feasibility -very high recovery seawater ro plant

11
THE CASE FOR AND FEASIBILITY OF VERY HIGH RECOVERY SEA WATER REVERSE b y IRVING MOCH, JR. I. MOCH ASSOCIATES WILMINGTON, DELAWARE ABSTRACT Sea water desalination by reverse osmosis (SWRO) has been in refinement since its inception some 25 years ago. Major efforts have been directed at improving mem brane life, productivity and salt rejection. In the early 1980s, plants were operated, generally, at recoveries of 25 and pressures up to 1000 psig, producing water meeting WHO standards of less than 500 mg/L TDS and chloride under 250 mg/L. The manufacturer warranted these facilities for 2 or 3 years. Salt rejections were in the 98.5 to 99 range. Plant energy consumption was about 45 Kwh/Kgal (12 Kwh/m3). Over the past decades, many changes have taken place: membrane life has expanded such that suppliers will warrant a 10 or more year life at a fixed replacement rate. Product TDS can be 300 mg/L, at recoveries of 40 to 50 with system pressures raised to 1200 psig. Importantly, energy consumption has been halved to about 21 Kwh/Kgal (5.5 Kwh/m3) as a result of higher conversions and the use of energy recovery devices. Still it is apparent that, in today's market, 75 to 85 of the total cost of water (TCW) is energy use and capital amortization. The remaining costs; membrane replacements, chemicals, labor and supervision, and maintenance parts, together, amount to only 20 to 25 of the TCW. Thus, energy reduction becomes the main focus to improving desalting economics. A significant way to lower energy is to further raise system conversion. However, in doing this, the brine osmotic pressure begins to approach the applied pressure and this, in turn adversely affects product flow and quality. SWRO facilities are not designed efficient ly; that is, they are limited by this mechanically derived differential between the osmotic and applied pressures. In brackish water, designs are based on the solubility product of the least sparingly soluble salt, as modified by antiscalants. Up to now, commercial membranes are not permitted to operate above 1200 psig (82.7 barg). Thus, in sea water, the osmotic pressure limitations are controlling versus the desired thermodynamic water chemistry. Recently, membranes have been commercialized, which can operate at very high recoveries (55 to 65 ), thus allowing SWRO plants to be at their most efficient level. The modules are capable of performing at high pressure [up to 1400 psig (96.6 barg)] with a salt rejection of 99.7 (58,00 mg/L feed). This paper discusses this innovation and its effect on energy consumption and capital in a Caribbean Sea plant. Data obtained from other areas of the world are also reviewed.

Upload: lte002

Post on 04-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

8/13/2019 Feasibility -Very High Recovery Seawater RO Plant

http://slidepdf.com/reader/full/feasibility-very-high-recovery-seawater-ro-plant 1/11

T H E C A S E F O R A N D F E A S I B I L I T Y O F V E R Y H I G H R E C O V E R Y

S E A W A T E R R E V E R S E O S M O S I S P L A N T S

by

I R V I N G M O C H , J R .

I. M O C H A S S O C I A T E SW I L M I N G T O N , D E L A W A R E

A B S T R A C T

Sea w a t e r d e s a l in a t i o n b y r ev e r s e o s mo s i s (S W RO ) h as b een i n r e f in emen t s in ce i ts

i n cep t i o n s o me 2 5 y ea r s ag o . M a j o r e f fo r t s h av e b een d i r ec t ed a t i mp ro v i n g mem b ran e

l ife , p rodu c t iv i ty and sa l t re j ec t ion . In the ear ly 1980s, p lan t s were opera ted , genera l ly , a t

r eco v e r i e s o f 2 5 an d p re s s u re s u p t o 1 0 0 0 p s ig , p ro d u c i n g w a t e r mee t i n g W H O

s t an d a rd s o f l es s t h an 5 0 0 m g / L T D S an d ch l o r i d e u n d e r 2 5 0 mg / L . T h e m an u fac t u re rwa rran ted these fac i li t ies fo r 2 o r 3 years . Sa l t re j ec t ions we re in the 98 .5 to 99

ran ge . P l an t en e rg y co n s u m p t i o n w a s ab o u t 4 5 K w h / K g a l (1 2 K w h / m3 ) .

O v e r t h e p a s t d ecad es , m an y ch an g es h av e t ak en p l ace : memb ran e l if e h a s ex p an d ed s u ch

tha t supp l i e rs wi l l w ar ran t a 10 o r m ore yea r li fe a t a f ixed rep lacem ent ra t e . Pro duc t TD S

can be 300 mg/L , a t recov er ies o f 40 to 50 wi th sys tem pressures ra i sed to 1200 ps ig .

Imp o r t an t l y , en e rg y co n s u m p t i o n h as b een h a l v ed t o ab o u t 2 1 K w h / K g a l (5 .5 K w h / m 3 ) a s

a resu l t o f h igher conv ers ions and the use o f energy re cove ry dev ices. S t il l i t i s appa ren t

t h a t, i n t o d a y ' s mark e t , 7 5 t o 8 5 o f t h e t o t a l co s t o f w a t e r (T CW ) is en e rg y u s e an dcap i t a l am or t i za t ion . Th e rema in ing cos t s ; m em bran e rep lacements , chemica l s, l abor and

s u p e rv i s io n , an d m a i n t en an ce p a r ts , t o g e t h e r , am o u n t t o o n l y 2 0 t o 2 5 o f t h e T CW .

T h u s , en e rg y r ed u c t i o n b eco m es t h e ma i n fo cu s t o i mp ro v i n g des a lt in g eco n o mi cs .

A s ign i f i can t wa y to lowe r energy i s to fu r ther ra i se sys tem convers ion . Ho we ver , in

do ing th is , t he b r ine osm ot ic p ressure b eg ins to app roach the app l i ed p ressure a nd th is , i n

tu rn adve rse ly a f fec t s p ro duc t f low and qua l i ty . SW RO fac i li ti es a re no t des igned

ef f ic i en tly ; tha t i s, t h ey a re l imi ted by th i s m echan ica l ly der ived d i f fe ren t ia l be tw een the

osm ot ic and app l ied p ressures . In b rack i sh wa ter , des igns a re based on the so lub i li ty

prod uct o f the l eas t spar ing ly so lub le sa lt , as modi f i ed by an t i sca lan ts . Up to no w,

com me rc ia l m emb ranes a re no t permi t t ed to ope ra te above 1200 psig (82 .7 barg) . Thus ,

in sea water , t he osm ot ic p ressure l imi ta t ions a re c on t ro l l ing versus the des i red

t h e rmo d y n am i c w a t e r ch emi s t ry .

Recen t l y , mem b ran es h av e b een co mm erc i a li z ed , w h i ch can o p e ra t e a t v e ry h i g h

recov er ies (55 to 65 ) , thus a l low ing SW RO p lan t s to be a t the i r m os t e f f ic i en t l eve l.

The m odu les a re capab le o f per fo rm ing a t h igh p ressure [up to 1400 ps ig (96 .6 barg) ] w i th

a sa l t re j ec t ion o f 99 .7 (58 ,00 m g/L feed) . Th i s paper d i scusses th is inno vat ion and i ts

e f f ect o n en e rg y co n s u m p t i o n an d cap i ta l i n a Ca r i b b ean Sea p lan t. D a t a o b t a i n ed f ro mo t h e r a r ea s o f t h e w o r l d a r e a l so r ev i ew ed .

8/13/2019 Feasibility -Very High Recovery Seawater RO Plant

http://slidepdf.com/reader/full/feasibility-very-high-recovery-seawater-ro-plant 2/11

I N T R O D U T I O N

Per fo rm an ce o f rev e r s e o s mo s i s (RO ) p l an t s o v e r th e p a s t t h r ee d ecad es h a s b een n o t ed

fo r i mp ro v em en t s i n p ro d u c t q u a l i t y an d q u an t i ty , m emb ran e l if e an d , i n p a r ti cu la r , en e rg y

co n s u mp t i o n . T h es e ch an g e s h av e b een v e ry n o t i ceab l e i n b r ack i s h w a t e r d e s a l i n a t io n

(BW RO ) w i t h t h e in t ro d u c t i o n o f t h e co m p o s i t e mem b ran e in t h e mi d 1 9 80 s . T o d a y ,

t h e s e m emb ran es a r e cap ab l e o f o p e ra t i o n a t p r e s s u re s a s l o w a s 4 5 p s i g (3 b a rg ) , w h i ch ,in som e cases , i s on ly s l igh t ly abo ve the osm ot ic p ressure o f the b r ine s t ream leav ing the

RO mo d u l e s. BW R O s y s tems o p e ra t e a t re co v e r i e s, w h i ch a r e li mi ted o n l y b y th e

so lub i li ty o f the l eas t so lub le sa l t; ev en these conv ers ions can be increased wi th the

co mm erc i a l iz a t i o n o f m o re e f f ic i en t an t is ca l an t s .

In s ea w a t er , s u ch d rama t i c im p ro v em en t s h av e n o t b een a s man i fe s ted , a l t h o u g h

mem b ran e s a lt r e j ec t io n s h av e i mp ro v ed f ro m 9 8 .5 t o o v e r 9 9 .6 . I n ea r l ie r d ay s, t o

ach i ev e d r i n k in g w a t e r o f le s s th an 5 0 0 mg / L an d 2 5 0 mg / L ch l o ri d e , co n v e r s i o n s w e re

l imi t ed t o 3 5 fo r t h e w a t e r s o f t h e o cean s an d Ca r i b b ean an d M ed i t e r r an ean Seas an d t ol e ss t h an t h a t f o r th e A rab i an G u l f an d Red Sea . Fu r t h e r, t o t a l s y st em en e rg y co n s u m p t i o n

w as v e ry h ig h a t a ro u n d 4 5 K w h / K g a l (1 2 K w h / m3 ) . W i t h t h e i n tro d u c t i o n o f en e rg y

reco v e ry eq u i p men t (E RD ) , d e s i g n ed t o r eco v e r mo s t o f t h e h i g h p re s su re en e rg y o f t h e

b r i n e st ream, t h e p o w e r co n s u m p t i o n w as r ed u ce d ab o u t 3 0 °,4 . M o s t e a r l y p l an t s u s ed

Franc i s tu rb ines ( reverse runn ing pum ps) to rec ove r th i s spen t energy . The se un i ts ,

how ever , a re no t very e f f i c ien t , usua l ly opera t ing a t a rou nd 75 e f f ic i ency.

Pa ra l le l t o t h e ad v en t o f E RD s , m em b ran e m an u fac t u re r s , s p ir a l an d h o l l o w f ib e r

co n f i g u ra t i o n s, w e re q u i t e s u ccess fu l in i mp ro v i n g th e p e r fo rm an ce o f th e i r p ro d u c t . L i f e

ex p ec t an cy o f t h e m emb ran es h a s m o v ed f ro m 2 t o 3 y ea r s t o t o d ay ' s o v e r 5 y ea r s an d , i n

par t icu la r , sa lt re j ec t ions increased to ove r 99 .6 . As a resu l t o f th i s wo rk , sy s tem

co n v e r s i o n s w e re in c rea s ed t o th e 4 0 - 5 0 r an g e (d ep en d i n g o n t h e s ea w a t e r s a li n it y )

w i t h p e rmea t e s t il l mee t i n g cu s t o mer d r i n k in g w a t e r s t an d ard s. I n c rea si n g t h e co n v e r s i o n

of a RO sys tem is very im por tan t cos t -wise , as the h igher the recovery , the l es s is the

amo u n t o f w a t e r , w h i ch h as t o b e p re s su r i zed . T h u s , t h e en e rg y u s ed t o d o t h i s fu n c t io n is

reduced , as is the cap i t a l cos t o f the pum p, p re t rea tm ent equ ipment , in t ake and ou t fa l l

in f ras t ruc tu res and chem ica l add i t ive sys tems .

T h es e e f fo rt s t o d a t e h a v e l o w ere d t h e en e rg y co n s u m p t i o n t o ab o u t 2 1 K w h / K g a l (5 .5K w h / m3 ) . E co n o m i ca l ly , w h en ev a l u a t i n g t h e T o t a l Co s t o f W a t e r (T CW ) , i t i s s een th a t

en e rg y an d amo r t i za t io n , co l lec t iv e l y , am o u n t t o ab o u t 7 5 t o 8 5 o f t h e T CW . T h u s ,

m em brane rep lacem ents (bas ica lly l ife ), chemica l consum pt ions , l abor and supe rv i s ion and

m ain tenanc e par t s a re , ind iv idua l ly , re l a t ive ly smal l i t ems in the TC W . Cer ta in ly , i f a p lan t

i s opera t ing inef f i c ien t ly , these i t ems c an g row to s ign if i can t va lues; bu t ex per i ence has

s h o w n t h a t f o r p l an t s, w h i ch h av e b een p ro p e r l y d e s i gn ed an d w i t h w e l l- t ra i n ed o p e ra t o r s ,

opera t ing p rob lems a re m in imal and c os t s fo r these i t ems a re wel l con ta ined wi th in the

1 5 t o 2 5 f ac t o r a l l o ca t ed i n t h e T C W l ed ge r .

8/13/2019 Feasibility -Very High Recovery Seawater RO Plant

http://slidepdf.com/reader/full/feasibility-very-high-recovery-seawater-ro-plant 3/11

I t is a ppa re n t f r om th i s d i sc uss ion tha t f u r the r e f fo r t s mu s t be d i r e c te d tow a rds low e r ing

the e n e rgy u t i li z a t ion a nd th rou gh i t, r e duc e the c a p i t a l e xpe n d i tu r e s o f a s soc ia t e d

e q u i pm e n t . T a b l e 1 s h o w s a t y p i ca l b r e a k d o w n f o r c a p i ta l a n d o p e r a t i n g c o s t s f o r a

6 M G P D ( 2 2 , 7 1 0 m 3 / d ) p l a n t i n t h e C a r i b b e a n ru n n i n g a t a c o n v e r s i o n o f 4 0 % w i t h th e

sourc e wa te r ob ta ine d f rom a n o pe n se a in ta ke . Suc h a f a c i li ty c a n be ins ta l l ed , w i th

m i n o r c h a n g es , i n t h e A t l a n t i c a n d P a c if i c O c e a n s a n d M e d i t e r ra n e a n S e a . F o r t h e R e d

Se a a nd A ra b ia n Gul f, whe re the f e e d w a te r sa l in i ty i s h ighe r a nd c o nve r s io ns low e r , c os t sfo r a c omp a ra b le fa c i l ity migh t be inc r e a se d up to 15% a nd , s imi lar ly , e ne rgy w ou ld be

2 0 % t o 3 0 % h i gh e r.

Ta b le 1

E n e r g y a n d C a p i t a l C o s t s f o r a 6 M G P D ( 2 2 , 7 1 0 m 3 / d ) C a r ib b e a n S W R O P l an t ,

R e c o v e r y @ 4 0 %

Ca pi t a l Co s t ,

M S

E n e r g y C o n s u m p t i o n ,

K w h / K g a l ( K w h / m 3 )

S i t e De ve lop m e nt 0 .7 - - -

In ta ke a nd Out f a l l 3 .0 1 .21 (0 .32)

P re t r e a tm e n t 12 .9 1 .70 (0 .45)

H i g h P r e s su r e P u m p a n d E R D 4 . 0 1 4 .9 2 ( 3 .9 4 )

M e m bra ne s 4 .9 - - -

P r o d u c t P u m p 0 . 6 0 . 7 2 ( 0 .1 9 )

O ther 2 .2 1 .48 (0 .39)

T O T A L 2 8 .3 2 0 . 0 ( 5 .2 9 )

$ 4 . 7 2 / G P D

$ 1 , 2 4 6 / m 3 / d

T h e T C W f o r t h e a b o v e m e n t i o n e d f a ci li ty w o u l d b e $ 4 . 9 7 /K g a l ( ( $ 1. 3 l / m 3 ) o f w h i c h

e ne rgy , a t $0 .15 /Kw h, i s 61 % of the T C W a nd c a p i t al a mo r t i z a t ion (20 ye a r s at 8% /yr ) i s

2 6 % . I t is in t e r es t in g t o n o t e t h a t, i f t h e p o w e r c o s t w e r e $ 0 . 0 8 /K w h , t h e n t h e T C W

w o u l d b e $ 3 . 5 5 / K g a l ( $ 0 . 9 4 / m 3 ) w i t h e n e r g y a n d c a p i t al a m o r t i z a t io n b e i n g 4 6 % a n d

3 6 % r e s p e ct iv e l y o f t h e T C W .

E V E L O P M E N T N E E

I t i s a ppa re n t f r om the a bov e t a b le tha t , i f s e a wa te r R O i s to f u lf il l i t s des t iny , the r e m us t

b e s o m e f u r t h e r i m p r o v e m e n t s m a d e i n t h e e n e r g y co n s u m p t i o n . L o n g e r l iv e d

me m bra ne s , imp rove d o pe ra t ion s a nd a u tom a te d p la n t s a r e in t er e s t ing ob je c t ive s , bu t the y

wi l l no t funda m e nta l ly a f f e c t the bo t tom l ine to the e x te n t ne c e ssa ry to ma k e SW RO a

c o m m o d i t y t e c h n o l o g y .

In e xa min ing the f a c to r s invo lve d in e ne rgy use , o ve r th r e e qu a r t e rs o f i t is a s soc ia t e d wi th

the h igh p r e ssu re pum p a nd ER D. The a b ove typ ic a l p l a n t i s ope ra t ing a t a 40% re c ove ry ,wh ic h me a ns th a t we l l ove r ha l f the e n e rgy i s t i e d up in the b r ine s t r e am w i th on ly a bou t

8/13/2019 Feasibility -Very High Recovery Seawater RO Plant

http://slidepdf.com/reader/full/feasibility-very-high-recovery-seawater-ro-plant 4/11

8 5 o f i t r e co v e rab le . A l s o , si z in g o f p l an t eq u i p men t b e fo re t h e RO s ec t i o n i s d i c t a t ed

b y t h e w a t e r f l o w t o t h e mem b ran es . I n o t h e r w o rd s , ab o u t 7 0 o f t h e eq u i p m en t an d a

s ig n i fi c an t p o r t i o n o f t h e f ac i l it y ' s f o o t p r i n t i s a fu n c t i o n o f t h e v o l u m e t r i c f l o w o f f eed

water .

M em b ran e t ech n o l o g y l i mi ta t i o n s a r e a ma j o r f ac t o r i n cau s i n g t h e s e p o o r eco n o m i cs . T o

ob ta in a des i red p ro du ct ion ra t e an d p ro duc t qua l i ty , a p lan t i s des igned a t a rec ove ry inwh ich there i s abou t a 300 ps i (21 bar ) d i f fe ren t ia l be tw een the b r ine osm ot ic p ressure a nd

the app l i ed p ressure p resen t in the l as t e l emen t o f a mul t i bund le p ressure vesse l.

Increas ing the rec ove ry beyon d a ce r t a in limi t, therefo re , whi l e des i rab le in reduc ing

en e rg y co n s u m p t i o n an d f l u id f lo w , can n o t b e acco m p l i sh ed e f f ec ti v e ly b ecau s e t h e

o s m o t i c p re s s u re d u e t o t h e h i g h r eco v e ry w i ll r ed u ce f l o w an d a t t h e s ame t i me ad v e r s e l y

a f f ec t p ro d u c t q u a l it y. W h a t i s n eed ed t o o b t a i n in c rea sed r eco v e r i e s i s a mem b ran e o f

i mp ro v ed s a lt r e j ec t i o n an d o n e , w h i ch h as t h e cap ab i li ty o f w i t h s t an d i n g t h e s e h i g h e r

pressures . The l a t t e r i s a requ i rem ent in o rde r to m ain ta in o r op t im ize the d i f fe ren t ia l

b e t w een t h e ap p l i ed p re s s u re an d th e b r in e o s mo t i c p re s s ure . T h e re i s an eco n o m i c

b a l an ce b e t w een a l o w er d r i v i n g fo rce ( s ma l l e r d i ff e r ent ia l b e t w ee n ap p l ied an d o s mo t i c

p re s s u re ) an d i n s t a ll in g mo re mem b ran e a r ea . T o ev en co n s i d e r su ch o p t i o n s , t h e

m em brane has to have su per io r sa l t re j ec t ion and , s t ruc tu ra l ly , is modi f i ed to w i ths tand

h i g h p re s s u re o p e ra t i o n .

T h e re i s a l imi t t o h o w h i g h t h e s y s t em r eco v e ry can g o. T h e r e s t ri c t io n is th e p o i n t w h e re

the l eas t so lub le sa lt p rec ip i ta t es . Ca lc ium carb ona te i s the l eas t so lub le sa lt in sea water ,

b u t i ts p r ec i p it a t io n can b e ( an d i s) co n t ro l l ed b y p H . T h e n ex t co mp o u n d t o cau s e

po ten t i a l p rob lem s is ca lc ium su l fate . Cu rren t t ec hno logy sugges t s tha t a b r ine sa l in ity o f

9 0 ,0 0 0 m g / L is as h i g h a s y o u can g o b e fo re CaSO 4 w i ll p r ec ip i ta t e . Beca u s e SW RO

o p era t i o n s a r e, t o d ay , s o f a r r em o v ed f ro m t h i s v a lu e , t h e u s e o f an t i s cal an t s t o o b t a i n

even h igher l eve l s o f b r ine sa l in i ty has n o t bee n e f fec t ive ly s tud ied .

In s umm ary , t o i m p ro v e a SW RO p l an t ' s co s t s an d en e rg y u s e b y o p e ra t i o n s a t h ig h

reco v e r i e s (b r in e T D S ab o u t 9 0 ,0 0 0 mg / L ) , a n ew mem b ran e s y s tem i s r eq u i r ed w h i ch h as

to have :

• Im p ro v e d s a lt r e j ec t io n

• E l em en t i n t ema l s w h i ch h av e b een r ed es i g n ed t o w i t h st an d h i g h p re s s u re s

• O p e ra t i n g p a rame t e r s i n w h i ch t h e s e h i g h p re s su re s re s u lt in l o w er p o w er

cos t s

S T I S F Y I N G T H E N E E D

A n u mb er o f t h e m emb ran e s u p p l ie r s h av e b een w o rk i n g ac t i v e ly o n t h is d ev e l o p m en t

need . Sys tems a re now ab le to ope ra te a t p ressures up to 1200 ps ig (82 .7 barg) , wh ich

co u l d i n c rea se th e r eco v e ry o f o u r t y p ica l p l an t t o 5 0 . O n e co m p an y , T o ray In d u st ri e s,

i s cu r ren t ly m arke t ing a p rod uct w i th capab i l i ty o f opera t ion a t 1400 ps ig (96 .6 barg) . At

th i s h igh p ressure , the sys tem conv ers ion can be se t a t 60 (90 ,000 mg /L b r ine wi th af eed s a li n it y o f 3 6 ,0 0 0 mg / L ) , w h i ch w o u l d r ed u ce t h e f eed f l o w fo r t h is 6 MG PD (2 2 ,7 1 0

8/13/2019 Feasibility -Very High Recovery Seawater RO Plant

http://slidepdf.com/reader/full/feasibility-very-high-recovery-seawater-ro-plant 5/11

m3 / d ) Ca r i b b ean si te t o 6 ,9 4 4 g p m (2 6 .3 m3 / mi n ) f ro m 1 0 ,41 7 g p m (3 9 .4 m3 / mi n ) , a 5 0

red u c ti o n . T h e mem b ran e fo r t h is s y s tem is m o d e l SU 8 2 0 BC M ( s ee F i g u re 1 ).

The p lan t des ign fo r a 60 reco very /90 ,0 00 mg /L b r ine invo lves s t ag ing - - tha t is , t he

br ine f rom the f ir s t s t age (a r ray) i s the feed fo r the secon d a r ray . In th i s m anner , the f lu id

f l o w r a te t h ro u g h t h e m emb ran e e l em en t s is ad eq u a t e t o ach i ev e a p ro p e r l iq u i d

d i s tr i b u ti o n w i t h i n t h e b u n d l e . W h i l e t h e en e rg y co n s u m p t i o n o f th i s a r r an g emen t i s animpro vem ent , i t can be cos t ly in tha t a l l t he h igh p ressure p ip ing , f i tt ings e t c. w ould have

to be des igned fo r a ra t ing o f 1400 ps i (96 .6 bar ) . A m ore p rac t i ca l conf ig ura t ion i s tha t

s h o w n in F i g u re 2 . H e re , t h e p u m p p re s s u r ize s t h e f eed w a t e r t o , s ay 1 0 0 0 p s ig (6 9 b a rg )

w i t h t h e mem b ran es i n t h e f i rs t s tag e b e i n g t o d ay ' s co n v en t i o n a l mo d e l s. T h e b r i n e f ro m

the fi r st a r ray , wh ich i s opera t ing , say a t a 40 conve rs ion , i s then boo s ted abo u t 400 ps i

(2 7 .6 b a r ) t o b eco m e t h e f eed fo r t h e u l t r a h i g h p re s s u re m o d u l e s in t h e s eco n d s t age . T h e

s eco n d ar r ay , r eco v e ry i s 3 3 , ma k i n g t h e t o t a l s y s tem co n v e r s i o n 6 0 . T h e b r i n e f ro m

t h e s eco n d s t age u n i t s is t h en p ro ces s ed t h ro u g h an E RD .

W hi le a boo s te r p um p i s feas ib le , there i s st il l a se cond energ y inpu t to the p lan t , a lbe i t

smal l, as on ly 60 o f the feed i s fu r the r p ressur ized . A n added mo di f i ca t ion to the sys tem

is to e l imi n a t e t h e b o o s t e r p u m p co m p l e t e l y an d em p l o y a h y d rau li c t u rb o ch a rg e (F i g u re

3 ). T h e t u rb o ch a rg e r (T U RB O ) h as b een s p ec if ic a l ly d e s i g n ed fo r RO s y st ems . In

pr inc ip le , the un i t t rans fers hydrau l i c energ y f rom the RO con cen t ra te to a feed s tream. I t

i s en t i re ly pow ere d by the b r ine ; i t has no e lec t r i ca l coo l ing o r pne um at ic requ i rements . I t

i s an in tegra l tu rb ine d r iven cen t r i fuga l pump. Th e tu rb ine sec t ion is a s ing le st age rad ia l

in f low type ( s imi la r to a reverse run n ing pump) . The pum p po r t ion is a s ing le s t age

cen t r i fuga l w i th i ts imp el l e r m ou nte d o n the tu rb ine shaf t. The .energ y t rans fer resu l ts in a

f eed p re s su re i n c rea s e. T h e en t i r e ro t a ti n g e l emen t i s d y n ami ca l l y b a l an ced a s a co mp l e t e

un i t. The un i t has a by-pass a roun d i t, wh ich enab les the ope ra to r to con t ro l and ba lance

the f low. Th i s by-pass i s need ed in s i tua t ions wh ere the sec ond s t age b r ine f low i s m ore

than tha t which i s need ed fo r the boo s t p ressure . Th i s a r rangem ent is par t i cu la r ly

i mp o r t an t i n s i tu a t i o n s w h e re t h e f eed i s s u b jec t t o l a rg e tem p era t u re v a r i a t io n s , s u c h a s

are usua l ly seen in su r face in tak e p lan t s .

In a sys tem whe re the feed t e m pera tu re var i es , the f ir s t s t age p ressure i s ad jus ted ,

acco rd in g l y , t o mee t p ro d u c t i o n r eq u i remen t s . (W h en t h e f eed t emp era t u re i n c rea s e s, t h e

RO p ro d u c t i o n i mp ro v es a t a r a t e o f ab o u t 3 / d eg C ; a lo w er i n g o f t h e feed p re ss u recom pens a tes fo r th i s h igher f low .) These va r i a t ions in feed p ressure a re a l so passed

t h ro u g h t o t h e b o o s t e r s ec t i o n w h e re t h e b y -p as s a ro u n d t h e T U R BO i s ad j u s ted t o h an d l e

these f luc tua t ions . Thus , i t i s poss ib le tha t n o t a l l t he seco nd s t age b r ine is emplo yed to

b o o s t p r e s su re . I n o rd e r n o t t o w as t e t h i s n o n -u s ed b r in e , th e ex t r a f lo w f ro m t h e s eco n d

ar ray b r ine is p roce ssed th rou gh a sm al l ER D, such as an impulse tu rb ine (Pe l ton Whee l ) ,

so as to be su re tha t a l l t he f lu id p ressure i s e f fec tua l ly u t i li zed and /o r recovered .

W h ere a T U R BO i s emp l o y ed , i n p r ac t ic e , i t h a s b een fo u n d t h a t th e b e s t co m b i n a t i o n o f

f i rs t s t age - secon d s t age recov er ies appea rs to be a 40 /33 ra t io . In th i s way , thes a li n it y o f p e rmea t e s em an a t i n g f ro m each s t ag e a s s u re s t h e cu s t o mer o f a s a t i s f ac t o ry

8/13/2019 Feasibility -Very High Recovery Seawater RO Plant

http://slidepdf.com/reader/full/feasibility-very-high-recovery-seawater-ro-plant 6/11

p r o d u c t q u a li ty . I n o u r t y p i c a l c a se , T a b l e 1 w o u l d b e r e f o rm u l a t e d u s in g t h e n e w u l t r a

h igh p r e ssu re m e mb ra ne s a s fo l lows :

T a b l e 2

E n e r g y a n d C a p it a l C o s t s f o r a 6 M G P D ( 2 2 , 7 1 0 m 3 / d ) C a r ib b e a n S W R O P l a n t U t i l iz i n g

T h e A d v a n c ed M e m b r a n e D e v e l o p m e n t P lu s T U R B O F o r B o o s t e r P re s s u re

T o t a l S y s te m R e c o v e r y @ 6 0 %

Ca pi t a l Co s t ,

M

E n e r g y C o n s u m p t i o n ,

K w h / K g a l ( K w h / m 3 )

S i t e D e ve lop me nt 0 .6 - - -

In ta ke a nd Out f a l l 2 .0 0 .72 (0 .19)

Pre t rea tm ent 10 .1 1 .13 (0 .30 )

H i g h P r e ss u re P u m p , T U R B O ,

Imp ulse Tu rbine 3 .1 13.55 (3 .58)M e m b r a n e s 5 .6 - --

P r o d u c t P u m p s 0 . 6 0 . 7 2 ( 0 .1 9 )

O ther 1 .9 1 .29 (0 .34)

T O T A L 2 3 . 9 1 7 .4 ( 4 . 6 0 )

3 . 9 8 / G P D

1 0 5 2 / m 3 / d

A f u r t h e r a d v a n c e m e n t o f th i s n e w t e c h n o l o g y i s t h e r e t r o fi t ti n g o f a n e x i s t in g p l a n t t o

bo th inc r e a se c a pa c i ty a nd im prov e ove ra l l e ne rg y c onsump t ion . He re , a n e x i s t ing p la n t i s

ope ra t ing wi th o r wi th ou t e ne rgy r e c ov e ry a nd i s usua l ly a one s t a ge fa c il ity . Th e b r ine

f rom th i s a rr a y w ou ld be d i r e c te d to a T U RB O w he re the p r e ssu re i s inc r e a se d to a l e ve l

su f fi c ie n t to m e e t the ne w p rod uc t io n ne e ds o f the c us tome r . Th i s h ighe r p r e ssu re f e e d i s

the n use d in the se c ond s t a ge SW RO , e m ploy ing the u l t r a h igh p r e ssu re me m bra ne s , a t a

c onv e r s ion su f fi c ie n t f o r i ts b r ine to be up to a bou t 90 ,000 mg/L . I n ge ne ra l , t h i s se c ond

s ta g e c o n v e r s i o n w i ll o p e r a t e a t a c o n v e r s i o n o f 2 5 % t o 3 5 % , w h i c h m e a n s t h e p l a n t

c a pa c i ty wi l l be im prove d by a s m uc h a s 50% . In suc h a r e t ro f i tt e d f a ci li ty , t he a bso lu te

e n e r g y u s e w i ll b e u n c h a n g e d ; t h e c o n s u m p t i o n , a s m e a s u r e d a s K w h / K g a l o r K w h / m 3 ,

w i l l b e r e d u c e d 5 0 % i f n o E R D w a s o r i g in a l l y p r es e n t. I f a n E R D w e r e o r i g i n al ly

i n st a ll e d, it w o u l d b e d e - s t a g e d ; t h e n e w p l a n t ' s e n e r g y c o n s u m p t i o n w o u l d b e r e d u c e da bou t 15%. The a dd e d c a p i t a l t o o b ta in th i s c a pa c i ty inc r e ase wou ld be on ly fo r the ne w

me m bra ne s , TU RB O a nd a ssoc ia t e d r a c ks , h igh p r e ssu re p ip ing a nd ins t rume nta t ion . Th e

in ta ke a nd ou t f a l l i n f r a s truc tu r e s , p r e t r e a tme n t e t c . wou ld be un touc he d . Th e p ro duc t

d e l iv e r y a n d p o s t t r e a t m e n t s e c t i o n w o u l d , o f c o u r s e, h a v e t o b e e x p a n d e d f o r t h e n e w

c a pa c i ty . To ob ta in the sa m e inc r e a se in c a pa c i ty , c onve n t iona l ly , t he p la n t wo u ld h a ve to

e xpa n d o r dup l i c a te a ll e qu ipme nt p ie c es , a dd ing s ign if i ca n t ly to the c a p i t a l c ost s .

As n o te d e a rl ie r , t he m a x im um b r ine sa l in i ty f rom the se c ond s t age shou ld be und e r

90 ,000 mg /L to be su r e c a lc ium su l f a te doe s no t p r e c ip i ta t e . I n our typ ic a l e xa mple ,w h e r e t h e fe e d T D S i s 3 6 , 0 0 0 m g / L , t h e m a x i m u m r e c o v e r y p e r m i tt e d is t h u s 6 0 % . T h i s

8/13/2019 Feasibility -Very High Recovery Seawater RO Plant

http://slidepdf.com/reader/full/feasibility-very-high-recovery-seawater-ro-plant 7/11

maximum convers ion wo uld be less , say , in the A rab ian Gulf whe re the feed TD S is abou t

45,000 mg/L. H ere the highest reco very possible wo uld be 50 - about 35 in the f i rst

stage, 23 in the second stage. I t is probab le that with time, ant iscalants will be cer ti f ied

for use in sea w aters with sal in it ies in the 90,0 00+ mg /L range. W hen these chem icals

have been fu lly p roven , the ma ximum permiss ib le b r ine TD S cou ld be 110 ,000 mg/L or

m ore (67+ conversion in the typical case) .

The development just d iscussed is fundam ental for SWR O. Minimizing en ergy

consumpt ion by high conversions m eans tha t the de te rminan t fo r SW RO is con t ro l by

w ate r chemistry. To day , it is by osm otic pre ssu re limitations.

D E M O N S T R T I O N S I T E S

Dem onst ra tion o f the func t iona l ity o f th is new mem brane and sys tem a t recover ies o f 60

are show n in Table 3 .

Table 3

Sea Water R O P lan ts Ut i liz ing Ul t ra High Pressure M embranes A nd Hydrau l ic

Tu r b o ch a r g e r

Plant Ty p e Cap ac i ty Reco v e r y S ta rt -u p Da te

Ehime, Japan Full Plant

M as Pa lomas Ret ro f i t

Spain

Ibiza, Spain Re trofit

M as Pa lomas 1 Ret ro f i t

Spain

KA E Cu racao 1 FUl lPlan t

Caribbean

KA E Curacao 2 Fu ll P lan t

Caribbean

M as Pa lomas 2 Ret ro f i t

Spain

M as Pa lomas 3 Ret ro f i tSpain

Tor to la Ret ro f i t

Caribbean

M uroto Full Plant

Japan

5 5 KG PD ( 2 1 0 m 3 /d ) 6 0

7 1 KG PD ( 2 7 0 m 3 .d ) 6 0

7 1 KG PD ( 2 7 0 m 3 /d ) 6 0

1 .2 M G PD ( 4 50 0 m 3 /d ) 6 0

1 .5 M G PD ( 5 7 0 0 m 3 /d) 5 7

1 .5 M G PD ( 5 7 0 0 m 3 /d) 5 7

1 .2 M G PD (4500 m3/d) 60

1 .2 M GP D ( 4 5 00 m 3 /d) 6 0

180 K G PD (690 m3/d) 60

3 3 0 KG PD ( 4 80 m 3 /d ) 6 0

October 1996

October 1997

January 1999

March 1999

Septem ber 1999

October 1999

December 1999

February 2000

No v em b er 1 9 99

M ar ch 2 0 0 0

Figures 4 , 5 and 6 show pictures o f these above operat ing facil it ies. In al l cases, the feed

salini ty is about 36,000 mg/L. Tem perature s v ary from about 20 deg C in Japa n to 30 d eg

C in the Caribbean. Feed w ater so urces are both f rom wells and the open sea. In al linstances, the perm eate qual i ty is about 250 m g/L to 350 mg /L with product salini ties

8/13/2019 Feasibility -Very High Recovery Seawater RO Plant

http://slidepdf.com/reader/full/feasibility-very-high-recovery-seawater-ro-plant 8/11

f r o m t h e s ec o n d a r r a y s s o m e w h a t a b o v e t h o s e o f t h e f ir st st a g e s w h e n t h e m e m b r a n e s a r e

o f e qu i va l e n t a ge s . E n e r g y c on s um pt i on f o r t he R O s e c t i on is e s s e n ti a ll y a s no t e d i n T a b l e

2 . E x c e p t f o r t h e E h i m e p l a n t ( T o r a y ' s m a n u f a c t u r i n g a n d d e v e l o p m e n t f a c il it y ),

o p e r a t i o n s a r e u n d e r t h e c o n t r o l o f l o c al p e r s o n n e l.

A t T o r t o l a ( w e l l fe e d ) , t h e a d d i t io n o f t h e u l t r a h ig h p r e s s u r e m e m b r a n e s p l u s h y d r a u l i c

t u r b o c h a r g e r ( B C S ) i n c r e as e d c a p a c i t y 3 5 a n d r e d u c e d p o w e r c o n s u m p t i o n 6 9 t o 1 3 .2K w h/ K ga l ( 3 . 5 K w h/ m 3) . T h e p l a n t in i ti al i n s t a ll a t ion ha d a n im pu l s e tu r b i ne f o r E R D ; a

l a t er 4 7 c a p a c i t y i n c r e a se o c c u r r e d w i t h o u t u s in g a n E R D . T h i s l as t c a p a c i t y c h a n g e

i n s ta l le d t he B C S , bu t d i d no t r e p l a c e t he o r i g i na l m e m br a ne s i n t he fi r st 2 un i ts . E v e n

w i t h t h e s e a g e d m o d u l e s i n o p e r a t i o n , t h e t o t a l s y s t e m p e r m e a t e i s u n d e r 4 0 0 m g / L .

I n C u r a c a o ( o p e n s e a i n t a k e ), w h e r e t h e m e m b r a n e s a r e n e w , th e f ir st s t a g e p r e s s u r e i s

o n l y 8 2 6 p s i g ( 5 7 b a r g ) a n d t h e s e c o n d s t a g e B C S p r e s s u r e is 1 0 4 4 p s ig ( 7 2 b a r g ) .

P e r m e a t e q u a li ty , a t t h e s e lo w p r e s s u r e s , is 3 1 1 m g / L . T h e e n e r g y c o n s u m p t i o n , i g n o r i n g

p r e t r e a t m e n t , i s 11 .9 K w h/ K ga l (3 . 15 K w h / m 3 ) . T h i s p l a n t ha s m u l t i m e d i a f i lt r a ti on a nd

a n i m pu l s e t u r b i ne t o p r oc e s s t he b r i ne no t u t i l i z e d by t he B C S .

C O N C L U S I O N S

T h e n e e d t o r e d u c e e n e r g y c o n s u m p t i o n a n d c a p i ta l c o s ts i s f u n d a m e n t a l t o t h e m a r k e t

g r o w t h o f S W R O . P r o g r a m s a r e in p r o g r e s s b y m a n y to a c h ie v e t h e se g oa ls . L e a d i n g t h e

w a y in o n e s u c h s u c c e s s fu l d e v e l o p m e n t h a s b e e n t h e c o m m e r c ia l iz a t io n o f a n e w u l t ra

h i g h p r e s s u r e m e m b r a n e ( B C M ) b y T o r a y I n d u s t r ie s a n d th e e m p l o y m e n t o f i t t o g e t h e r

w i t h a hyd r a u l i c t u r b oc ha r g e r i n a s e c on d de s a l i na t i on s t a ge . T h i s e ne r gy s a v i ng

i n s t a l l a t i on , c a l l e d B r i ne C onve r s i on S ys t e m ( B C S ) , pe r m i t s ope r a t i on a t a t o t a l p l a n t

c o n v e r s i o n s u c h t h a t t h e s e c o n d s t a g e b ri n e c o n c e n t r a t io n is a b o u t 9 0 , 0 0 0 m g / L ( l im i t e d

o n l y b y C a S 0 4 p r e c ip i ta t io n ) . T h e a d v a n t a g e o f t h e B C S , i n c o m p a r is o n t o a c o n v e n t io n a l

RO plan t , i s :

A . E c o n o m i c

1 . E n e r g y c o n s u m p t i o n r e d u c e d a b o u t 1 5 w h e n c o m p a r e d t o a p l a n t u s i n g a

E R D a n d a b o u t 5 0 w h e r e n o e n e r g y r e c o v e ry is e m p l o y e d

2 . P l a n t c a p i t a l c o s t s do w n 10 t o 20

3 . P l a n t i n st a l la t i on a r e a , a t a g i ve n c a pa c i t y , r e duc e d m or e t ha n 204 . P r e t r e a t m e n t a n d i n t a k e e q u i p m e n t s i z es d e c r e a s e d 3 3

5 . M a i n t e n a n c e c o s t l o w e r e d 1 5

6 . T o t a l C o s t o f W a t e r r e d u c e d 1 0 t o 2 0

B E n v i r o n m e n t a l

1 . R e du c e d i n t a ke a nd ou t fa l l f l ow s l im i t d i s r up t ions t o e c os y s t e m

2 . L o w e r e n e r g y c o n s u m p t i o n m e a n s l e ss C O 2 em i s si o n t o a t m o s p h e r e

3 . H i g he r b r ine d i s c ha r ge c on c e n t r a t i on c a n be c on t r o l l e d by ou t f a ll d i f f u s e r s

a nd de e p w e l l i n j e c t i ons

8/13/2019 Feasibility -Very High Recovery Seawater RO Plant

http://slidepdf.com/reader/full/feasibility-very-high-recovery-seawater-ro-plant 9/11

F I G U R E l

H I G H P R E S S U R E M O D U L E B Y T O R A Y

S t r u c tu r e o f R O e l e m e n t

, Permeate

Brine Sea l ~ L Brine Water

d W ate r S pace rFood Water

~ ~ FEd Water ~S~: ~ ~ ROMembrane

P ermea te S pace rPermeate

S t ruc t ure o f r ine C on vers ion

S e a w a t e r R O M e m b r a n e

e l w a t o r

.ayer~ ~tamid~j

lProductWater

F I G U R E

H Y D R A U L I C T O R B O C H A R G E R

P u m pImp e l l e r

enter

e a t i n g

Feed

8/13/2019 Feasibility -Very High Recovery Seawater RO Plant

http://slidepdf.com/reader/full/feasibility-very-high-recovery-seawater-ro-plant 10/11

FIGURE 3

B R I N E C O N V E R S I O N S Y S T E M

, , (

PUMP

~ T R

/ \

IMPULSE

TL RBINE

l , ~ - - _ 1

FIGITI~I: 4

T E S T P L A N T E t l i M E J A P A N - 55 KG PD 210 M3/D)

8/13/2019 Feasibility -Very High Recovery Seawater RO Plant

http://slidepdf.com/reader/full/feasibility-very-high-recovery-seawater-ro-plant 11/11

F I G U R E

T f P I C A L M A S P A L O .M A S S E C O N D S T A G E P L A N T - 1.2 M G P D (9 ,0 00 M 3 /D )

F I G U R E 6

T W O K A E C U R A C A O D E S A L I N A T I O N L I N E S - 3 . 0 M G P D (1 1 .4 0 0 M 3 / D )