feedback control of scalar conservation ...nlimperis/iasson.pdffeedback control of scalar...

97
FEEDBACK CONTROL OF SCALAR CONSERVATION LAWS WITH APPLICATION TO DENSITY CONTROL IN FREEWAYS BY MEANS OF VARIABLE SPEED LIMITS Iasson Karafyllis and Markos Papageorgiou

Upload: others

Post on 12-Mar-2020

20 views

Category:

Documents


0 download

TRANSCRIPT

FEEDBACK CONTROL OF SCALAR

CONSERVATION LAWS WITH APPLICATION TO

DENSITY CONTROL IN FREEWAYS BY MEANS OF

VARIABLE SPEED LIMITS

Iasson Karafyllis and Markos Papageorgiou

SSppeeeedd lliimmiittss mmaayy vvaarryy……

SSppeeeedd lliimmiittss mmaayy bbee vveerryy ssmmaallll……

HHooww ccaann wwee sseett aapppprroopprriiaattee ssppeeeedd lliimmiittss??

OOuuttlliinnee

The model

OOuuttlliinnee

The model

Two Control Problems

OOuuttlliinnee

The model

Two Control Problems

Two Possible Solutions

OOuuttlliinnee

The model

Two Control Problems

Two Possible Solutions

Example

OOuuttlliinnee

The model

Two Control Problems

Two Possible Solutions

Example

Future Research

TThhee mmooddeell

( , ) ( , ) 0q

t x t xt x

the conservation law

TThhee mmooddeell

( , ) ( , ) 0q

t x t xt x

the conservation law

[0, ]x L , 0t

TThhee mmooddeell

( , ) ( , ) 0q

t x t xt x

the conservation law

[0, ]x L , 0t

max( , ) 0,t x , ( , ) ( , ) ( , )q t x t x v t x

TThhee mmooddeell

( , ) ( , ) 0q

t x t xt x

the conservation law

[0, ]x L , 0t

max( , ) 0,t x , ( , ) ( , ) ( , )q t x t x v t x

In the absence of speed limits

( , ) ( ( , ))q t x f t x

TThhee mmooddeell

( , ) ( , ) 0q

t x t xt x

the conservation law

[0, ]x L , 0t

max( , ) 0,t x , ( , ) ( , ) ( , )q t x t x v t x

In the absence of speed limits

( , ) ( ( , ))q t x f t x

(the standard LWR model)

TThhee mmooddeell When speed limits are present

( , ) ( ( , ), ( , ))q t x F t x l t x

TThhee mmooddeell When speed limits are present

( , ) ( ( , ), ( , ))q t x F t x l t x

speed limit at ( , )( , )

maximum legal speed

t xl t x

the speed limit ratio at ( , )t x

TThhee mmooddeell When speed limits are present

( , ) ( ( , ), ( , ))q t x F t x l t x

speed limit at ( , )( , )

maximum legal speed

t xl t x

the speed limit ratio at ( , )t x

Assumption: ( , ) (0,1]l t x

TThhee mmooddeell When speed limits are present

( , ) ( ( , ), ( , ))q t x F t x l t x

speed limit at ( , )( , )

maximum legal speed

t xl t x

the speed limit ratio at ( , )t x

Assumption: ( , ) (0,1]l t x

(the “mean” driver respects the law)

TThhee mmooddeell

We usually think that speed limits have to be piecewise constant both wrt space and time

TThhee mmooddeell

We usually think that speed limits have to be piecewise constant both wrt space and time

But speed limits don’ t have to be piecewise constant

TThhee mmooddeell

We usually think that speed limits have to be piecewise constant both wrt space and time

But speed limits don’ t have to be piecewise constant

This is the era of automated and connected vehicles!

TThhee mmooddeell

We usually think that speed limits have to be piecewise constant both wrt space and time

But speed limits don’ t have to be piecewise constant

This is the era of automated and connected vehicles!

The traffic control centre may communicate different variable speed limits to individual equipped vehicles at virtually arbitrary space, time and value resolution

TThhee mmooddeell Example: In Carlson, R. C., Mainstream Traffic Flow Control on Motorways, Ph.D. Thesis, Technical University of Crete, Chania, Greece, 2011

1( , ) exp

1

bF l A l

a al

, , 0A b , 0a

TThhee mmooddeell Example: In Carlson, R. C., Mainstream Traffic Flow Control on Motorways, Ph.D. Thesis, Technical University of Crete, Chania, Greece, 2011

1( , ) exp

1

bF l A l

a al

, , 0A b , 0a

Define:

( ) : ( ,1)f F , for max[0, ]

TThhee mmooddeell Example: In Carlson, R. C., Mainstream Traffic Flow Control on Motorways, Ph.D. Thesis, Technical University of Crete, Chania, Greece, 2011

1( , ) exp

1

bF l A l

a al

, , 0A b , 0a

Define:

( ) : ( ,1)f F , for max[0, ]

(the flow-density curve in absence of speed limits)

TThhee mmooddeell In general:

(H) The function 2max max[0, ];[0, ]f C q , where max 0q is a function for

which there exists max(0, )cr with the following properties:

TThhee mmooddeell In general:

(H) The function 2max max[0, ];[0, ]f C q , where max 0q is a function for

which there exists max(0, )cr with the following properties:

(i) ( ) 0f for all [0, )cr , ( ) 0crf ,

TThhee mmooddeell In general:

(H) The function 2max max[0, ];[0, ]f C q , where max 0q is a function for

which there exists max(0, )cr with the following properties:

(i) ( ) 0f for all [0, )cr , ( ) 0crf ,

(ii) ( ) 0f for all max[0, ] , and

TThhee mmooddeell In general:

(H) The function 2max max[0, ];[0, ]f C q , where max 0q is a function for

which there exists max(0, )cr with the following properties:

(i) ( ) 0f for all [0, )cr , ( ) 0crf ,

(ii) ( ) 0f for all max[0, ] , and

(iii) (0) 0f and ( ) 0f for all max(0, ] .

TThhee mmooddeell In general:

(H) The function 2max max[0, ];[0, ]f C q , where max 0q is a function for

which there exists max(0, )cr with the following properties:

(i) ( ) 0f for all [0, )cr , ( ) 0crf ,

(ii) ( ) 0f for all max[0, ] , and

(iii) (0) 0f and ( ) 0f for all max(0, ] .

(standard assumption for the fundamental diagram)

TThhee mmooddeell A major simplification:

For every (0,1]u , max0, there exists (0,1]l such that

( ) ( , )u f F l

TThhee mmooddeell A major simplification:

For every (0,1]u , max0, there exists (0,1]l such that

( ) ( , )u f F l

We get:

( , ) ( , ) ( ( , )) 0t x u t x f t xt x

TThhee mmooddeell A major simplification:

For every (0,1]u , max0, there exists (0,1]l such that

( ) ( , )u f F l

We get:

( , ) ( , ) ( ( , )) 0t x u t x f t xt x

[ ]t is the state (( [ ])( ) ( , )t x t x for [0, ]x L )

TThhee mmooddeell A major simplification:

For every (0,1]u , max0, there exists (0,1]l such that

( ) ( , )u f F l

We get:

( , ) ( , ) ( ( , )) 0t x u t x f t xt x

[ ]t is the state (( [ ])( ) ( , )t x t x for [0, ]x L )

[ ]u t is the distributed control input

TThhee mmooddeell A major simplification:

For every (0,1]u , max0, there exists (0,1]l such that

( ) ( , )u f F l

We get:

( , ) ( , ) ( ( , )) 0t x u t x f t xt x

[ ]t is the state (( [ ])( ) ( , )t x t x for [0, ]x L )

[ ]u t is the distributed control input

( , ) 0,1u t x

TTwwoo CCoonnttrrooll PPrroobblleemmss

max(0, ) : the set point.

TTwwoo CCoonnttrrooll PPrroobblleemmss

max(0, ) : the set point.

1st Problem: Free Speed Limit at Inlet

TTwwoo CCoonnttrrooll PPrroobblleemmss

max(0, ) : the set point.

1st Problem: Free Speed Limit at Inlet

Construct a feedback law

( , ) ( [ ], )u t x K t x , for ( , ) [0, ]t x L

with

( [ ], ) (0,1]K t x , for ( , ) [0, ]t x L

TTwwoo CCoonnttrrooll PPrroobblleemmss

max(0, ) : the set point.

1st Problem: Free Speed Limit at Inlet

Construct a feedback law

( , ) ( [ ], )u t x K t x , for ( , ) [0, ]t x L

with

( [ ], ) (0,1]K t x , for ( , ) [0, ]t x L

so that

lim ( , )t

t x

, lim ( , ) 1

tu t x

, for [0, ]x L .

TTwwoo CCoonnttrrooll PPrroobblleemmss

lim ( , ) 1t

u t x

TTwwoo CCoonnttrrooll PPrroobblleemmss

lim ( , ) 1t

u t x

the freeway will practically operate without speed limits

after an initial transient period, i.e. after the problem has been tackled.

TTwwoo CCoonnttrrooll PPrroobblleemmss Inlet Flow: ( ,0) ( ( ,0))u t f t

TTwwoo CCoonnttrrooll PPrroobblleemmss Inlet Flow: ( ,0) ( ( ,0))u t f t

may become small for a transient period

TTwwoo CCoonnttrrooll PPrroobblleemmss Inlet Flow: ( ,0) ( ( ,0))u t f t

may become small for a transient period

queues may be created at the entrance of the freeway

TTwwoo CCoonnttrrooll PPrroobblleemmss

2nd Problem: No Speed Limit at Inlet

TTwwoo CCoonnttrrooll PPrroobblleemmss

2nd Problem: No Speed Limit at Inlet We additionally require:

( ,0) 1u t , for 0t (input constraint)

TTwwoo CCoonnttrrooll PPrroobblleemmss

2nd Problem: No Speed Limit at Inlet We additionally require:

( ,0) 1u t , for 0t (input constraint)

( ,0)t , for 0t (boundary condition)

TTwwoo CCoonnttrrooll PPrroobblleemmss 1st Control Problem: Free of boundary conditions

TTwwoo CCoonnttrrooll PPrroobblleemmss 1st Control Problem: Free of boundary conditions 2nd Control Problem: One boundary condition at the entrance

TTwwoo CCoonnttrrooll PPrroobblleemmss 1st Control Problem: Free of boundary conditions 2nd Control Problem: One boundary condition at the entrance More demanding than the 1st problem

TTwwoo CCoonnttrrooll PPrroobblleemmss 1st Control Problem: Free of boundary conditions 2nd Control Problem: One boundary condition at the entrance More demanding than the 1st problem

Inlet Flow: ( ,0) ( ( ,0)) ( )u t f t f

TTwwoo CCoonnttrrooll PPrroobblleemmss 1st Control Problem: Free of boundary conditions 2nd Control Problem: One boundary condition at the entrance More demanding than the 1st problem

Inlet Flow: ( ,0) ( ( ,0)) ( )u t f t f

Both Control Problems are Nonlinear

TTwwoo PPoossssiibbllee SSoolluuttiioonnss Theorem (Global Asymptotic Stabilization of an arbitrary spatially uniform density profile in the sup norm for the 1st problem):

TTwwoo PPoossssiibbllee SSoolluuttiioonnss Theorem (Global Asymptotic Stabilization of an arbitrary spatially uniform density profile in the sup norm for the 1st problem): Suppose that Assumption

(H) holds. Let max(0, ) , 0,1/ ( )k L . Define

1

0

, 1 ( )

x

M w x k w s ds

TTwwoo PPoossssiibbllee SSoolluuttiioonnss Theorem (Global Asymptotic Stabilization of an arbitrary spatially uniform density profile in the sup norm for the 1st problem): Suppose that Assumption

(H) holds. Let max(0, ) , 0,1/ ( )k L . Define

1

0

, 1 ( )

x

M w x k w s ds

Then there exists max max: (0, ] (0, ]c q such that for every

10 max[0, ];(0, ]C L

TTwwoo PPoossssiibbllee SSoolluuttiioonnss Theorem (Global Asymptotic Stabilization of an arbitrary spatially uniform density profile in the sup norm for the 1st problem): Suppose that Assumption

(H) holds. Let max(0, ) , 0,1/ ( )k L . Define

1

0

, 1 ( )

x

M w x k w s ds

Then there exists max max: (0, ] (0, ]c q such that for every

10 max[0, ];(0, ]C L ((aallll pphhyyssiiccaallllyy rreelleevvaanntt pprrooffiilleess!!))

TTwwoo PPoossssiibbllee SSoolluuttiioonnss the initial value problem with 0[0] and

[0, ]

min ( ( , )) [ ],

( , )( ( , )) [ ],

z Lf t z M t z

u t xf t x M t x

, for 0t , [0, ]x L

TTwwoo PPoossssiibbllee SSoolluuttiioonnss the initial value problem with 0[0] and

[0, ]

min ( ( , )) [ ],

( , )( ( , )) [ ],

z Lf t z M t z

u t xf t x M t x

, for 0t , [0, ]x L

((tthhee ffeeeeddbbaacckk llaaww))

TTwwoo PPoossssiibbllee SSoolluuttiioonnss the initial value problem with 0[0] and

[0, ]

min ( ( , )) [ ],

( , )( ( , )) [ ],

z Lf t z M t z

u t xf t x M t x

, for 0t , [0, ]x L

((tthhee ffeeeeddbbaacckk llaaww))

has a unique solution 1max[0, ];(0, ]C L , which satisfies:

0[ ] exp( )t ct

, for all 0t

TTwwoo PPoossssiibbllee SSoolluuttiioonnss the initial value problem with 0[0] and

[0, ]

min ( ( , )) [ ],

( , )( ( , )) [ ],

z Lf t z M t z

u t xf t x M t x

, for 0t , [0, ]x L

((tthhee ffeeeeddbbaacckk llaaww))

has a unique solution 1max[0, ];(0, ]C L , which satisfies:

0[ ] exp( )t ct

, for all 0t

lim ( , ) 1t

u t x

, for all [0, ]x L

where 0[0, ]

min ( )z L

c c z

.

TTwwoo PPoossssiibbllee SSoolluuttiioonnss Theorem (Regional Exponential Stabilization of an arbitrary spatially uniform density profile in the sup norm for the 2nd problem):

TTwwoo PPoossssiibbllee SSoolluuttiioonnss Theorem (Regional Exponential Stabilization of an arbitrary spatially uniform density profile in the sup norm for the 2nd problem): Suppose that Assumption (H) holds.

Let max0,min , / 2cr .

TTwwoo PPoossssiibbllee SSoolluuttiioonnss Theorem (Regional Exponential Stabilization of an arbitrary spatially uniform density profile in the sup norm for the 2nd problem): Suppose that Assumption (H) holds.

Let max0,min , / 2cr . ((nnoott aann aarrbbiittrraarryy sseett ppooiinntt!!))

TTwwoo PPoossssiibbllee SSoolluuttiioonnss Theorem (Regional Exponential Stabilization of an arbitrary spatially uniform density profile in the sup norm for the 2nd problem): Suppose that Assumption (H) holds.

Let max0,min , / 2cr . ((nnoott aann aarrbbiittrraarryy sseett ppooiinntt!!))

Then there exist constants , , 0 such that for every

10 max[0, ];(0, ]C L with 0(0) and

2

0 0 0

0

( ) ( ( ))2

xx

f s ds f x

, for [0, ]x L

TTwwoo PPoossssiibbllee SSoolluuttiioonnss Theorem (Regional Exponential Stabilization of an arbitrary spatially uniform density profile in the sup norm for the 2nd problem): Suppose that Assumption (H) holds.

Let max0,min , / 2cr . ((nnoott aann aarrbbiittrraarryy sseett ppooiinntt!!))

Then there exist constants , , 0 such that for every

10 max[0, ];(0, ]C L with 0(0) and

2

0 0 0

0

( ) ( ( ))2

xx

f s ds f x

, for [0, ]x L

((nnoott aallll pphhyyssiiccaallllyy rreelleevvaanntt iinniittiiaall ccoonnddiittiioonnss!!))

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

the initial-boundary value problem with 0[0] and

2

1

0

( , ) ( ( , )) ( , ) [ ]2

xx

u t x f t x f t s ds t

, for 0t , [0, ]x L

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

the initial-boundary value problem with 0[0] and

2

1

0

( , ) ( ( , )) ( , ) [ ]2

xx

u t x f t x f t s ds t

, for 0t , [0, ]x L

((tthhee ffeeeeddbbaacckk llaaww))

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

the initial-boundary value problem with 0[0] and

2

1

0

( , ) ( ( , )) ( , ) [ ]2

xx

u t x f t x f t s ds t

, for 0t , [0, ]x L

((tthhee ffeeeeddbbaacckk llaaww))

has a unique solution 1max[0, ];(0, ]C L , which satisfies

0 ( , ) 1u t x , for 0t , [0, ]x L ,

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

the initial-boundary value problem with 0[0] and

2

1

0

( , ) ( ( , )) ( , ) [ ]2

xx

u t x f t x f t s ds t

, for 0t , [0, ]x L

((tthhee ffeeeeddbbaacckk llaaww))

has a unique solution 1max[0, ];(0, ]C L , which satisfies

0 ( , ) 1u t x , for 0t , [0, ]x L ,

0[ ] exp( )t t

, for all 0t ,

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

the initial-boundary value problem with 0[0] and

2

1

0

( , ) ( ( , )) ( , ) [ ]2

xx

u t x f t x f t s ds t

, for 0t , [0, ]x L

((tthhee ffeeeeddbbaacckk llaaww))

has a unique solution 1max[0, ];(0, ]C L , which satisfies

0 ( , ) 1u t x , for 0t , [0, ]x L ,

0[ ] exp( )t t

, for all 0t ,

lim ( , ) 1t

u t x

, for all [0, ]x L .

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

How are shocks avoided for a scalar conservation law?

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

How are shocks avoided for a scalar conservation law?

Let’s look at the closed-loop systems

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

How are shocks avoided for a scalar conservation law?

Let’s look at the closed-loop systems

1st problem: [0, ]

( , ) ( , ) min ( ( , )) ( [ ], )z L

t x k t x f t z M t zt

a zero-speed, first-order, hyperbolic PDE (with no bc’s applicable)

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

How are shocks avoided for a scalar conservation law?

Let’s look at the closed-loop systems

1st problem: [0, ]

( , ) ( , ) min ( ( , )) ( [ ], )z L

t x k t x f t z M t zt

a zero-speed, first-order, hyperbolic PDE (with no bc’s applicable)

2nd problem: ( , ) ( , ) [ ]t x t x x tt

with ( ,0)t

a zero-speed, first-order, hyperbolic PDE (with one bc at 0x )

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

How are shocks avoided for a scalar conservation law?

Let’s look at the closed-loop systems

1st problem: [0, ]

( , ) ( , ) min ( ( , )) ( [ ], )z L

t x k t x f t z M t zt

a zero-speed, first-order, hyperbolic PDE (with no bc’s applicable)

2nd problem: ( , ) ( , ) [ ]t x t x x tt

with ( ,0)t

a zero-speed, first-order, hyperbolic PDE (with one bc at 0x )

TThhee ffeeeeddbbaacckk llaaww cchhaannggeess tthhee cchhaarraacctteerr ooff tthhee PPDDEE!!

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

How are shocks avoided for a scalar conservation law?

Let’s look at the closed-loop systems

1st problem: [0, ]

( , ) ( , ) min ( ( , )) ( [ ], )z L

t x k t x f t z M t zt

a zero-speed, first-order, hyperbolic PDE (with no bc’s applicable)

2nd problem: ( , ) ( , ) [ ]t x t x x tt

with ( ,0)t

a zero-speed, first-order, hyperbolic PDE (with one bc at 0x )

TThhee ffeeeeddbbaacckk llaaww cchhaannggeess tthhee cchhaarraacctteerr ooff tthhee PPDDEE!!

TThhee cclloosseedd--lloooopp ssyysstteemm iiss nnoo lloonnggeerr aa ccoonnsseerrvvaattiioonn llaaww!!

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

The state space for the 2nd problem:

2

1, max

0

: [0, ];(0, ] : (0) , ( ) ( ( ))2

xx

X C L f s ds f x

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

The state space for the 2nd problem:

2

1, max

0

: [0, ];(0, ] : (0) , ( ) ( ( ))2

xx

X C L f s ds f x

it depends on the control parameters

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

The state space for the 2nd problem:

2

1, max

0

: [0, ];(0, ] : (0) , ( ) ( ( ))2

xx

X C L f s ds f x

it depends on the control parameters

if 0 ,X then ,[ ]t X for all 0t

TTwwoo PPoossssiibbllee SSoolluuttiioonnss

The state space for the 2nd problem:

2

1, max

0

: [0, ];(0, ] : (0) , ( ) ( ( ))2

xx

X C L f s ds f x

it depends on the control parameters

if 0 ,X then ,[ ]t X for all 0t

we cannot handle every density profile simply by VSL (ramp metering may also be required)

EExxaammppllee

( ) expf with max 1.6 , 1L , 0.7

EExxaammppllee

( ) expf with max 1.6 , 1L , 0.7

For this case 1cr

EExxaammppllee

( ) expf with max 1.6 , 1L , 0.7

For this case 1cr

Controller parameters: 0.3k , 0.12 , 0.1

EExxaammppllee

( ) expf with max 1.6 , 1L , 0.7

For this case 1cr

Controller parameters: 0.3k , 0.12 , 0.1

Initial condition: 2 2

0( ) 4 (1.2 )x x x , [0, ]x L

EExxaammppllee

Feedback for the 1st control problem

Density Speed limit ratio

EExxaammppllee

Feedback for the 2nd control problem

Density Speed limit ratio

EExxaammppllee

Evolution of the sup-norm of the deviation

1st Control Problem 2nd Control Problem

EExxaammppllee

What if 1cr ? Only 1st control problem…

Density profiles

EExxaammppllee

Convergence faster for the 1st feedback (at the cost of possible queues)

EExxaammppllee

Convergence faster for the 1st feedback (at the cost of possible queues)

No need to use very small speed limits: speed limit ratios greater than 90% are capable of handling congestion phenomena

EExxaammppllee

Convergence faster for the 1st feedback (at the cost of possible queues)

No need to use very small speed limits: speed limit ratios greater than 90% are capable of handling congestion phenomena

Intuitive solutions: speed limit ratios smaller upstream the congestion

and higher downstream the congestion

FFuuttuurree RReesseeaarrcchh

Study the inhomogeneous case, i.e. consideration of a freeway stretch with spatially inhomogeneous flow-density relationships or freeways with multiple on-ramps and off-ramps

FFuuttuurree RReesseeaarrcchh

Study the inhomogeneous case, i.e. consideration of a freeway stretch with spatially inhomogeneous flow-density relationships or freeways with multiple on-ramps and off-ramps

study of the effect of discretization

FFuuttuurree RReesseeaarrcchh

Study the inhomogeneous case, i.e. consideration of a freeway stretch with spatially inhomogeneous flow-density relationships or freeways with multiple on-ramps and off-ramps

study of the effect of discretization

density profiles with discontinuities

FFuuttuurree RReesseeaarrcchh

Study the inhomogeneous case, i.e. consideration of a freeway stretch with spatially inhomogeneous flow-density relationships or freeways with multiple on-ramps and off-ramps

study of the effect of discretization

density profiles with discontinuities

output feedback stabilization problem

FFuuttuurree RReesseeaarrcchh

Study the inhomogeneous case, i.e. consideration of a freeway stretch with spatially inhomogeneous flow-density relationships or freeways with multiple on-ramps and off-ramps

study of the effect of discretization

density profiles with discontinuities

output feedback stabilization problem

VSL to 2nd order models?

THANK YOU!