スケーラブル12bitsar adcの開発...isscc 2008-2013 vlsi symp. 2008-2012 sar adc w/ ovs...

20
Matsuzawa & Okada Lab. . Matsuzawa & Okada Lab. . Development of a scalable 12-bit SAR ADC スケーラブル12bitSAR ADCの開発 H. Kawaraguchi*, S. Lee*, T. Hirato*, M. Sugawara, M. Miyahara*, and A. Matsuzawa* *Tokyo Institute of Technology JST CREST

Upload: others

Post on 13-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Development of a scalable 12-bit SAR ADC

    スケーラブル12bitSAR ADCの開発

    H. Kawaraguchi*, S. Lee*, T. Hirato*,

    M. Sugawara, M. Miyahara*, and A. Matsuzawa*

    *Tokyo Institute of Technology

    JST CREST

  • 1

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Contents

    • Development goal• Frequency, performance, and power

    scalable ADC

    • SAR ADC design• Circuit design

    • Capacitor design

    • Measurement results

    • Conclusion

    2013/11/19

  • 2

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Goal: One ADC for versatile use

    1. Enough high SNR for wide signal bandwidth

    2. Lowest power for wide conversion rate

    3. Smallest occupied area

    50

    60

    70

    80

    90

    0.1 1 10 100

    135dB

    143dB

    150dB

    BW (MHz)

    SN

    R (

    dB

    )

    Scalable ADC

    BWSNRSNR log100

    )log(10140)( BWdBSNR

    sd fP

    1

    10

    100

    0.1 1 10 100

    BW [MHz]

    SDCT SDSC VCO

    ISSCC 2008-2013

    VLSI Symp. 2008 -2012

    Po

    wer

    dis

    sip

    ati

    on

    (m

    W)

    BWKPd 1 K1: 0.2 -- 3 (mW/MHz)

    Matsuzawa, A. “Digitally-Assisted Analog and RF CMOS Circuit

    Design for Software-Defined Radio,” Chapter 7,Springer 2011. 2013/11/19

    SDCT SDSC VCO

  • 3

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Contents

    • Development goal• Frequency, performance, and power

    scalable ADC

    • SAR ADC design• Circuit design

    • Capacitor design

    • Measurement results

    • Conclusion

    2013/11/19

  • 4

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Block diagram of SAR ADC

    Vin

    Bootstrap SW

    VRNVRP

    Floating Cap.

    CsCa

    128CuCu CH

    Dynamic Comp.

    Out

    Sample

    Self-clock Logic

    w/ Calibration

    Cu 8Cu

    Sprit Cap.

    Sprit capacitor to reduce the total capacitance

    Capacitance is determined by thermal noise

    Calibration for mismatch Cap. and parasitic Cap.

    Dynamic comparator to reduce power

    Self clocking to avoid PLL and DLL

    2013/11/19

  • 5

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Output

    VDDCLK

    Vin+

    For CAL

    Vin-

    M1 M2

    CL CL

    ID ID

    Dynamic amplifier Latch

    Dynamic comparator

    N1a N1b

    N2a N2b

    N3a

    N3b

    Fi le : C:\Us e rs \m a ts u \Do c u m e n ts \Top Sp ic e \Ci rc u i ts \DYNAM IC_ COM P_ 12 0 90 1 .OUT Rev : 16 5

    Top Sp ic e 8 .10

    0 1 -SEP-20 1 2

    1 5 :0 1 :5 0 V(151)

    Plo t 1 :

    V(1 5 1 )

    V(153)

    V(1 5 3 )

    V(152)

    V(1 5 2 )

    V(150)

    V(1 5 0 )

    V(155)

    V(1 5 5 )

    V(154)

    V(1 5 4 )

    -0.5

    0

    0.5

    1.0

    1.5

    2.0

    V

    (V)

    ID(M165)

    Plo t 2 :

    ID(M 1 6 5 )

    ID(M127)

    ID(M 1 2 7 )

    ID(M130)

    ID(M 1 3 0 )

    ID(M164)

    ID(M 1 6 4 )

    ID(M129)

    ID(M 1 2 9 )ID(M163)

    ID(M 1 6 3 )

    -750u

    -500u

    -250u

    0

    250u

    500u

    750u

    I (

    A)

    0 200p 400p 600p 800p

    TIME (s )

    N2

    N1

    N3a

    N3b

    VDD

    GND

    Low noise dynamic comparator to reduce power

    No static current flows because of dynamic action

    Load capacitance of the 1st stage determines the noise

    M. Miyahara, Y. Asada, D. Paik, and A.

    Matsuzawa, "A Low-Noise Self-

    Calibrating Dynamic Comparator for

    High-Speed ADCs," A-SSCC, Nov. 2008.

    Yusuke Asada, Kei Yoshihara, Tatsuya Urano,

    Masaya Miyahara, and Akira Matsuzawa, "A 6bit,

    7mW, 250fJ, 700MS/s Subranging ADC," A-SSCC,

    5-3, pp. 141-144, Taiwan, Taipei, Nov. 2009.

    2013/11/19

  • 6

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Required capacitance and consumed Energy

    6 7 8 9 10 11 12 13 140.1

    1

    10

    100

    1 103

    1 104

    1 105

    f x( )

    g x( )

    x

    CL(f

    F),

    Ec(f

    J)

    Resolution (bit)

    CL

    Ec

    VDD=1V, Veff=0.2V

    Proposed dynamic comparator can reduce the noise

    due to CMOS input of flip flop circuit, originally.

    Node capacitance CL should be increased for higher ADC resolution.

    DDL

    eff

    inVC

    TVV

    k22_

    CL=0.5pF is used

    A. Matsuzawa, ASICON 2009, pp. 218-221, Oct. 2009.2013/11/19

    1000

    10000

    100000

  • 7

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Self clocking circuit

    CAP

    DAC

    Sampling

    CLK

    Async.

    SAR

    Control

    Logic

    Controllable Dl

    Neg. Edge

    Pulse

    B9

    B0

    Comparator output

    Fi le : C:\Us e rs \m a ts u \Do c u m e n ts \Top Sp ic e \Ci rc u i ts \DYNAM IC_ COM P_ 12 0 90 1 .OUT Rev : 16 5

    Top Sp ic e 8 .10

    0 1 -SEP-20 12

    1 5 :0 1 :5 0 V(151)

    Plo t 1 :

    V(15 1 )

    V(153)

    V(15 3 )

    V(152)

    V(15 2 )

    V(150)

    V(15 0 )

    V(155)

    V(15 5 )

    V(154)

    V(15 4 )

    -0.5

    0

    0.5

    1.0

    1.5

    2.0

    V

    (V)

    ID(M165)

    Plo t 2 :

    ID(M 1 65 )

    ID(M127)

    ID(M 1 27 )

    ID(M130)

    ID(M 1 30 )

    ID(M164)

    ID(M 1 64 )

    ID(M129)

    ID(M 1 29 )ID(M163)

    ID(M 1 63 )

    -750u

    -500u

    -250u

    0

    250u

    500u

    750u

    I (

    A)

    0 200p 400p 600p 800p

    TIME (s )

    Voa

    Vob

    Voa

    VobComparingEnd of Comp.

    Self clocking circuit

    Nature of dynamic comparator

    can detect the end of comparison.

    The self clocking can avoid PLL and DLL.

    Comparing period: Same Low states

    End of comparison: Different logic states

    2013/11/19

  • 8

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Timing

    Sampling

    Power off

    Conversion period

    Conversion

    End flag

    Power on

    2ns

    12ns: 1.2V18ns: 1.0V

    Only sampling pulse is required.

    Conversion is finished within 12 ~ 18ns

    Rest period can be used for power Shut off.

    2013/11/19

  • 9

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    2

    3

    50 60 70 80 90 100 200

    MOM cap.

    MIM cap.

    Design rule (nm)

    De

    ns

    ity (

    fF/u

    m2)

    MOM capacitance

    MOM

    capacitor

    MOM capacitance is used to increase capacitor density

    and to reduce capacitor area.

    2013/11/19

  • 10

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Issue of MOM capacitor

    177

    177.5

    178

    178.5

    179

    179.5

    180

    0 200 400 600 800 1000

    Distance (mm

    Cap

    acitan

    ce (fF

    )

    MOM_A32

    2fF (1.1%)

    2.75%/mm

    MOM capacitance has a large position dependence.

    Calibration circuit is needed.

    2013/11/19

  • 11

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Linearity calibration

    2C1C8C4C2C1C

    Vref

    26C4C2C1C1

    2

    1

    4CC

    1

    8C 4C2C1C

    1

    2

    1

    4CC

    -4

    -2

    0

    2

    4

    0 1024 2048 3072 4096

    INL

    [L

    SB

    ]

    OUTPUT CODE

    -4

    -2

    0

    2

    4

    INL

    [L

    SB

    ]

    修正後

    修正前

    Capacitance mismatch CAL

    Before

    After

    Floating capacitor CAL

    -5-4-3-2-1012345

    2048 2176 2304 2432 2560

    INL

    [LS

    B]

    OUTPUT CODE

    補正後

    補正前After

    Before

    Split capacitor

    Main CDAC

    Comp.

    Floating capacitance CALCapacitance mismatch CAL

    12bit SAR

    12bit

    Simulation

    Capacitance mismatch and parasitic capacitance calibrations

    2013/11/19

  • 12

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Layout

    Logic Comp CDAC

    65nm CMOS 0.03mm2

    Short cell for future interleaving architecture

    Small occupied area

    2013/11/19

  • 13

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Contents

    • Development goal• Frequency, performance, and power

    scalable ADC

    • SAR ADC design• Circuit design

    • Capacitor design

    • Measurement results

    • Conclusion

    2013/11/19

  • 14

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Measured results: SNDR

    50

    55

    60

    65

    70

    0 5 10 15 20 25 30 35 40

    SN

    DR

    [d

    B]

    Input frequency [MHz]

    1.2V

    1.0V

    0.8V

    55

    60

    65

    70

    0 10 20 30 40 50 60 70 80 90

    SN

    DR

    [d

    B]

    Sampling frequency [MHz]

    1.2V 1.0V 0.8V

    SNDR of 64dB is obtained for Vdd of 1.0V and 1.2V.

    SNDR is degraded at Vdd of 0.8V.

    2013/11/19

  • 15

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Linearity improvement by Calibration

    2

    3

    4

    5

    6

    7

    8

    2048 2080 2112 2144 2176

    INL

    [LSB

    ]

    CODE [LSB]

    3LSB

    Parasitic capacitance of sprit capacitance causes the linearity error

    of 3 LSB without calibration, and it can be reduced to 1.2LSB

    with calibration.

    -2

    -1.5

    -1

    -0.5

    0

    2048 2080 2112 2144 2176

    INL

    [LSB

    ]

    CODE [LSB]

    1.2LSB

    Without CAL. With CAL.

    2013/11/19

  • 16

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Power dissipation

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    5.0

    0 10 20 30 40 50 60 70 80

    Po

    we

    r d

    iss

    ipa

    tio

    n [

    mW

    ]

    Sampling frequency [MHz]

    1.2V

    1.0V

    0.8V

    Power dissipation is very proportional to sampling frequency.

    Low voltage operation is effective to reduce power dissipation.

    High conversion frequency of 70MHz is achieved.

    Power scalable ADC can be realized.

    2013/11/19

  • 17

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Performance comparison

    [3] W. Liu, P. Huang, Y. Chiu, ISSCC, pp. 380-381, Feb. 2010.

    [4] T. Morie, et al., ISSCC, pp.272-273, Feb. 2013.

    ・ Maximum conversion speed of 70MSps・ Lowest operating voltage of 0.8V・ Lowest power dissipation of 2.2mW at 50MSps・ Lowest FoM (DC) of 28fJ・ Smallest area of 0.03mm2

    12bit SAR ADCs

    [3] [4]

    Resolution (bit) 12 12

    VDD (V) 0.8 1 1.2 1.2 1.2

    fsample (MHz) 30 50 70 45 50

    Pd (mW) 0.8 2.2 4.6 3 4.2

    SNDR (dB) 62 64 65 67 71

    FoM (fJ) Nyq/DC 81/28 62/33 100/45 36/31 36/29

    Technology (nm) 130 90

    Occupied area(mm2) 0.06 0.1

    This work

    12

    65

    0.03

    2013/11/19

  • 18

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    SNR and Pd vs. signal bandwidth

    50

    60

    70

    80

    90

    0.1 1 10 100

    SN

    R [

    dB

    ]

    BW [MHz]

    SDCT SDSC VCO

    135dB

    143dB

    150dB

    ISSCC 2008-2013VLSI Symp. 2008-2012

    SAR ADC w/ OVS

    Interleaving

    Over sampling

    1V, 50MSps Operation

    SNR of 70dB at 10MHz input and 78dB at 1.5MHz

    is attained by digital filter (Over sampling).

    Frequency and performance scalable ADC is realized.

    Power dissipation is the lowest and conversion rate scalable..

    Interleaving will expand the BW in future.

    1

    10

    100

    0.1 1 10 100BW [MHz]

    SDCT SDSC VCO

    ISSCC 2008-2013

    VLSI Symp. 2008 -2012

    This ADC

    Over samplingOptimized

    Po

    wer

    dis

    sip

    ati

    on

    (m

    W)

    2013/11/19

  • 19

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Matsuzawa& Okada Lab.

    Matsuzawa Lab.Tokyo Institute of Technology

    Conclusion

    • 12bit SAR ADC is designed

    – Low noise dynamic comparator

    – MOM capacitor

    – Mismatch Cap. and parasitic Cap. Calibration

    – Self clocking circuit

    • The SAR ADC achieves

    – Maximum conversion speed of 70MSps

    – Lowest Vdd of 0.8V and Pd of 2.2mW at 50MSps

    – Smallest area of 0.03mm2

    • Frequency, performance and power scalable ADC

    – 70dB for BW of 10MHz in, 78dB for BW of 1.5MHz

    – Power dissipation is perfectly proportional to sampling frequency

    – Expected expand of BW by interleaving

    2013/11/19