fet (2014).pdf

Upload: joanne-mendoza-ilao

Post on 16-Feb-2018

271 views

Category:

Documents


3 download

TRANSCRIPT

  • 7/23/2019 FET (2014).pdf

    1/87

    Prepared by:

    Engr. IRA C. VALENZUELA

  • 7/23/2019 FET (2014).pdf

    2/87

    INTRODUCTION

    Field Effect Transistors are preferred for weaksignal work.

    They are also preferred in circuits and systemrequiring high impedance

    FETs are fabricated onto a silicon integrated

    circuit (IC) chipsVariations of FET technology are based ondifferent ways of generating the electric field.

  • 7/23/2019 FET (2014).pdf

    3/87

    HISTORY

    October 22, 1925The first patent for the field effect transistor principlewas filed in Canada by Austrian-Hungarian physicist

    Julius Edgar Lilienfeld1934German physicist Dr. Oskar Heil patented another fieldeffect transistor

    Legal papers from the Bell Labs patent show thatWilliam Shockley and a co-worker at Bell Labs, GeraldPearson, had built operational versions from Lilienfelds

    patents

  • 7/23/2019 FET (2014).pdf

    4/87

    DEFINITION

    The field-effect transistor (FET) is a three-terminal device

    The FET is a unipolar device depending solelyon either electron (n-channel) or hole (p-

    channel) conduction.

    FET transistor is a voltage-controlled device.

  • 7/23/2019 FET (2014).pdf

    5/87

    FET vs BJT

    1. The FET has extremely high input resistancewith about 100 M typically (BJT input

    resistance typically 2 k).

    2. The FET has no offset value when used as aswitch.

    3. The FET is relatively immune to radiation butthe BJT is very sensitive.

  • 7/23/2019 FET (2014).pdf

    6/87

    FET vs BJT

    4. The FET is less noisy than BJT.

    5. The FET can be operated to provide greaterthermal stability than BJT.

    6. FET is smaller than BJT.

  • 7/23/2019 FET (2014).pdf

    7/87

    FET vs BJT

    7. FET has smaller gain bandwidth than BJT.

    8. FET has greater susceptibility to damage inhandling.

  • 7/23/2019 FET (2014).pdf

    8/87

    FET vs BJT

  • 7/23/2019 FET (2014).pdf

    9/87

    Types of FET

  • 7/23/2019 FET (2014).pdf

    10/87

    Drain DrainChannel

    Gate Gate

    Source Source

    P - CHANNEL N - CHANNEL

    JFET Construction

  • 7/23/2019 FET (2014).pdf

    11/87

    Drain

    Gate

    Source

    Drain

    Gate

    Source

    N - CHANNEL P - CHANNEL

    JFET Schematic Symbol

  • 7/23/2019 FET (2014).pdf

    12/87

    Depletion and Pinch-off

  • 7/23/2019 FET (2014).pdf

    13/87

    Depletion and Pinch-off

  • 7/23/2019 FET (2014).pdf

    14/87

    Biasing FET

  • 7/23/2019 FET (2014).pdf

    15/87

    JFET biased for conduction

    P P

  • 7/23/2019 FET (2014).pdf

    16/87

    Greater VGG

  • 7/23/2019 FET (2014).pdf

    17/87

    Less VGG

  • 7/23/2019 FET (2014).pdf

    18/87

    Drain-Source Characteristic Curve

    It is a plot of drain current versus the drain-source voltage.

  • 7/23/2019 FET (2014).pdf

    19/87

    Drain-Source Characteristic Curve

    It is a plot of drain current versus the drain-source voltage.

  • 7/23/2019 FET (2014).pdf

    20/87

    JFET Transfer Characteristic Curve

    It is a plot of drain current as a function of gate-source voltage.

  • 7/23/2019 FET (2014).pdf

    21/87

    Transconductance

    It is also called dynamic mutual conductance

    If the gate-source voltage changes by a smallamount dVGS then the drain current will alsochange by a certain increment dID.

    The transconductance is the ratio dID/ dVGS.

  • 7/23/2019 FET (2014).pdf

    22/87

    Transconductance

  • 7/23/2019 FET (2014).pdf

    23/87

    Transconductance

    0

    DSvGS

    D

    m V

    Ig

    P

    GS

    mom V

    V

    gg 1

    gmo = the maximum AC gain parameter of the JFET

  • 7/23/2019 FET (2014).pdf

    24/87

    JFET Parameters

    2

    1

    P

    GS

    DSSD

    V

    VII

    P

    GS

    P

    DSS

    m

    V

    V

    V

    Ig 1

    2

    ID = drain current

    IDSS = drain-sourcesaturation currentVGS = gate-sourcevoltage

    VP = pinch-off voltagegm = transconductance

  • 7/23/2019 FET (2014).pdf

    25/87

    Sample Problems

    1. Determine the drain current of an n-channel JFEThaving a pinch-off voltage VP = - 4 V and the drain-

    source saturation current IDSS = 12 mA at VGS = 0and VGS = - 3 V.

    12 mA, 0.75 mA

  • 7/23/2019 FET (2014).pdf

    26/87

    Sample Problems

    2. Calculate the transconductance, gm, of a JFET

    with IDSS = 12 mA and VP = - 4 V at bias pointVGS = -1.5 V.

    3.75 mS

  • 7/23/2019 FET (2014).pdf

    27/87

    Sample Problems

    3. What is the value of IDSS with gmo = 4.5 mSand VP = - 3 V?

    6.75 mA

  • 7/23/2019 FET (2014).pdf

    28/87

    Sample Problems

    4. What is the value of VP of a p-channel JFEThaving IDSS = 12 mA and gmo = 6500 S?

    3.69 V

  • 7/23/2019 FET (2014).pdf

    29/87

    Sample Problems

    5. Determine the value of gmo for a p-channel

    JFET having VP = 3.8 V and IDSS = 6.8 mA.

    3.58 mS

  • 7/23/2019 FET (2014).pdf

    30/87

    Sample Problems

    6. A p-channel JFET with IDSS = 13.5 mA, VP = 5V is operated at ID = 9.5 mA. What is the value ofgm at this operating point?

    4.525 mS

  • 7/23/2019 FET (2014).pdf

    31/87

    Sample Problems

    7. What is the maximum value of

    transconductance of a JFET (VP = - 4 V) if thetransconductance is 4500 S when operated atVGS = - 1 V?

    6 mS

  • 7/23/2019 FET (2014).pdf

    32/87

    Important Relationships

  • 7/23/2019 FET (2014).pdf

    33/87

    JFET Biasing

    Fixed Bias Configuration

    Self-Bias Configuration

    Voltage Divider Biasing

  • 7/23/2019 FET (2014).pdf

    34/87

    Fixed Bias

  • 7/23/2019 FET (2014).pdf

    35/87

    Fixed Bias: Biasing equations

    DDDDDS

    2

    P

    GSDSSD

    GGGS

    RIVV

    V

    V1II

    VV

  • 7/23/2019 FET (2014).pdf

    36/87

    Fixed Bias Configuration

    Vgs = -2 V

    Id = 5.625 mA

    Vds = 4.75 V

  • 7/23/2019 FET (2014).pdf

    37/87

    Self-Bias

  • 7/23/2019 FET (2014).pdf

    38/87

    Self-Bias: Biasing equations

    )RR(IVV

    V

    V1II

    RIV

    SDDDDDS

    2

    )off(GS

    GSDSSD

    SDGS

  • 7/23/2019 FET (2014).pdf

    39/87

    Self-Bias Configuration

    Vgs = - 2.6 V

    Id = 2.6 mAVds = 8.82 V

  • 7/23/2019 FET (2014).pdf

    40/87

    Voltage-Divider Bias

  • 7/23/2019 FET (2014).pdf

    41/87

    Voltage-Divider Bias: Biasing equations

    )RR(IVV

    R

    VVI

    RR

    R

    VV

    SDDDDDS

    S

    GSGD

    21

    2

    DDG

  • 7/23/2019 FET (2014).pdf

    42/87

    Voltage Divider Biasing

    Vgs = - 1.8 VId = 2.4 mA

    Vd = 10.24 V

    Vs = 3.6 V

  • 7/23/2019 FET (2014).pdf

    43/87

    MOSFET

  • 7/23/2019 FET (2014).pdf

    44/87

    MOSFET

    The acronym MOSFET stands for metal-oxide-semiconductor field-effect transistor.

    MOSFETs are further broken down into depletiontype and enhancement type.

    The insulating layer between the gate and channelhas resulted in another name for the device:insulated gate FET or IGFET

    MOSFET h h t i ti i il t JFET

  • 7/23/2019 FET (2014).pdf

    45/87

    45

    MOSFETs have characteristics similar to JFETs

    and additional characteristics that make then very

    useful

    There are 2 types of MOSFETs:

    Depletion mode MOSFET (D-MOSFET)

    Operates in Depletion mode the same way as a

    JFET when VGS 0

    Operates in Enhancement mode like E-

    MOSFET when VGS > 0

    Enhancement Mode MOSFET (E-MOSFET)

    Operates in Enhancement mode

    IDSS = 0 until VGS > VT (threshold voltage)

  • 7/23/2019 FET (2014).pdf

    46/87

    Schematic Symbol

  • 7/23/2019 FET (2014).pdf

    47/87

    MOSFET Terminal Characteristics

  • 7/23/2019 FET (2014).pdf

    48/87

    The main problem

    The trouble with MOSFETs is that they can beeasily damaged by static electric discharges.

    If a static discharge occurs through the dielectric of

    a MOS device, the component will be destroyedpermanently.

  • 7/23/2019 FET (2014).pdf

    49/87

    Depletion MOSFET

    Drain

    Gate

    Source

    Channel

    SiO2

    p

    n

    n

    Basic structure of

    n-channel D-MOSFET

    n-channel D-MOSFET is

    usually operated in the

    depletion mode with VGS

    < 0 and in theenhancement mode with

    VGS > 0.

    p-channel D-MOSFETuses the opposite

    voltage polarity

    G

    D

    S

    Symbol

    D MOSFET S b l

  • 7/23/2019 FET (2014).pdf

    50/87

    50

    D-MOSFET Symbols

    D MOSFET Depletion Mode Operation

  • 7/23/2019 FET (2014).pdf

    51/87

    51

    D-MOSFET Depletion Mode Operation

    The transfer characteristics are similar to the JFET

    In Depletion Mode operation:When VGS = 0V, ID = IDSS

    When VGS < 0V, ID < IDSS

    When VGS > 0V, ID > IDSS

    The formula used to plot the Transfer Curve, is:

    2

    GS

    D DSS

    P

    VI = I 1 -

    V

    D MOSFET E h M d O i

  • 7/23/2019 FET (2014).pdf

    52/87

    52

    D-MOSFET Enhancement Mode Operation

    Enhancement Mode operation

    In this mode, the transistor operates with VGS > 0V, and ID increases above IDSSShockleys equation, the formula used to plot the Transfer Curve, still applies but

    VGS is positive:

    2

    GS

    D DSS

    P

    VI = I 1 -

    V

  • 7/23/2019 FET (2014).pdf

    53/87

    Basic Operation

  • 7/23/2019 FET (2014).pdf

    54/87

    p-Channel Depletion-Type MOSFET

  • 7/23/2019 FET (2014).pdf

    55/87

    Symbols

  • 7/23/2019 FET (2014).pdf

    56/87

    DMOSFET

    Vgs = - 0.8 V

    Id = 3.1 mA

    Vds = 10.1 V

  • 7/23/2019 FET (2014).pdf

    57/87

    ENHANCEMENT-TYPEMOSFET

    The transfer curve is not defined by Shockleysequation.

    The drain current is now cut off until the gate-to-source voltage reaches a specific magnitude.

    Current control in an n-channel device is noweffected by a positive gate-to-source voltage.

  • 7/23/2019 FET (2014).pdf

    58/87

    ENHANCEMENT-TYPEMOSFET

    The construction of anenhancement-typeMOSFET is quitesimilar to that of thedepletion-typeMOSFET, except for

    the absence of achannel between thedrain and sourceterminals.

  • 7/23/2019 FET (2014).pdf

    59/87

    Basic Operation

  • 7/23/2019 FET (2014).pdf

    60/87

    SYMBOLS

  • 7/23/2019 FET (2014).pdf

    61/87

    EMOSFET Parameters

    2THGSGSD

    VVkI

    THGSGSm VVkg 2

    k = 0.3 mA/V2

    VGS(TH) = threshold voltage

  • 7/23/2019 FET (2014).pdf

    62/87

    Advantages of MOSFET

    draws no gate current at all

    draws no leakage current

    the input resistance of the device

    is essentially infinite.

  • 7/23/2019 FET (2014).pdf

    63/87

    Disadvantages ofMOSFET

    that thin layer of glass cantwithstand much voltage

    the static charge can destroy thedevice

  • 7/23/2019 FET (2014).pdf

    64/87

    Sample Problem

    A depletion MOSFET with IDSS

    = 12 mA, VP

    =-4V is operated at VGS = - 0.5 V. What is the valueof the transconductance at this operating point?

    5. 25 mS

  • 7/23/2019 FET (2014).pdf

    65/87

    Sample Problem

    What is the value of threshold voltage for an n-channel enhancement MOSFET that operates atID = 4.8 mA when biased at 7 V?

    3 V

  • 7/23/2019 FET (2014).pdf

    66/87

    Sample Problem

    An enhancement MOSFET having threshold of3.5 V is operated at VGS = 5 V. What currentresults?

    675 A

  • 7/23/2019 FET (2014).pdf

    67/87

    Sample Problem

    Determine the value of circuit transconductancefor an n-channel enhancement MOSFET havingVGS(TH) = 2.8 V when operated at 6 V.

    1.92 mS

  • 7/23/2019 FET (2014).pdf

    68/87

    Sample Problem

    An enhancement MOSFET operated at VGS

    = 7.5V has transconductance of 2.5 mS. What is thevalue of a device threshold voltage?

    3.33 V

  • 7/23/2019 FET (2014).pdf

    69/87

    Sample Problem

    Measurements taken with E-MOSFET indicatethat when VGS = 4 V, ID = 8 mA and when VGS =6 V, ID = 32 mA. Determine the value of k.

    2 mA/V2

    Th F ll i F t f EMOSFET th t

  • 7/23/2019 FET (2014).pdf

    70/87

    The Following Features of EMOSFETs thatare Common with DMOSFETs:

    Charge-carrier flow from the source to drain.

    The type of semiconductor material used for thechannel is opposite the type of material used forthe substrate.

    The arrow part of the schematic symbol indicatesthe type of material that is used for the substrate.

    EMOSFET

  • 7/23/2019 FET (2014).pdf

    71/87

    EMOSFET

    Vgs = 6.4 V

    Id = 2.75 mA

  • 7/23/2019 FET (2014).pdf

    72/87

    VMOS

    Vertical Metal-Oxide-Silicon FET

    Compared with commercially available planarMOSFETs, VMOS FETs have reduced channelresistance levels and higher current and powerratings.

    VMOS FETs have a positive temperaturecoefficient that will combat the possibility ofthermal runaway.

  • 7/23/2019 FET (2014).pdf

    73/87

    VMOS

  • 7/23/2019 FET (2014).pdf

    74/87

    CMOS

    Complementary MOSFET

    It has extensive applications in computer logicdesign.

    The relatively high input impedance, fast

    switching speeds, and lower operating powerlevels of the CMOS configuration have resultedin a whole new discipline referred to as CMOSlogic design.

    Si l MOS lifi

  • 7/23/2019 FET (2014).pdf

    75/87

    78

    Characteristic parameters

    Av Ai Zi Zo

    Three configurations

    Common-source configuration

    Common-drain configuration

    Common-gate configuration

    Single-stage MOS amplifier

    B i t t f th i it

  • 7/23/2019 FET (2014).pdf

    76/87

    79

    Basic structure of the

    circuit used to realizesingle-stage discrete-

    circuit MOS amplifier

    configurations.

    Basic structure of the circuit

    Th lifi

  • 7/23/2019 FET (2014).pdf

    77/87

    SJTU J. Chen

    80

    The simplest common-sourceamplifier biased with constant-

    current source.

    CC1 And CC2 are coupling

    capacitors.CS is the bypass capacitor.

    The common-source amplifier

    Ch t i ti f CS lifi

  • 7/23/2019 FET (2014).pdf

    78/87

    81

    Input resistance

    Voltage gain

    Overall voltage gain

    Output resistance

    Gin RR

    )////( LDomv RRrgA

    )////( oLDmsigG

    Gv rRRg

    RRRG

    Doout RrR //

    Characteristics of CS amplifier

    Summary of CS amplifier Very high input resistance

    Moderately high voltage gain

    Relatively high output resistance

    Th C G t lifi

  • 7/23/2019 FET (2014).pdf

    79/87

    83

    Biasing with constant

    current source I

    Input signalvsig is

    applied to the source

    Output is taken at thedrain

    Gate is signal grounded

    CC1 and CC2 are coupling

    capacitors

    The Common-Gate amplifier

    Th CG lifi

  • 7/23/2019 FET (2014).pdf

    80/87

    84

    The CG amplifier

    A small-signal equivalent

    circuit

    T model is used in

    preference to the model

    Ro is neglected

    The CG amplifier fed with a current signal input

  • 7/23/2019 FET (2014).pdf

    81/87

    SJTU J. Chen

    85

    The CG amplifier fed with a current-signal input

    Voltage gain

    Overall voltage gain

    )//( LDmv RRgA

    sigm

    LDm

    v Rg

    RRg

    G 1

    )//(

    S f CG lifi

  • 7/23/2019 FET (2014).pdf

    82/87

    86

    Noninverting amplifier

    Low input resistance

    Relatively high output resistanceCurrent follower

    Superior high-frequency performance

    Summary of CG amplifier

  • 7/23/2019 FET (2014).pdf

    83/87

    88

    The CD or source-follower amplifier

    Small-signal equivalent-

    circuit model

    T model makes analysissimpler

    Drain is signal grounded

    Overall voltage gain

    11

    //

    //

    m

    Lo

    Lo

    sigG

    Gv

    gRr

    Rr

    RR

    RG

    Summary of CD or source follow amplifier

  • 7/23/2019 FET (2014).pdf

    84/87

    89

    Very high input resistance

    Voltage gain is less than but close to unity

    Relatively low output resistance

    Voltage buffer amplifier

    Power amplifier

    Summary of CD or source-follow amplifier

    Other FET Applications

  • 7/23/2019 FET (2014).pdf

    85/87

    Other FET Applications

    A voltage controlled attenuator

    for small drain-to-source

    voltages FETs resemble

    voltage-controlled resistors

    the gate voltage VG is used

    to control this resistance and

    hence the gain of the potentialdivider

    used, for example, in automatic

    gain control in radio receivers

    O h A l

  • 7/23/2019 FET (2014).pdf

    86/87

    A FET as an analogue switch

    Other FET Applications

    Other FET Applications

  • 7/23/2019 FET (2014).pdf

    87/87

    A FET as a logical switch

    Other FET Applications