fehrenbach fuels for the future 24 1 2017

19
Horst Fehrenbach 14. Fachkongress für erneuerbare Mobilität Kraftstoffe der Zukunft 2017 23.-24.01.2017 im CityCube Berlin GHG emission factors for renewable energy in the transport sector and reduction potential: Biodiesel, Bioethanol, Biomethane, Elektromobility, Power-to-X

Upload: horst-fehrenbach

Post on 08-Feb-2017

53 views

Category:

Documents


0 download

TRANSCRIPT

Horst Fehrenbach

14. Fachkongress für erneuerbare Mobilität Kraftstoffe der Zukunft 2017 23.-24.01.2017 im CityCube Berlin

GHG emission factors for renewable energy in

the transport sector and reduction potential: Biodiesel, Bioethanol, Biomethane, Elektromobility, Power-to-X

Horst Fehrenbach 2 24.1.2017

Overview

1. Why emission factors?

2. Basics regarding calculation and data bases

3. How to derive emission factors

4. Emission factors for • Biofuels

• Power-to-X

• E-Mobility.

5. conclusion

Horst Fehrenbach 3 24.1.2017

Why emission factors?

• GHG reduction obligation accoring to the RED (2009/28/EG) und FQD (2009/30/EG) für Biokraftstoffe “Recast”: COM(2016) 767 concerning economic operators

• Basis for the compilation of GHG balances e.g. for natioanle emission reporting

• Kyoto Protocol (National Inventory Report)

• Report according to RL 2009/28/EGC article 22 ( deleted by Recat)

• Basis for GHG balances or carbon footprints for companies/producers Goal: Optimizing processes and systems.

Horst Fehrenbach 4 24.1.2017

Life Cycle Assessments, Well-to Wheel-Studies, GHG balances for biofuels have been produced since more than 20 years.

Actually there are lots of data bases

Basics regarding calculation and data bases

Horst Fehrenbach 5 24.1.2017

Basics regarding calculation and data bases

● The one and only emission factor for biofuel etc.

● Ranges result from „natural“ diversity and complexity of settings, circumstances and presumptions, e.g.

– Particularly conservativity of default values – Different methodical approaches – Different background data – Temporal and spatial conditions.

● Efforts to gain harmonization (e.g. BioGrace for conventional biofuels)

Horst Fehrenbach 6 24.1.2017

How to derive emission factors

System boundary (e.g. conventional biofuel):

Nutzungsphase/use phase:

Vorkette/upstream:

direkte

Emissionen

Industrielle

Emissionen

in anderen

Sektoren

Feldemissionen

Herstellung der Anlagen/Infrastruktur

Nutzungs-

emissionen

Agrarrohstoff

Verarbeitung

Nutzung

Vorprodukte

Energie

Energie

Chemikalien

Transport

Transport Kraftstoff

Kraftstoff

Horst Fehrenbach 7 24.1.2017

How to derive emission factors

System boundary according to the RED:

Nutzungsphase:

Vorkette/upstream:

direkte

Emissionen

Industrielle

Emissionen

in anderen

Sektoren

Herstellung der Anlagen/Infrastruktur

für biogene und

EE-Kraftstoff = 0

Agrarrohstoff

Verarbeitung

Nutzung

Vorprodukte

Energie

Energie

Chemikalien

Transport

Transport Kraftstoff

Kraftstoff

Feldemissionen

Horst Fehrenbach 8 24.1.2017

Emission factors

Quelle: ifeu BioEm-Bericht

Overview

● conventional biofuels (from crops, „First Generation“)

● Advanced biofuels („2nd Gen“ etc.)

● Electricity-based fuels (Power-to-X, „renewable fuels from non-biogenic origin“)

● E-Mobility

Horst Fehrenbach 9 24.1.2017

Emission factors

Quelle: ifeu BioEm-Bericht

„conventional“ biofuels

50% reduction vs. comparator 94 g CO2e/MJ

Horst Fehrenbach 10 24.1.2017

Emission factors „conventional“ biofuels

Quelle: ifeu BioEm-Bericht

44,0

31,0

28,1

45,5

42,0

40,8

16,0

38,4

9,4

30,0

13,5

typ. Werte RED recast

BLE 2016

Keine CH4 red.

50% reduction vs. comparator 94 g CO2e/MJ

Horst Fehrenbach 12 24.1.2017

Emission factors „advanced“ biofuels

Quelle: ifeu BioEm-Bericht

typ. values RED recast

13,7

13,5

13,5

20,0

13,7

20,7

60% reduction vs. comparator 94 g CO2e/MJ

Horst Fehrenbach 13 24.1.2017

Bilanzraum bei Kopplung (z.B. über CCR) nicht trivial abzugrenzen

Emission factors PtX

Quelle: ifeu

Horst Fehrenbach 14 24.1.2017

Some examples

Emission factors PtX

fuel System g CO2e/MJ source methanol Electricity mix EU average,

airborne-CO2 306 ifeu

Hydrogen Wind power, airborne-CO2 10,3 ifeu Wind power CO2 from furnace gas

66,5 ifeu

Electricity mix EU average 222 ifeu

Wind power 7,4 ifeu renewable electricity 9,1 RL(EU) 2015/652

methane (SNG) Sabatier process, renewable electricity

3,3 RL(EU) 2015/652

Horst Fehrenbach 15 24.1.2017

Emission factors PtX

Quelle: ifeu BioEm-Bericht

Defaults: RL(EU) 2015/652

60% reduction vs. comparator 94 g CO2e/MJ

Horst Fehrenbach 16 24.1.2017

Emission factors E-mobility

Quelle: ifeu UMBReLa, UBA Emissionsbilanz Erneuerbarer Energieträger

Assumption for direct comparison with fuels: Example Golf: consuming 6 litres Diesel/Petrol per 100 km corresponds to 53 kWh Comparable electric vehicle consumes 9 til 25 kWh/100 km 1 MJ fuel corresponds to 2.1 til 5.9 MJ electricity for traction. Presuming for renewable electricity an emission factor of 30 g CO2-e./kWh 1.4 til 4.0 g CO2-e. converted in way it refers to „1 MJ fuel“

Horst Fehrenbach 17 24.1.2017

Emission factors E-mobility

Quelle: ifeu BioEm-Bericht

60% reduction vs. comparator 94 g CO2e/MJ

Horst Fehrenbach 18 24.1.2017

Overview reduction potentials

Horst Fehrenbach 19 24.1.2017

Resumee

• The disclosed renewable fuel and traction types show advantages in general for PtX and E-mobility according to reduction potentials,

• The implementation of the reduction potentials of PtX needs clear framing:

• Availability of sufficient renewable power • Air-borne CO2 because adsorption from flue gases leads to allocation between fuel

and previous process

• E-Mobility needs increased extention of renewable power

• Biofuels show likwise potentials for optimizing, but they don’t catch up with PtX and E-mobility

However

Wilckensstraße 3 69120 Heidelberg Telefon +49 (0)6 221. 47 67 - 0 Telefax +49 (0)6 221. 47 67 - 19 www.ifeu.de Wilckensstraße 3 69120 Heidelberg Telefon +49 (0)6 221. 47 67 - 0 Telefax +49 (0)6 221. 47 67 - 19 www.ifeu.de

Thank you for listening [email protected]