  3.  Clicking  

Configuration   in   the  menu  enables  one  of   two   learning  modes   to  be   selected,   namely   supervised  and  unsupervised.  This  button  also  supports  other  options  such  as  full  screen  and  parallel  activity.  To  start  a  new  game,  users  click   the  Start  button.   Immediately,  a   tutorial   is   shown   (Figure  4)   that  

tells  users  what  to  do  next.  Additionally,  users  can  go  to  the  forum  for  more  information.  And  they  can  see  the  house  sample  whenever  they  want  by  clicking  House  Sample.  

 

Figure  4.  A  snapshot  of  the  tutorialFigure  4.  A  snapshot  of  the  tutorial    

When  users  exit  the  tutorial,  they  see  an  activity  box  (Figure  5).  Users  can  select  at  least  one,  but  no  more   than   four,   activities.   After   users   confirm   their   selection(s)   by   clicking   OK,   they   see   the  

evaluation   results  with   cost   and   duration   (Figure   6).   If   users  mouse   over   the   Batter   Board   in   this  animation,   they  see   the  Batter  Board’s  educational   interface   (Figure  6).  Following   the   tutorial  and  then  clicking  Next  takes  users  back  to  the  activity  box.    

 

Page 11: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

11  

Figure  5.  Snapshots  of  the  activity  boxFigure  5.  Snapshots  of  the  activity  box    

 

Figure  6.  Snapshots  of  survey  activityFigure  6.  Snapshots  of  survey  activity    

For  each  activity,  users  need  to  select  the  appropriate  equipment  and  human  resources,  if  these  are  

necessary.  For  example,  an  optional  solution  after   the  survey  activity   is   the  excavation  activity.  To  successfully   complete   excavation,   users   need   operators   and   appropriate   equipment.   They   select  these  by  clicking  the  Equipment  and  Human  Resource  buttons.  Additionally,  when  users  mouse  over  

a   piece   of   equipment   and   an   operator,   they   see   an   educational   interface   that   helps   them  decide  whether  to  use  the  equipment  and  how  many  pieces  they  want.  Snapshots  of  educational  interfaces  are  shown  in  Figure  7.  

 

 

Figure  7.  Snapshots  of  educational   interfaces  for  equipment  and  human  resourceFigure  7.  Snapshots  of  educational   interfaces  for  equipment  and  human  resource    

Page 12: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

12  

After   selecting   equipment   and   personnel,   users   see   an   interface   showing   the   total   cost   of   their  selections  and  the  results  (Figure  8).  

Figure  8.  A  snapshot  of  excavation  activity  with  total  costFigure  8.  A  snapshot  of  excavation  activity  with  total  cost    

If  the  selection  results  in  no  solution,  an  error  message  and  advice  from  the  system  are  shown  in  the  message  box.  Users  may  hire  a  consultant  for  advice  and  to  increase  their  learning  experience.  For  example,   in   the   foundation   construction   activity,   there   are   several   sub-­‐activities.   If   users   select  

these   sub-­‐activities   in   the   sequence   of   Install   Footing   1Set   FormsPlace   Concrete   1Install  Rebar  1,  the  error  message  shown  in  the  message  box  on  the  left  side  of  the  snapshots  in  Figure  9  is  displayed.  The  message   indicates   that   there   is  no  solution  based  on  this  selection.   (Note:  Because  

the  activity  animation  or  picture   is  not  available  currently,   just  a   single   representational  picture   is  being   used   temporarily.   The   prototype   may   be   updated   later   when   more   animations   become  available.)  

 

Figure  9.  Snapshots  of  error  messageFigure  9.  Snapshots  of  error  message    

Page 13: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

13  

 

Figure  10.  Snapshots  of  consultant  servicesFigure  10.  Snapshots  of  consultant  services    

When  users   need   help,   they   can   pay   for   a   consultant’s   services.   The   consultant   explains  why   the  

users   failed   and   provides   feasible   solutions.   Users   must   then   replay   the   scenario.   Snapshots   of  consultant  services  are  shown  in  Figure  10.  Users  can  continue  to  select  activities  step  by  step.  

Future  ResearchFuture  Research    

The   architectural,   engineering,   and   construction   (AEC)   industry   has   made   significant   strides   in  improving   jobsite  productivity   through   the  use  of  new   IT  applications   referred   to  as  virtual  design  

and   construction   (VDC)   tools.   These   tools   help   professionals   to   visualize,   analyze,   and   evaluate  project  performance  (Exponent  2009).  The  continued  development  of  IT-­‐enabled  infrastructure  for  construction   education   across   the   spectrum   of   expertise   should   prove   especially   beneficial   to  

students  who  go  on  to  work  on  construction  projects  that  use  VDC  systems.    

Fox  et  al.   (2008)   recommend   radical   reductions   in   the   time  needed   to  communicate   specific   skills  and  offer  two  alternatives  toward  improvement.  First,  these  authors  recommend  that  products  and  processes  be  designed  so  that  the  specific  skills  they  require  can  be  communicated  more  easily  and  

quickly  to  more  people.  Second,  they  recommend  the  formulation  of  “the  communication  of  specific  skill  knowledge  so  it  can  be  understood  and  changes  the  primary  repository  of  skill  information  from  being  a  person  (e.g.,  a  craftsperson)  to  being  a  digital  information  system  (e.g.,  a  knowledge-­‐base).”  

To  address  shortages  of  qualified  candidates  in  the  construction  industry,  Everett  and  Slocum  (1994)  note   that   automation   and   robots   offer   solutions   to   industry-­‐wide   problems   of   increasing   costs,  declining   productivity,   skilled   labor   shortages,   safety   lapses,   and   quality   control   issues.   “The  

development   of   a   systematized   approach   to   construction   using   largely   dry,   prefabricated  components   delivered   just-­‐in-­‐time   has   advanced   the   degree   of   automation   now   possible.  

Automated  machines  are,  in  fact,  robots.  They  not  only  carry  out  a  complex  sequence  of  operations,  but  can  also  control  their  performance  Fox  et  al.  (2008).”    

Although   it   is  still   in   it’s  early  days,  “development  of  this  kind   is   indicative  of  a   longer-­‐term  trend”  (PATH  2009).  Such  research  is  consistent  with  laying  the  foundation  for  more  effectively  employing  

current  advances  in  construction  automation,  which  is  characterized  by  using  a  machine  to  perform  physically   intensive   basic   tasks,   with   operational   support   provided   by   a   human   craftsperson  who  

Page 14: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

14  

performs   the   information-­‐intensive  basic   tasks.  Fox  et  al.   (2008)  confirm   that  current  practice   still  prevails,  suggesting  that  “skill  knowledge  is  typically  communicated  through  one-­‐to-­‐one  face-­‐to-­‐face  

human  interaction  between  a  person  with  relevant  existing  skills  (e.g.,  a  craftsperson)  and  a  person  without   relevant   existing   skills   (e.g.,   an   apprentice).”   The   success   of   this   type   of   system   relies   on  encouraging   the   participation   of,   and   extracting   information   from,   construction   industry   experts.  

“Expert  teachers  are  sensitive  to  those  aspects  of  the  discipline  that  are  especially  hard  or  easy  for  new   students   to   master”   (National   Research   Council   1999).   Lin   (2009)   points   out   that   senior  engineers   and  experts  will   play   a   vital   role   and  need   to  be  encouraged   to  dedicate   the   resources  

necessary   to   capture   their   experience.   “There   are   no   recipes   or   formulas,   no   checklists   or   advice  that  describes  ‘reality’.  There  is  only  what  we  create  through  engagement  with  others  and  events”  (Wheatley  1992).    

Trademark  AcknowledgementsTrademark  Acknowledgements    

Adobe  and  Flash  are  either  registered  trademarks  or  trademarks  of  Adobe  Systems  Incorporated  in  

the  United  States  and/or  other  countries.  

Google  and  SketchUp  are  trademarks  of  Google  Inc.  

Wikipedia  is  a  registered  trademark  of  the  Wikimedia  Foundation,  Inc.,  a  non-­‐profit  organization.  

ReferencesReferences    

Boeing,  NASA.  2009.  NI  MATRIXx  software  suite.  http://www.ni.com/matrixx/.  

Davis,  A.,  J.  Murphy,  D.  Owens,  D.  Khazanchi,  and  I.  Zigurs.  2009.  Avatars,  people,  and  metaverses:  Foundations  for  research  in  virtual  worlds.  Journal  of  the  Association  for  Information  Systems  10  (2):  90–117.  

Everett,  J.G.,  and  A.H.  Slocum.  1994.  Automation  and  robotics  opportunities:  Construction  versus  

manufacturing.  Journal  of  Construction  Engineering  and  Management  120  (June),  doi  10.1061/(ASCE)0733-­‐9364(1994)120:2(443).    

Exponent.  2009.  Virtual  design  &  construction  (VDC)  in  project  delivery.  http://www.exponent.com/virtual_design_project_delivery/.  

Fox,  S.,  P.  Ehlen,  M.  Purver,  E.  Bratt,  M.  Frampton,    I.  Kobayashi,  B.  Jones,  R.  Monroe,  and  S.  Peters.  

2008.  Applying  computational  semantics  to  the  real-­‐time  communication  of  skill  knowledge.  Working  Paper  101.  VTT  Technical  Research  Centre  of  Finland.  http://www.vtt.fi/inf/pdf/workingpapers/2008/W101.pdf.  ISBN  978-­‐951-­‐38-­‐7162-­‐8.  

Goodhue,  D.L.,  and  R.  Thompson.  1995.  Task  technology  fit  and  individual  performance.  MIS  

Quarterly  19  (June):  213–236.    

Page 15: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

15  

Hu,  W.  2008.  Framework  of  knowledge  acquisition  and  sharing  in  multiple  projects  for  contractors.  In  Knowledge  acquisition  and  modeling,  172–176.  International  Symposium  on  Knowledge  

Acquisition  and  Modeling.  Co-­‐Sponsored  by  IEEE  Computational  Intelligence  Society.  

Hubert,  D.,  and  S.  Dreyfus.  1984.  From  Socrates  to  expert  systems.  Technology  in  Society  6:217.    

Jackson,  M.  2008.  Integrated  project  delivery  results  in  greater  value  for  facility  owners:  Fewer  errors  and  potential  changes  reduce  risk  for  everyone.  HDR  Architecture  Inc.  Reprinted  with  permission  on  TradelineInc.com.  at  http://www.tradelineinc.com/reports/A0BBC40F-­‐2B3B-­‐B525-­‐

880C0192B64FFDAD.  

Karamchedu,  R.  2005.  It's  not  about  the  technology:  Drafting  the  craft  of  thinking  for  a  high  technology  corporation.  New  York:  Springer.    

Knuth,  D.  E.  1973,  "Computer  Science  and  Mathematics",  American  Scientist,  61,  6,  1973,  page  709.    

Kunz,  J.,  M.  Fischer,  J.  Haymaker,  and  R.  Levitt.  2002.  Integrated  and  automated  project  processes  in  civil  engineering:  Experiences  of  the  Center  for  Integrated  Facility  Engineering  at  Stanford  University.  

In  Computing  in  civil  engineering,  ed.  A.  Songer  and  P.  Chinowsky,  96–105.  Specialty  Conference  on  Fully  Integrated  and  Automated  Project  Processes.  Reston,  VA:  ASCE.  Also  available  as  CIFE  Technical  Report  #132  at  http://www.stanford.edu/group/CIFE/online.publications/TR132.pdf.  

Nonaka,  I.  1994.  A  dynamic  theory  of  organizational  knowledge  creation.  Organization  Science,  Vol.    

5  (1):  14–37.    

Nonaka,  I.,  and  H.  Takeuchi.  1995.  The  knowledge-­‐creating  company:  How  Japanese  companies  create  the  dynamics  of  innovation.  New  York:  Oxford  University  Press.  

Lam,  A.  2000.  Tacit  knowledge,  organizational  learning  and  societal  institutions:  An  integrated  framework.  Organization  Studies  21  (3):  487–513.  

Lee,  N.,  and  E.M.  Rojas.  2009.  Developing  effective  visual  representations  to  monitor  project  performance.  In  Building  a  sustainable  future,  ed.  S.T.  Ariaratnam  and  E.  Rojas,  826–835.  2009  Construction  Research  Congress.  Reston,  VA:  ASCE.  DOI:10.1061/41020(339)84.  

Lewis,  K.E.,  W.  Chen,  and  L.  Schmidt,  eds.  2007.  Decision  making  in  engineering  design.  New  York:  

ASME  Press.  

Lin,  Y.  2009.  Development  of  people-­‐based  maps  experience  management  system  for  construction  projects.  In  Building  a  sustainable  future,  ed.  S.T.  Ariaratnam  and  E.  Rojas,  906/908.  2009  Construction  Research  Congress.  Reston,  VA:  ASCE.  

Liu,  M.,  M.  Subramaniam,  and  M.  Marathe.  2003.  A  formal  approach  for  socio-­‐technical  simulation  

of  ad  hoc  networks.  Technical  report.  Los  Alamos  National  Laboratory.  

Page 16: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

16  

Lowry,  M.  and  M.  Subramaniam.  1998.  Abstraction  for  analytic  verification  of  concurrent  software  systems.  In  Proceedings,  85–94.  Symposium  on  Abstraction,  Reformulation  and  Approximation.  

Supported  in  part  by  Association  for  the  Advancement  of  Artificial  Intelligence.    

Manna,  Z.,  and  R.  Waldinger.  1992.  Fundamentals  of  deductive  program  synthesis.  IEEE  Transactions  on  Software  Engineering  18  (8):  674–704.  

Narum,  J.  2008.  Transforming  undergraduate  programs  in  science,  technology,  &  mathematics:  Looking  back  and  looking  ahead.  Liberal  Education  94  (2):  12–19.  

http://www.aacu.org/liberaleducation/le-­‐sp08/documents/LE-­‐SP08_Narum.pdf.    

National  Research  Council.  1999.  How  people  learn:  Brain,  mind  experience  and  school.  Washington,  DC:  National  Academies  Press.    

Nikolic,  D.,  J.  Shrimant,  and  J.I.  Messner.  2009.  An  educational  simulation  in  construction:  The  virtual  construction  simulator,  computing  in  civil  engineering.  In  Computing  in  civil  engineering,  ed.  C.H.  

Caldas  and  W.J.  O’Brien,  691.  2009  ASCE  International  Workshop  on  Computing  in  Civil  Engineering.  Sponsored  by  Technical  Council  on  Computing  and  Information  Technology  of  ASCE.  Reston,  VA:  ASCE.  

Owens,  D.,  A.  Davis,  J.D.  Murphy,  D.  Khazanchi,  and  I.  Zigurs.  2009.  Real-­‐world  opportunities  for  

virtual-­‐world  project  management.  IT  Professional,  March/April.  

PATH.  2009.  Emerging  scanning  results:  Construction  robotics.  Partnership  for  Advancing  Technology  in  Housing  (PATH).  http://www.pathnet.org/sp.asp?id=7542.    

Project  Kaleidoscope.  2006.  Problem-­‐based  learning  at  Georgia  Tech:  An  interview  with  Wendy  Newstetter.  Volume  IV:  What  works,  what  matters,  what  lasts,  2004–present:  PKAL's  Online  

Publication.  www.pkal.org/documents/PBL_GeorgiaTech.cfm.    

Rechtin,  E.  1991.  Architecting:  Creating  and  building  complex  systems.  Englewood  Cliffs,  NJ:  Prentice-­‐Hall.  

Rojas,  E.,  and  N.  Lee.  2009.  Developing  effective  visual  representations  to  monitor  project  

performance.  In  Building  a  Sustainable  Future,  ed.  S.T.  Ariaratnam  and  E.  Rojas,  page  832.  2009  Construction  Research  Congress.  Reston,  VA:  ASCE.    

Smith,  D.  2000.  Knowledge,  groupware  and  the  internet.  London:  Elsevier.  

Stenmark,  D.  2002.  Information  vs.  knowledge:  The  role  of  intranets  in  knowledge  management.  In  Proceedings,  Volume  4,  104b.  35th  Hawaii  International  Conference  on  System  Sciences  –  2002.  

Washington,  DC:  IEEE  Computer  Society.  Also  accessible  via  link  located  near  bottom  of  Web  page  at  http://www.viktoria.se/~dixi/km/chap7.htm.  

Page 17: FIATECHReport Sept2 2009 revised shockley · 2017. 6. 21. · FIATECH(–Element8TechnologyandKnowledgeEnabledWorkforce (2(users)towardusing)them.”)Their)informationsystems)(IS))researchprovides)insight)intothe)linkage

FIATECH  –  Element  8  Technology  and  Knowledge  Enabled  Workforce  

17  

Stickel,  M.E.,  R.J.  Waldinger,  M.R.  Lowry,  T.  Pressburger,  and  I.  Underwood.  1994.  Deductive  composition  of  astronomical  software  from  subroutine  libraries.  In  Automated  deduction  -­‐  CADE-­‐12,  

ed.  A.  Bundy,  341–355.  12th  International  Conference  on  Automated  Deduction.  New  York:  Springer.  

Wheatley,  M.J.  1992.  Leadership  and  the  new  science:  discovering  order  in  a  chaotic  world.  San  Francisco:  Berrett-­‐Koehler.  

Zhang,  J.,  and  T.E.  El-­‐Diraby.  2009.  Mapping  actors  and  roles  in  construction  knowledge.  In  Building  a  sustainable  future,  ed.  S.T.  Ariaratnam  and  E.  Rojas,  936.  2009  Construction  Research  Congress.  

Reston,  VA:  ASCE.    

Zigurs,  I.,  B.  Buckland,  J.  Connolly,  and  E.V.  Wilson.  1999.  A  test  of  task-­‐technology  fit  theory  for  group  support  systems.  Data  Base  for  Advances  in  Information  Systems  30  (3  &  4):  34–50.