fem zabaras finiteelementapproximationsfor2dbvp

Upload: dr-ir-r-didin-kusdian-mt

Post on 30-May-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    1/31

    1

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    MAE4700/5700Finite Element Analysis for

    Mechanical and Aerospace DesignCornell University, Fall 2009

    Nicholas ZabarasMaterials Process Design and Control Laboratory

    Sibley School of Mechanical and Aerospace Engineering101 Rhodes Hall

    Cornell UniversityIthaca, NY 14853-3801

    http://mpdc.mae.cornell.edu/Courses/MAE4700/MAE4700.htmlhttp://mpdc.mae.cornell.edu/http://mpdc.mae.cornell.edu/http://mpdc.mae.cornell.edu/Courses/MAE4700/MAE4700.html
  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    2/31

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    3/31

    3

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Finite element approximation of 2D BVP

    We approximate the domain with Efinite elements and

    Nnodes placing nodes and elements in such a waythat element boundaries coincide as close as possible

    to the interface with jump in k.

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    4/31

    4

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Finite element approximation of 2D BVP

    We define an N-dimensional subspace Hhof H1(h) by

    constructing appropriate global basis functions

    using the elements we discussed earlier.

    A typical test function in Hh is of the form:

    In general the essential BC data (Dirichlet data)

    is approximated as:

    where the sum is over all nodes on

    , 1,2,..,i

    N i N =

    1

    ( , )

    ( , ) ( , )

    h j j

    N

    h j j

    jw x y

    w x y w N x y=

    =

    1

    u in

    ( ) ( ( ), ( ))h j jj

    u s u N x s y s=

    1.

    h

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    5/31

    5

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    FEM problem statement

    Find a function such that

    and at the nodes on so the following holds:

    The above equation leads to the following system ofalgebraic equations:

    ,h

    hu H

    2 2

    1

    ( , ) ( , ) ( , )

    0 .

    h h h h

    h h h hh h h h h h

    h

    h h h

    u w u wk b x y u x y w x y dxdy pu w ds f w dxdy w ds

    x x y y

    for all w H with w on

    + + + = +

    =

    1

    ( , ) ( , )N

    h j j

    j

    u x y u N x y=

    =

    jju u= 1h

    1

    , 1, 2,..,N

    ij j i

    j

    K u F i N =

    = =

    2

    ( , ) , , 1,...,

    h h

    j ji iij i j i j

    N NN NK k b x y N N dxdy pN N ds i j N

    x x y y

    = + + + =

    2h h

    i i iF fN dxdy N ds

    = +

    Symmetric,banded

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    6/316

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Finite element approximation

    Each of the integrals in the stiffness and load vector can becomputed as the sum of contributions from each element inthe mesh. But we need to approach this more carefully!

    Let denote a typical finite element. The exact solution uon of our BVP satisfies:

    Let and denote the restrictions of the approximations

    and to . Then the local approximation of thevariational BVP over is:

    e

    e

    ( , ),.

    e e e

    n

    n e

    k u w buw dxdy f wdxdy wds

    for all admissible functions w x ywhere is the normal component of the flux at

    + =

    e

    hu

    e

    hw

    hu hw e

    e

    ( )

    e e e

    e

    e e e e e e

    h h h h h n h

    exact flux on

    not known

    k u w bu w dxdy f w dxdy w ds

    + =

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    7/317

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Finite element approximation

    Since , there will be no contribution in the last

    integral from elements with sides that coincide with We already have in place the following approximations:

    where are the shape functions in and thenumber of nodes in .

    The following linear system is then obtained:

    1 .h

    10h hw on=

    eN

    e

    e

    ( )e e e

    e

    e e e e e e

    h h h h h n h

    exact flux onnot known

    k u w bu w dxdy f w dxdy w ds

    + =

    1 1

    ( ) ( , ), ( ) ( , )e eN N

    e e e e e e

    h i i h j j

    i j

    w x w N x y u x u N x y= =

    = =

    ( , )

    e

    jN x y

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    8/31

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    9/319

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Assembly process

    The global system of equations is obtained by summing

    over all elements Ein the mesh.

    We expand the element stiffness to a matrix NxNwith zeros everywhere except those rows and columnscorresponding to nodes within and and

    will be expanded to Nx1 vectors and with nonzeroentries only in those rows corresponding to nodes in

    e

    e

    eF e

    ef e

    ek

    1 1

    , , 1, 2,...,

    e

    E Ej j ei i

    i j ij

    e e

    N NN Nk bN N dxdy K i j N

    x x y y= =

    + + = =

    1 1

    , 1,2,...,

    e

    E Ee

    i i

    e e

    fN dxdy F i N = =

    = =

    ( )1

    0, 1, 2,...,E

    e e e

    ij j i i

    e

    K u F i N

    =

    + = =

    eK

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    10/3110

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Boundary conditions

    Note that the contributions to Kijand Fifrom boundary

    conditions must enter the problem through the terms .

    We note that the sum of the contour integrals can bewritten as:

    ( )1

    0, 1, 2,...,

    E

    e e eij j i i

    e

    K u F i N =

    + = =

    ei

    (0) (1) ( 2)

    1

    , 1, 2,...,E

    e

    i i i i

    e

    S S S i N =

    = + + =(0)

    1e h

    E

    i n i

    eS N ds

    = = 1(1)

    1h

    E

    i n i

    eS N ds

    = = 2

    (2)

    1h

    E

    i n ie

    S N ds=

    =

    e h Portion of the boundaryof not on

    (interelement boundaries)

    e

    e h

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    11/3111

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Boundary conditions

    This vector is defined only at interior nodes. Consider

    the patch of 4 elements sharing node 1.

    From the conservation lawacross an interface

    where no point or line sources

    are applied. Thus if fis smooth

    in the patch shown

    (0)

    1e h

    E

    i n ie

    S N ds=

    =

    1 2 3 4

    (0)

    1 1 1 1 1

    1e

    E

    i n n n n n

    e

    S N ds N ds N ds N ds N ds=

    = = + +

    0n =

    (0)0

    iS =

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    12/3112

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Boundary conditions

    When the source fcontains a line source or

    concentrated point source, then is equal to theintensity of the line source.

    We can include point sources by writing f(x,y) as

    We assume that the mesh is constructed so that there

    is a node at the source location.

    (0)

    1e h

    E

    i n ie

    S N ds=

    =

    n

    int ( , )

    ( , ) ( , ) ( , )

    i i h

    i i

    smooth part po source at x y

    f x y f x y f x x y y

    = +

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    13/3113

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Boundary conditions

    For source at node 1 in the figure, we have:

    (0)

    1e h

    E

    i n ie

    S N ds= =

    int ( , )

    ( , ) ( , ) ( , )

    i i h

    i ismooth part po source at x y

    f x y f x y f x x y y

    = +

    4 4(0)

    1

    1 1

    1

    e h m

    i n i n

    e m

    weighted average of the jumpsat node

    S N ds N ds= =

    = =

    (0)i

    S f=

    The presence of sources

    leads to very singularsolutions u.

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    14/3114

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Boundary conditions

    The values of uh

    are prescribed at . Since isnot known on , cannot be described here.

    However, once all nodal u1,u2,uNare computed, we

    can evaluate from

    1

    (1)

    1h

    E

    i n ie

    S N ds= =

    ( )1

    0, 1, 2,...,E

    e e e

    ij j i i

    e

    K u F i N =

    + = =

    1h

    n

    1h (1)

    iS

    (1)

    iS

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    15/31

    15

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Boundary conditions

    On the natural boundary condition is prescribed.

    There we set

    2

    (2)

    1h

    E

    i n ieS N ds=

    =

    2 h

    ( ) ( ) ( ) ( )n hs p s u s s=

    2

    (2)

    1 1 1h

    E N N

    i j j i ij j i

    e j j

    S p u N N ds P u

    = = =

    = =

    2 2

    1 1eh h

    E Ee

    i i i i

    e e

    N ds N ds= =

    = = =

    2 2

    int sec 2

    1 1eh h

    eportion of

    er ting h

    E Ee

    ij i j i j ij

    e e

    P pN N ds pN N ds P

    = =

    = = =

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    16/31

    16

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Final algebraic equations

    The final system of equations is given as:

    Once boundary conditions are imposed on we can

    proceed solving the system of equations for the

    unknown nodal values.

    (1)

    1

    1 1

    , 1, 2,...,

    ( ), ( )

    N

    ij j i i

    j

    E Ee e e e

    ij ij ij i i i

    e e

    K u F S i N

    K K P F F

    =

    = =

    = =

    = + = +

    1h

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    17/31

    17

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Example

    Consider the FEM

    solution of the followingproblem:

    ( , ) ( , )u x y f x y in =

    410u on=

    12 25, 67 74,0 , ,u onn

    =

    56

    u

    u onn

    + =

    2 12 25 56 67 74, =

    1 41 =

    1 1h =

    2 2h =

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    18/31

    18

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Example

    Element 1:

    2 12 25 56 67 74, =

    1 41 =

    11

    12

    13

    1

    00

    0

    0

    f

    f

    fF

    =

    1 1 111 12 13

    1 1 121 22 23

    1 1 131 32 33

    1

    0 0 0 0

    0 0 0 0

    0 0 0 0

    0 0 0 0 0 0 0

    0 0 0 0 0 0 0

    0 0 0 0 0 0 0

    0 0 0 0 0 0 0

    k k k

    k k k

    k k k

    K

    =

    1 1h =

    2 2h =

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    19/31

    19

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Example

    Element 2:

    2 12 25 56 67 74, =

    1 41 =

    2

    1

    22

    22

    3

    0

    0

    0

    0

    f

    f

    Ff

    =

    2 2 211 12 13

    2 2 221 22 23

    22 2 231 32 33

    0 0 0 0

    0 0 0 0 0 0 0

    0 0 0 0

    0 0 0 0

    0 0 0 0 0 0 0

    0 0 0 0 0 0 0

    0 0 0 0 0 0 0

    k k k

    k k k

    K k k k

    =

    1 1h =

    2 2h =

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    20/31

    20

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Example

    Element 6:

    2 12 25 56 67 74, =

    1 41 =

    61

    1

    62

    63

    00

    0

    0

    f

    Ff

    f

    =

    6 6 611 12 13

    6

    6 6 621 22 23

    6 6 631 32 33

    0 0 0 0 0 0 0

    0 0 0 0 0 0 0

    0 0 0 0

    0 0 0 0 0 0 0

    0 0 0 0

    0 0 0 0

    0 0 0 0 0 0 0

    k k k

    K

    k k k

    k k k

    =

    1 1h =

    2 2h =

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    21/31

    21

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Example problem: Assembly

    1 1

    2

    3

    14

    4

    5 5

    66

    7

    0

    0

    0

    FF

    F

    FF

    F

    F

    F

    =

    11 12 13 14

    21 22 23 25

    31 32 33 34 35 36 37

    41 43 44 47

    55 5652 53

    65 6663 67

    73 74 76 77

    0 0 0

    0 0 0

    0 0 0

    0 0 0

    0 0 0

    0 0 0

    K K K K

    K K K K

    K K K K K K K

    K K K K K

    K K K K

    K K K K

    K K K K

    =

    1 1h =

    2 2h =

    The stiffness terms with the symbolwill be modified once natural BC are applied.

    K

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    22/31

    22

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Natural boundary conditions

    5

    6

    0

    0

    0

    0

    0

    =

    55 56

    65 66

    0 0 0 0 0 0 0

    0 0 0 0 0 0 0

    0 0 0 0 0 0 0

    0 0 0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0 0 0

    P

    P P

    P P

    =

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    23/31

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    24/31

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    25/31

    25

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    Revisiting the FEM formulation for 2D scalar field problems

    In the earlier part of this lecture, we used the stiffness

    matrix and load vectors in component forms.

    We will next discuss a similar example (notation is

    used from heat conduction) repeating the samecalculations but in a matrix form. These calculationshave been programmed in the 2dBVP MatLab

    software. Let us consider the following

    2D BVP: Compute T(x,y):

    ( ) ( , )

    T

    q

    D T f x y

    T T on

    q D T n q on

    =

    =

    = =

    D H d i k f

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    26/31

    26

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    2D Heat conduction weak form

    The weak statement for this problem takes the form:

    We denote here

    The weak form is written in a matrix form ready for

    FEM discretization, e.g.

    Find a function with such that:

    { } { }

    0

    [ ]

    ( , )

    q

    T T Tw D T d w f d w qd

    for all w x y U

    =

    1( , ) ( ),T x y H ( ) ( ), TT s T s s=

    1

    0: ( ) 0

    TU w H with w on =

    { } { }

    { }

    , , [ ] , [ ]T x xx xy

    y yx yyConductivityheatmatrixflux

    T q k kw wxT w q D T D

    T q k kx y

    y

    = = = = =

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    27/31

    2D H d i FE i l i

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    28/31

    28

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    2D Heat conduction FE interpolation

    The gradient fields of Teand weare obtained as:

    Similarly for the gradient of we:

    { }

    11 2 1 2

    1 2

    1 2 1 2

    1 2

    ... ...

    ... ...

    e

    e ee e e eee e enen nen

    nen

    e

    e e ee e e ee e enen nen

    nen

    The B matrix

    TN N N N N N TT T T

    x x x x x x xT

    T N N N N N N T T T

    y y y y y y y

    + + + = = =

    + + +

    { }

    { }

    { }

    2( , )

    ...

    e

    e

    e

    e e e e

    globalscatternodale matrixtemperaturesnen

    d

    T B x y d B L d

    T

    = =

    { } { }{ }

    { }

    1 1

    2 2

    1 2( , ) ..... ...Te

    e e

    e e

    e eT T T T TTe e e e e e e e

    nen

    scatterw matrix

    e e

    nen nen

    N N

    x y

    N Nw w

    w w B x y w w w w L Bx yx y

    N N

    x y

    = = = =

    Here, nen: number element nodes

    2D H t d ti k f

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    29/31

    29

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    2D Heat conduction weak form

    We can substitute these expressions into the weak

    form

    Note as we did earlier for the 1D BVP, the vector wwas

    partitioned as follows:

    { } { }1 1 1

    [ ]T T

    e e eq

    nel nel nelT

    e e e e e

    e e e

    w D T d w f d w qd = = =

    =

    { } { } { }1

    [ ] 0e e e

    q

    nelT T T T T e e e e e e e

    F

    e

    w L B D B d L d N f d N qd d w=

    + =

    { } { } 0 0,E E

    F FF

    wdd ww wd

    = = = =

    2D H t d ti k f

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    30/31

    30

    MAE 4700 FE Analysis for Mechanical & Aerospace DesignN. Zabaras (10/06/2009)

    2D Heat conduction weak form

    From this equation, we can easily identify:

    We now can write the weak form as:

    { } { } { }1

    [ ] 0e e e

    q

    nelT T T T T e e e e e e e

    F

    ew L B D B d L d N f d N qd w

    =

    + =

    [ ]e

    Te e e e

    K B D B d

    = { }

    { } { }

    e eq

    ee

    T Te e e

    f f

    f N f d N qd

    =

    { } { }

    { }

    { }1 1

    Re

    0nel nel

    T TT e e e e e

    F

    e e

    sidual r

    w L K L d L f w= =

    =

  • 8/9/2019 FEM Zabaras FiniteElementApproximationsFor2DBVP

    31/31