fem zabaras fem4linearelasticity

Upload: dr-ir-r-didin-kusdian-mt

Post on 30-May-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    1/50

    CCOORRNNEELLLLU N I V E R S I T Y 1

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    MAE4700/5700Finite Element Analysis for

    Mechanical and Aerospace DesignCornell University, Fall 2009

    Nicholas ZabarasMaterials Process Design and Control Laboratory

    Sibley School of Mechanical and Aerospace Engineering101 Rhodes Hall

    Cornell UniversityIthaca, NY 14853-3801

    http://mpdc.mae.cornell.edu/Courses/MAE4700/MAE4700.htmlhttp://mpdc.mae.cornell.edu/Courses/MAE4700/MAE4700.html
  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    2/50

    CCOORRNNEELLLLU N I V E R S I T Y 2

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Finite element discretization

    Consider a problem domain with boundary discretized

    with nel number of2D finite elements (triangles or

    quadrilaterals).

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    3/50

    CCOORRNNEELLLLU N I V E R S I T Y 3

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Finite element discretization

    Thexand ycomponents of the displacement field

    are generally approximated by the same shape functions. Let n be the number of nodes in the finite element mesh.

    There are two degrees-of-freedom per node for each of the

    two components of the nodal displacements, so the nodaldisplacement matrix is:

    Txx y

    y

    uu u u

    u

    = =

    1

    1

    2

    2 1 1 2 2 ...

    ...

    x

    y

    x T

    y x y x y xn yn

    xn

    yn

    u

    u

    u

    ud u u u u u u

    u

    u

    = =

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    4/50

    CCOORRNNEELLLLU N I V E R S I T Y 4

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Finite element discretization

    The finite element approximation of the displacement field

    can be expressed by:

    The global shape functions Niare C0 continuous (smooth

    over element domains but with kinks at the elementboundaries).

    Therefore, the integral over in the weak form is computed

    as a sum of integrals over element domainse

    1

    1

    ( , ) ( , )

    ( , ) ( , )

    nh

    x i xii

    nh y i yi

    i

    u x y N x y u

    u x y N x y u

    =

    =

    =

    =

    ( ) 01 1 1

    T T

    e e e

    t

    nel nel nelTe e e e eS S

    e e e

    w D u d w td w bd w U = = = = +

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    5/50

    CCOORRNNEELLLLU N I V E R S I T Y 5

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Finite element discretization

    Here ue is the finite element approximation of thedisplacement field in element e.

    The element shape function matrix Ne in the matrix form is

    where nen is the number of element nodes.

    ( ) 01 1 1T T

    e e e

    t

    nel nel nelTe e e e eS S

    e e ew D u d w td w bd w U = = = = +

    {

    int ( , )

    ( , ) ( , )e e e

    Nodalx and ydisplacementsdisplacements

    at po x y

    u x y N x y d =

    1 2

    1 2

    0 0 ... 0

    0 0 ... 0

    e e enene

    e e enen

    N N N

    N N N N

    =

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    6/50

    CCOORRNNEELLLLU N I V E R S I T Y 6

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Strain displacement matrix

    We need to compute the strains in terms of the element

    shape functions and the nodal displacements. Applying the

    symmetric gradient operator to Ne gives

    where the strain-displacement matrixe

    is defined as:

    { } { }[ ]

    { }e

    ex

    e e e e e y S S

    e Bxy

    u N d

    = = =

    [ ] [ ]

    1 2

    1 2

    1 1 2 2

    0 0 ... 0

    0 0 ... 0

    ...

    ee e

    nen

    ee e

    e e

    nen

    S

    e ee e e e

    nen nen

    NN N

    x x xNN N

    B N y y y

    N N N N N N

    y x y x y x

    = =

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    7/50

    CCOORRNNEELLLLU N I V E R S I T Y 7

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Approximation of the weight functions

    The vector of weight functions is approximated by the same

    shape functions as the displacement fields:

    Similarly applying the symmetric gradient on the vector of

    weight functions gives:

    We now need to substitute these equations into the weak

    form.

    { } { }

    { }( ) { }

    int( , )

    ( , ) ( , ) ( , ) ( , )T T Te e e eT e e e e

    NodalVirtualValuesdisplacement

    vector at pox y

    w x y N x y w w x y N x y w w N = = =

    { }[ ]

    { } { } { }( ) { }( , ) ( , ) ( , ) ( , )e

    T T Te e e eT e e e eS S S

    B

    w x y N x y w w x y B x y w w B = = =

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    8/50

    CCOORRNNEELLLLU N I V E R S I T Y 8

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Weak formulation

    Substituting into the weak form and recalling the local to

    global degrees of freedom transformations, de=Led,

    weT

    =wT

    LeT

    yields

    The arbitrary weight functions w(x,y) has been replaced by

    arbitrary parameters wF which is the portion ofw

    corresponding to nodes not on an essential boundary.

    ( , )eT eT eT w x y w N =( , )eT eT eT

    Sw x y w B =

    ( ) 01 1 1

    T T

    e e e

    t

    nel nel nelTe e e e eS S

    e e e

    w D u d w td w bd w U = = = = +

    e e e e

    Su B d= =

    01

    0T T T T

    e e e

    t

    nelT e e e e e e e

    Fe

    w L B D B d L d N td N bd w U =

    =

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    9/50

    CCOORRNNEELLLLU N I V E R S I T Y 9

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Element stiffness matrix and load vector

    From the above weak form we can conclude that:

    01

    0T T T T

    e e e

    t

    nelT e e e e e e e

    Fe

    w L B D B d L d N td N bd w U =

    =

    T

    e

    e e e eK B D B d

    =

    T T

    e e

    t

    e

    e

    t

    e e e

    ffbodyboundaryforce vectorforce vector

    f N td N bd

    = +

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    10/50

    CCOORRNNEELLLLU N I V E R S I T Y 10

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Element stiffness matrix and load vector

    We can now re-write this weak form as:

    This is simplified as:

    01 0

    T T T T

    e e e

    t

    nelT e e e e e e e

    Few L B D B d L d N td N bd w U =

    =

    01 1

    0T Tnel nel

    T e e e e eF

    e e

    K f

    w L K L d L f w U = =

    =

    00T

    F

    rresidual

    w Kd f w U

    =

    00ET T

    E F F

    F

    rw w w U

    r

    =

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    11/50

    CCOORRNNEELLLLU N I V E R S I T Y 11

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Element stiffness matrix and load vector

    Since wE=0 and wF=0 is arbitrary, it follows that rF=0.

    Partioning the finite element nodes in Eand Fnodes, gives:

    This equation is solved using the two-step partition

    approach discussed in an earlier lecture.

    00

    ET T

    E F F F

    r

    w w w U r

    =

    E EF E E E

    TF F EF F

    K K d f r

    d fK K

    + =

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    12/50

    CCOORRNNEELLLLU N I V E R S I T Y 12

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Piecewise-linear interpolation on triangles

    Consider that h consists ofE3-node triangular elements

    and that we have linear interpolation of thex-

    and y-displacements on each element e.

    This is a constant strain element.

    We already have seen how tocompute the coefficients and

    eventually the basis functions,e.g.

    1 2 3

    4 5 6

    e

    x

    e

    y

    u x y

    u x y

    = + +

    = + +

    1 1 1 2 1 3 1

    2 2 1 2 2 3 2

    3 3 1 2 3 3 3

    ( , ) ,

    ( , ) ,

    ( , ) ,

    ex

    e

    x

    e

    x

    u x y x y

    u x y x y

    u x y x y

    = + +

    = + +

    = + +

    ( , )e

    xu x y

    ( , )xu x y

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    13/50

    CCOORRNNEELLLLU N I V E R S I T Y 13

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Piecewise-linear interpolation on triangles

    We determine the 3 constants as follows:

    Solving this system of equations leads to:

    31 2

    31 2

    1 2

    1 1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

    2 1 2 3 2 3 1 3 1 2

    3 1 3 2 2 1 3

    1 ( ) ( ) ( )2

    1

    ( ) ( ) ( )2

    1( ) ( )

    2

    e e e

    x x x

    e aa a

    e e e

    x x xe bb b

    e e

    x x

    e c c

    u x y x y u x y x y u x y x yA

    u y y u y y u y yA

    u x x u x x

    A

    = + +

    = + +

    = +

    3

    3 2 1( )

    e

    x

    c

    u x x +

    1 1 1 1 1 1

    2 2 2 2 2 2

    3 3 3 3 3 3

    ( , ) 1

    ( , ) 1( , ) 1

    e e

    x x

    e e

    x x

    e e

    x x

    u u x y x y

    u u x y x yu u x y x y

    =

    1 2 3

    e

    xu x y = + +

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    14/50

    CCOORRNNEELLLLU N I V E R S I T Y 14

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Piecewise-linear interpolation on triangles

    Substituting the coefficients in the first approximation:

    where:

    1 1 2 2 3 3( ) ( , ) ( , ) ( , )e e e e e e e

    x x x xu x u N x y u N x y u N x y= + +

    [ ] [ ]

    [ ] [ ]

    [ ] [ ]

    1 1 1 1 2 3 3 2 2 3 3 2

    2 2 2 2 3 1 1 3 3 1 1 3

    3 3 3 3 1 2 2 1 1 2 2 1

    1 1( , ) ( ) ( ) ( )

    2 2

    1 1( , ) ( ) ( ) ( )2 2

    1 1( , ) ( ) ( ) ( )

    2 2

    e

    e e

    e

    e e

    e

    e e

    N x y a b x c y x y x y y y x x x yA A

    N x y a b x c y x y x y y y x x x yA A

    N x y a b x c y x y x y y y x x x yA A

    = + + = + +

    = + + = + +

    = + + = + +

    1 2 3

    e

    xu x y = + +

    1 1 1 2 2 3 3

    2 1 1 2 2 3 3

    3 1 1 2 2 3 3

    1

    2

    1

    2

    1

    2

    e e e

    x x x

    e

    e e e

    x x x

    e

    e e e

    x x x

    e

    u a u a u aA

    u b u b u bA

    u c u c u c

    A

    = + +

    = + +

    = + +

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    15/50

    CCOORRNNEELLLLU N I V E R S I T Y 15

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Linear shape functions over a triangular element

    Please note that:

    ( , )i

    e

    j j ij N x y =

    1 1 2 2 3 3( ) ( , ) ( , ) ( , )

    e e e e e e e

    x x x xu x u N x y u N x y u N x y= + +

    1 1 2 2 3 3( ) ( , ) ( , ) ( , )

    e e e e e e e

    y y y yu x u N x y u N x y u N x y= + +

    [ ]

    [ ]

    [ ]

    1 1 1 1

    2 2 2 2

    3 3 3 3

    1( , )

    2

    1( , )2

    1( , )

    2

    e

    e

    e

    e

    e

    e

    N x y a b x c yA

    N x y a b x c yA

    N x y a b x c yA

    = + +

    = + +

    = + +

    2( , )

    eN x y

    1( , )

    eN x y

    3 ( , )e

    N x y

    ( , )

    e

    xu x y

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    16/50

    CCOORRNNEELLLLU N I V E R S I T Y 16

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    3-node (constant strain) triangular element

    We have 6 DOF per element:

    The Ne

    matrix for the interpolation ofdisplacements is:

    The Be matrix for computing strains in terms ofde is:

    1 1 2 2 3 3

    Te e e e e e e

    x y x y x yd u u u u u u =

    1 2 3

    1 2 3

    0 0 0

    0 0 0

    e e e ex e

    e e e ey

    u N N Nd

    u N N N

    =

    1, 2, 3,

    1, 2, 3,

    1, 1, 2, 2, 3, 3,

    0 0 0

    0 0 0

    e e e e x x x x

    e e e e e y y y y

    e e e e e e e

    xy y x y x y x

    N N N

    N N N d

    N N N N N N

    =

    ,

    ,

    1,2,3

    ee

    ii x i

    ee ii y i

    NN bx

    NN c

    y

    i

    = =

    = =

    =

    where

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    17/50

    CCOORRNNEELLLLU N I V E R S I T Y 17

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    3-node (constant strain) triangular element

    We can compute the derivatives of the shape functions

    analytically:

    where

    [ ]

    1 2 3

    1 2 3

    1 1 2 2 3 3

    0 0 01

    0 0 02

    e

    ex

    e e

    y e

    exy

    B

    b b b

    c c c d Ac b c b c b

    =

    1 2 3 2 3 1 3 1 2

    1 3 2 2 1 3 3 2 1

    , ,

    , ,

    e e e e e e

    e e e e e e

    b y y b y y b y y

    c x x c x x c x x

    = = =

    = = =

    1 1

    2 2

    3 3

    11

    det 12

    1

    e e

    e e e

    e e

    x y

    x y

    x y

    =

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    18/50

    CCOORRNNEELLLLU N I V E R S I T Y 18

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    3-node (constant strain) triangular element

    As expected, the Be matrix is not a function ofxory, i.e.,this is a constant strain element.

    We will not list the stiffness matrix (6 x 6) explicitly. The

    required matrix multiplications are performed in thecomputer.

    T

    e

    e e e eK B D B d

    = ( )T

    e e e e eK A B D B unit thickness=

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    19/50

    CCOORRNNEELLLLU N I V E R S I T Y 19

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    3-node (constant strain) triangular element

    For plane stress, the element stiffness

    For variable thickness within the element, you need to

    evaluate using Gauss quadrature

    T

    e

    e e e eK B D B d

    =

    1 1

    1 11 2 3

    2 21 2 32

    2 21 1 2 2 3 3

    3 3

    3 3

    0

    01 0 0 0 0

    01 11 0 0 0 0

    02 1 2(1 )0 00 2

    0

    e

    e e

    e e

    b c

    c bv b b b

    b c EK v c c c t dA

    c b A v Av c b c b c bb c

    c b

    =

    ( )

    1 1

    1 11 2 3

    2 21 2 32

    2 21 1 2 2 3 3

    3 3

    3 3

    0

    01 0 0 0 0

    01 0 0 0 0

    04 1(1 )

    0 002

    0

    e ee

    e

    b c

    c bv b b b

    b ct EK v c c c

    c bv Av c b c b c b

    b cc b

    =

    e

    e

    A

    t dA

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    20/50

    CCOORRNNEELLLLU N I V E R S I T Y 20

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Element nodal body force for 3-node triangular

    To evaluate this integral, we start by interpolating b with a

    linear function using area coordinates. At the end, the

    needed integration is performed analytically. We interpolate the body force in the element by the linear

    shape functions in the triangular coordinates as

    T

    e

    e e f N bd

    =

    3

    3 1

    31

    1

    e ee e i xi

    x xi ieie e

    i e e y yii yi

    i

    N bb b

    b N

    b b N b

    =

    ==

    = = =

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    21/50

    CCOORRNNEELLLLU N I V E R S I T Y 21

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Element nodal body force for 3-node triangular

    Substitution and performing the

    integration gives:

    Note that computing integrals like this, you can use the

    following:

    T

    e

    e e f N bd =

    3

    1

    e e x xie

    ie ei y yi

    b b

    b Nb b=

    = =

    1 1 2 3

    1 1 2 3

    3

    1 2 32

    1 1 2 32

    1 2 33

    1 2 33

    0 2

    0 2

    20

    2120

    202

    0

    e

    e

    x x xe

    y y y

    ee e e

    xi x x xe ei ee i y y yyi

    e x x x

    e y y y

    N b b b

    N b b b

    b b b bNA t f N d

    b b bbN

    b b bNb b b

    N

    =

    + + + + + +

    = = + + + + + +

    ( ) ( ) ( )( )

    1 2 3

    ! ! !2

    2 !ee e e e

    A

    N N N dA A =+ + +

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    22/50

    CCOORRNNEELLLLU N I V E R S I T Y 22

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Element nodal body force for 3-node triangular

    Assume that the body force is constant in the element in

    each direction with components bx

    and by

    , then:

    1 2 3

    1 2 3

    1 2 3

    1 2 3

    1 2 3

    1 2 3

    2

    2

    2

    212

    2

    2

    x x x

    y y y

    e e x x xe

    y y y

    x x x

    y y y

    b b b

    b b b

    b b bA tf

    b b b

    b b b

    b b b

    + +

    + + + +

    = + +

    + +

    + +

    3

    x

    y

    e exe

    y

    x

    y

    b

    b

    bA tf

    b

    b

    b

    =

    In this case of constant body force in each direction,

    the force is distributed equally in the three nodes.

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    23/50

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    24/50

    CCOORRNNEELLLLU N I V E R S I T Y 24

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Nodal boundary force vector for 3-node triangular

    We can now substitute in the expression for the boundary

    force:

    T

    e

    t

    e e

    f N td =

    1 2

    1 2

    1 211 2

    1 1 21 2

    1(1 ) 0

    22

    10 (1 ) 22 1 1

    (1 ) (1 )1 22 2(1 ) 0

    2 1 1 2 6(1 ) (1 )1 2 2 00 (1 )2

    00 0

    0 0

    x x

    y y

    ex xx xe e

    y yx x

    t t

    t t

    t tt t L Lt

    f t d

    t tt t

    + + + + +

    += = + + +

    +

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    25/50

    CCOORRNNEELLLLU N I V E R S I T Y 25

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Nodal boundary force vector for 3-node triangular

    For a constant traction over the segment 12,

    T

    e

    t

    e e

    f N td =

    1 2

    1 2

    1 2

    1 2

    2

    2

    2

    6 2

    00

    00

    x x x

    y y y

    e exx xe

    yy y

    t t t

    t t t

    t t t Lt Lt

    f t t t

    + + +

    = = +

    1 2 xx xt t t= =

    1 2 yy yt t t= =

    In this case of constant traction components,

    the force (traction times the area of the

    segment where it is applied), it is distributed

    equally at the 2 nodes of the segment.

    E l f i b d di i

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    26/50

    CCOORRNNEELLLLU N I V E R S I T Y 26

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example of traction boundary conditions

    Considera unit square of thickness tunder plane stress

    and tractions conditions as shown. Assume that it is

    discretized with 2 linear (triangular elements). Compute the

    form of the assembled nodal force vector due to applied

    tractions.

    1 2

    34

    1

    2

    3

    4

    We denote the 4 boundary sides as 1,2,3,4

    Traction is applied on sides 2 and 3.

    1

    2

    0

    01

    0

    121

    0

    1

    tf

    =

    Node 2

    Node 3

    Node 4

    Node 1

    M l b d di i

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    27/50

    CCOORRNNEELLLLU N I V E R S I T Y 27

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    More general boundary conditions

    Since this is a 2D problem, on a given boundary we may

    have different conditions (displacement/traction) applied on

    the 2 directions along and normal to the boundary segment.

    On a given boundary we cannot describe on the same

    direction both displacement and traction (recall from earlierlectures you cannot specify on the same part of the

    boundary work conjugate variables).

    The most general boundary conditions are the following:

    ,

    ,

    x x tx

    y y ty

    x x ux

    y y uy

    n t on

    n t on

    u u on

    u u on

    =

    = =

    =

    i

    i

    where:

    0

    0

    tx ux

    ty uy

    tx ux

    ty uy

    =

    = =

    =

    E l bl

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    28/50

    CCOORRNNEELLLLU N I V E R S I T Y 28

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem

    Construct the weak form corresponding to the plane stress

    problem shown in the figure. Consider a one-element

    triangular mesh. The boundary conditions are as follows.

    edge BC is constrained in yand traction freex,

    edge AB is constrained inxand traction free in y.

    edge AC is subject to prescribed normal traction

    Compute:

    (a) Construct the stiffness matrix

    (b) Calculate the nodal force vector

    (c) The unknown displacement vector(d) The stress at (1.5, 1.5).

    6

    310 , 0.3 E Pa v= =

    21 3 3 4.52

    eA m= =

    1

    2

    3

    E l bl Sh f ti

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    29/50

    CCOORRNNEELLLLU N I V E R S I T Y 29

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Shape functions

    The displacement vector is:

    The shape functions are:

    6310 , 0.3 E Pa v= =

    213 3 4.5

    2

    eA m= =

    1

    2

    3

    Te e e e e e e Ax Ay Bx By Cx Cyd u u u u u u =

    ( ) ( )1 2 3 3 2 2 3 3 21 1

    ( ) ( ) 0 0 0 39 32

    e

    e

    y

    N x y x y y y x x x y yA= + + = + + =

    ( ) ( )2 3 1 1 3 3 1 1 31 1

    ( ) ( ) 9 0 3 3 19 3 32

    e

    e

    x yN x y x y y y x x x y x y= + + = =

    ( ) ( )3 1 2 2 1 1 2 2 11 1

    ( ) ( ) 0 0 3 09 32

    e e

    xN x y x y y y x x x y x= + + = + + =

    E l bl Be d D t i

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    30/50

    CCOORRNNEELLLLU N I V E R S I T Y 30

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Be and D matrices

    The non-zero derivatives of the

    shape functions are:

    The Be matrix is computed next:

    The elastic property matrix is:

    6310 , 0.3 E Pa v= =

    213 3 4.5

    2

    eA m= =

    1

    2

    3

    1, 2, 3,

    1, 2, 3,

    1, 1, 2, 2, 3, 3,

    0 0 0 0 0 1 0 1 01

    0 0 0 0 1 0 1 0 0

    3 1 0 1 1 0 1

    e

    e e e e x x x x

    e e e e e e y y y y

    e e e e e e e xy y x y x y x

    B

    N N N

    N N N d d

    N N N N N N

    = =

    31 2 21 1 1 1, , ,3 3 3 3

    ee e e N N N N

    y x y x

    = = = =

    6

    2

    1 0 32.967 9.89 0

    1 0 10 9.89 32.967 01

    (1 ) 0 0 11.53850 0

    2

    vE

    D vv

    v

    = =

    E l bl Stiff

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    31/50

    CCOORRNNEELLLLU N I V E R S I T Y 31

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Stiffness

    The element stiffness for unit

    thickness is given as:

    With substitution:

    Finally:

    6310 , 0.3 E Pa v= =

    213 3 4.5

    2

    eA m= =

    1

    2

    3

    Te e e e eK A B D B=

    6

    0 0 1

    0 1 032.967 9.89 0 0 0 1 0 1 0

    1 0 11 14.5 10 9.89 32.967 0 0 1 0 1 0 0

    0 1 13 30 0 11.5385 1 0 1 1 0 1

    1 0 0

    0 0 1

    eK

    =

    6

    5.769 0 5.769 5.769 0 5.769

    0 16.48 4.945 16.48 4.945 0

    5.769 4.945 22.25 10.71 16.48 5.76910

    5.769 16.48 10.71 22.25 4.945 5.769

    0 4.945 16.48 4.945 16.48 0

    5.769 0 5.769 5.769 0 5.769

    eK

    =

    E l bl B d l d

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    32/50

    CCOORRNNEELLLLU N I V E R S I T Y 32

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Boundary load

    The boundary load is given as:

    With substitution:

    where:

    6310 , 0.3 E Pa v= =

    213 3 4.5

    2

    eA m= =

    1

    2

    3

    T

    e

    t

    e e f N td

    =

    1 3

    1 31 31

    11 3

    1 3

    1 3

    1(1 ) 0

    22

    10 (1 ) 2

    2 1 1(1 ) (1 )0 0 02 2

    0 0 1 1 02 6(1 ) (1 )

    2 21 2(1 ) 0

    2 21

    0 (1 )2

    x x

    y yx x

    e

    y y

    x x

    y y

    t t

    t tt tL L

    f d

    t tt t

    t t

    + + + + = = + + + +

    + +

    1 3

    1 3

    3 2

    215cos45 15 /

    2

    215sin 45 15 /

    2

    ox x

    oy y

    L m

    t t N m

    t t N m

    =

    = = =

    = = =

    E l bl B d d b d f

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    33/50

    CCOORRNNEELLLLU N I V E R S I T Y 33

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Boundary and body forces

    With substitution:

    The body force is zero

    6310 , 0.3 E Pa v= =

    213 3 4.5

    2

    eA m= =

    1

    2

    3

    1 3

    1 3

    1 3

    1 3

    215

    22 22.52

    152 22.52

    0 0 03 2 3 23

    0 0 06 6

    2 22.5215

    22.52

    215

    2

    x x

    y y

    e

    x x

    y y

    t t

    t t

    f

    t t

    t t

    +

    +

    = = = + +

    0.ef =

    E l bl E ti l BC

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    34/50

    CCOORRNNEELLLLU N I V E R S I T Y 34

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem:Essential BC

    Based on the essential BC, the

    reaction forces are:

    The displacement and nodal force

    vector are summarized below:

    6310 , 0.3 E Pa v= =

    213 3 4.5

    2

    eA m= =

    1

    2

    3

    1 1 2 2 3 3

    1 2 2 30 0

    Te

    x y x y x y

    T x x y y

    r r r r r r r

    r r r r

    = =

    =

    11

    1

    2 2

    2 2

    3

    3 3

    022.5

    22.5

    0,0

    22.5

    22.5 0

    xx

    y

    x xe e

    y y

    x

    y y

    ur

    u

    ruf d

    r u

    u

    r u

    =+ =

    = = =

    + =

    Example problem Solution step

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    35/50

    CCOORRNNEELLLLU N I V E R S I T Y 35

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Solution step

    We are ready to solve for

    displacements once we partition the

    load/stiffness equations:

    We thus solve:

    6310 , 0.3 E Pa v= =

    213 3 4.5

    2

    eA m= =

    1

    2

    31

    1

    26

    2

    05.769 0 5.769 5.769 0 5.769

    0 16.48 4.945 16.48 4.945 0

    05.769 4.945 22.25 10.71 16.48 5.76910

    5.769 16.48 10.71 22.25 4.945 5.769

    0 4.945 16.48 4.945 16.48 0

    5.769 0 5.769 5.769 0 5.769

    x

    y

    x

    u

    u

    u

    u

    =

    =

    1

    2

    2

    3

    33

    22.5

    22.5

    0

    22.5

    22.50

    x

    x

    yy

    x

    yy

    r

    r

    r

    u

    ru

    +

    = =

    +=

    1 16 6

    3 3

    16.48 4.945 22.5 1.0510 10

    4.945 16.48 22.5 1.05

    y y

    x x

    u um

    u u

    = =

    Example problem: Stress calculation

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    36/50

    CCOORRNNEELLLLU N I V E R S I T Y 36

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Stress calculation

    The constant strain in this triangle is

    given as:

    Using the elastic moduli, we can

    now compute the constant stress in

    this element:

    6310 , 0.3 E Pa v= =

    213 3 4.5

    2

    eA m= =

    1

    2

    3

    6

    6

    6

    0

    1.05100 0 1 0 1 0 0.35

    01 0 1 0 1 0 0 0.35 1003

    1 0 1 1 0 1 01.0510

    0

    e

    ex

    ey

    exy

    B

    = =

    6 6

    2

    1 0 32.967 9.89 0 0.35 15

    1 0 10 9.89 32.967 0 0.35 10 151

    (1 ) 0 0 11.5385 0 00 0

    2

    e ex x

    e ey y

    e e xy xy

    vE

    v Pav

    v

    = = =

    Stress recovery

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    37/50

    CCOORRNNEELLLLU N I V E R S I T Y 37

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Stress recovery

    How do we compute the stress at any point inside the

    domain?

    Since the finite element approximated displacement field

    , the stress field , i.e. the stresses arediscontinuous in inter-element boundaries.

    We compute the stresses at the Gauss points where they

    are more accurate and then extrapolate them at the nodesusing a least squares approximation.

    [ ]{ }

    ex

    e e ey

    exy

    B d

    =

    2

    1 0

    1 01

    (1 )0 0 2

    e ex x

    e ey y

    e e xy xy

    vE

    vv

    v

    =

    0

    ,u v C

    1

    C

    Example problem: Element equs from min potential energy

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    38/50

    CCOORRNNEELLLLU N I V E R S I T Y 38

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Element equs from min potential energy

    The general expression for the strain energy is as follows:

    For plane stress, we can write this explicitly as:

    This can be further simplified using:

    { } [ ]{ }1 1 1

    2 2 2ijkl kl

    kl

    Tij ij ij ijkl kl

    ij ij klV V V

    C

    U dV C dV C dV

    = = =

    ( )1

    2 xx xx yy yy xy xyVU dV= + +

    2

    1 0

    1 01

    (1 )0 0

    2

    xx

    yy

    xyxy

    v

    E vv

    v

    =

    Example problem: Element eqs from min potential energy

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    39/50

    CCOORRNNEELLLLU N I V E R S I T Y 39

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Element eqs. from min potential energy

    The strain energy for plane stress becomes:

    This can be written explicitly as:

    We can now introduce our approximations for strain withineach finite element

    2

    2

    1( ) ( ) 22(1 )

    xx yy xx xx yy yy xyV

    EU dV

    = + + + +

    { } [ ]{ }1

    2

    T

    V

    U C dV = { }2

    1 0

    , [ ] 1 01

    (1 )0 0

    2

    xx

    yy

    xy

    vE

    C vv

    v

    = =

    where:

    Example problem: Element eqs from min potential energy

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    40/50

    CCOORRNNEELLLLU N I V E R S I T Y 40

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Element eqs. from min potential energy

    Thus the strain energy in element e is as follows:

    The external work done is similarly computed as:

    Finally:

    { } [ ]{ } { } { }{ } [ ] [ ]{ }

    1 1

    2 2ee T e T e e

    TT e e e

    eVd B B d

    U C dV C dV = =

    1{ } [ ] [ ]{ }

    2

    e e e e T e T e e eU t A d B C B d =

    { }[ ]

    { }[ ]{ } { }

    e e

    tT T

    e T e e T e

    xxe e e eext x y x y

    e e yy

    d N d N

    b tW u u u u d

    b t

    = +

    { } { }e e

    t

    T T xxe T e e T eext

    e e yy

    b tW d N d d N d

    b t

    = +

    Example problem: Element eqs from min potential energy

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    41/50

    CCOORRNNEELLLLU N I V E R S I T Y 41

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Element eqs. from min potential energy

    Minimization of this with respect to the nodal displacements

    leads to the same algebraic equations as those derived

    earlier via the weak form (principle of virtual work):

    1

    { } [ ] [ ]{ }2

    { } { }e e

    t

    e e e T e T e e eext

    e

    T T xxe T e e T e

    e e yy

    P U W t A d B C B d

    b td N d d N d

    b t

    = =

    +

    [ ]{ }

    [ ] [ ]{ } e et

    e

    T T xxe e e T e e e e e

    e e e yyK

    F

    b t

    t A B C B d N d N d b t

    = +

    Example problem

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    42/50

    CCOORRNNEELLLLU N I V E R S I T Y 42

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Consider the linear elasticity problem shown. The vertical

    left edge is fixed. The bottom and the right vertical edgesare traction free. Traction N/m is applied on the top

    horizontal edge. E = 3107Pa and = 0.3 . Plane stress

    conditions are considered. Discretize the domain using onequadrilateral element.

    Example problem

    20yt =

    0x yt t= =

    Example problem

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    43/50

    CCOORRNNEELLLLU N I V E R S I T Y 43

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem

    The elasticity matrix is:

    The coordinate matrix is:

    The shape functions are:

    7

    2

    1 0 1 0.3 0

    1 0 3.310 0.3 1 0

    1 (1 ) 0 0 0.350 0

    2

    vE

    D v

    v v

    = =

    1 1

    2 2

    3 3

    4 4

    0 1

    0 0

    2 0.5

    2 1

    e e

    e ee e

    e e

    e e

    x y

    x yx y

    x y

    x y

    = =

    1 2

    3 4

    1 1(1 )(1 ), (1 )(1 )

    4 4

    1 1(1 )(1 ), (1 )(1 )

    4 4

    N N

    N N

    = = +

    = + + = +

    Example problem: Jacobian

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    44/50

    CCOORRNNEELLLLU N I V E R S I T Y 44

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Jacobian

    The Jacobian matrix is:

    The inverse and determinant of the Jacobian are:

    1 11 2 3 4

    2 2

    1 2 3 4 3 3

    4 4

    0 1

    1 1 1 1 0 0 0 0.125 0.3751

    1 1 1 1 2 0.5 1 0.1254

    2 1

    e e

    e ee

    e e

    e e

    x y x y N N N N

    x yJ

    x y x y N N N N

    x y

    = = =

    + = +

    0.125

    +

    1

    11

    3, | | 0.125 0.375

    80

    3

    e eJ J

    + = = +

    Example problem: Be matrix

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    45/50

    CCOORRNNEELLLLU N I V E R S I T Y 45

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Be matrix

    The Be matrix is:

    To calculate the stiffness matrix we use 4 Gauss points (2in each direction):

    The stiffness is:

    31 2 4

    31 2 4

    3 31 1 2 2 4 4

    0 0 0 0

    0 0 0 0e

    N N N N

    x x x x

    N N N N B

    y y y y

    N N N N N N N N

    y x y x y x y x

    =

    1 1( , ) ( , ), 1

    3 3i jW W= = =

    { }

    1 11

    1 12 2

    ( , )1 1

    1in

    | |

    | |

    T T

    T

    i j

    e e e e e e e

    e e e ei j

    i jThese are the weights from D integration

    the and

    directions

    K B D B d B D B J d d

    W W B D B J

    = =

    = = =

    =

    Example problem: Be matrix

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    46/50

    CCOORRNNEELLLLU N I V E R S I T Y 46

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Be matrix

    The Be contribution from the Gauss

    point can be computed as follows:

    The stiffness from this Gauss point is then:

    1 1

    1 1

    1 2 3 431 2 4

    1

    ( , )31 2 4 1 2 3 4

    ( , )

    0.44 0.06 0.12 0.38

    0.88 0.88 0.24 0.24

    e

    N N N N N N N N

    x x x xJ

    N N N N N N N N y y y y

    = =

    1 1( , ) ( , ),

    3 3=

    1 1

    31 2 4

    31 2 4( , )

    3 31 1 2 2 4 4

    0 0 0 0

    0.44 0 0.06 0 0.12 0 0.38 0

    0 0 0 0 0 0.88 0 0.88 0 0.24 0 0.24

    0.88 0.44 0.88 0.06 0.24 0.12 0.24 0.38

    e

    N N N N

    x x x x

    N N N N B y y y y

    N N N N N N N N

    y x y x y x y x

    = =

    { }1 1

    11 1

    ( , )| |

    T

    e e e eK W W B D B J

    Final stiffness matrix

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    47/50

    CCOORRNNEELLLLU N I V E R S I T Y 47

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Final stiffness matrix

    The final stiffness is:

    7

    1.49 0.74 0.66 0.16 0.98 0.65 0.15 0.08

    2.75 0.24 2.46 0.66 1.68 0.16 1.39

    1.08 0.33 0.15 0.16 0.56 0.41

    2.6 0.08 1.39 0.41 1.5310

    2 0.82 1.18 0.25

    3.82 0.33 3.53

    1.59 0.25

    3.67

    K

    =

    Symmetric

    Load vector

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    48/50

    CCOORRNNEELLLLU N I V E R S I T Y 48

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Load vector

    There is no body force:

    The load contribution from the

    applied traction is:

    Accounting for reaction forces,

    the assembled load vector is:

    0.e

    f =

    14

    1

    1

    1

    1

    1

    1

    1

    1,1

    1

    4

    1

    1

    4

    1

    0

    1 0 00

    0 1 20

    0 0 0 0 0

    0 0 0 0 0 0 0|

    0 0 20 0 0 20 0

    0 0 0 0 0

    1 0 00

    0 1 20

    0

    e T T

    N d

    N d

    f N td N t d

    N d

    N d

    =

    = = = = =

    1

    1

    2

    23

    3

    4

    4

    0

    20 0

    0

    0

    0

    0

    0

    20

    x

    y

    x

    yex

    y

    x

    y

    r

    r

    r

    r f and d u

    u

    u

    u

    = =

    1

    2

    3

    4

    0x yt t= =

    Example problem: Solution step

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    49/50

    CCOORRNNEELLLLU N I V E R S I T Y 49

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (10/29/2009)

    Example problem: Solution step

    73

    3

    4

    4

    01.49 0.74 0.66 0.16 0.98 0.65 0.15 0.08

    02.75 0.24 2.46 0.66 1.68 0.16 1.39

    01.08 0.33 0.15 0.16 0.56 0.41

    02.6 0.08 1.39 0.41 1.5310

    2 0.82 1.18 0.25

    3.82 0.33 3.53

    1.59 0.25

    3.67

    x

    y

    x

    y

    u

    u

    u

    u

    1

    1

    2

    2

    20

    0

    0

    0

    20

    x

    y

    x

    y

    r

    r

    r

    r

    =

    3

    3 6

    4

    4

    0

    0

    1.17 0

    9.67 0102.67 1.17

    9.94 9.67

    2.67

    9.94

    x

    y

    x

    y

    u

    u du

    u

    = =

    Computing the stresses

  • 8/9/2019 FEM Zabaras FEM4LinearElasticity

    50/50

    CCOORRNNEELLLLMAE 4700 FE Analysis for Mechanical & Aerospace Design

    Computing the stresses

    To compute the stress at e.g. the Gauss point1 1

    ( , ) ( , ),3 3

    =

    1 1

    1 1 1 1 1 1

    ( , )

    7

    ( , ) ( , ) ( , )

    0

    0

    01 0.3 0 0.44 0 0.06 0 0.12 0 0.38 0

    03.310 0.3 1 0 0 0.88 0 0.88 0 0.24 0 0.24

    1.170 0 0.35 0.88 0.44 0.88 0.06 0.24 0.12 0.24 0.389.67

    2

    xxe e e e e e

    yy

    xy

    D D B d

    = = = =

    .67

    9.94

    12.5

    5.64

    45.5

    =