experimental verification of shallow foundation

22
Experimental Verification of Shallow Foundation Performance under Earthquake-Induced Liquefaction National Technical University of Athens Foundation Engineering Laboratory Karamitros Dimitris (N.T.U.A., Greece) Cilingir Ulas (U.Cam., U.K.) Bouckovalas George (N.T.U.A., Greece) Madabhushi Gopal (U.Cam., U.K.) Papadimitriou Achilleas (U.Th., Greece) Haigh Stuart (U.Cam., U.K.) Seismic Engineering Research Infrastructures for European Synergies Concluding Workshop - Joint with US-NEES: “Earthquake Engineering Research Infrastructures” JRC-Ispra, May 28-30, 2013, in memory of Prof. Roy Severn Cambridge University Technical Services

Upload: others

Post on 18-Dec-2021

23 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Experimental Verification of Shallow Foundation

Experimental Verification

of Shallow Foundation Performance

under Earthquake-Induced Liquefaction

National Technical University of Athens Foundation Engineering Laboratory

Karamitros Dimitris (N.T.U.A., Greece)

Cilingir Ulas (U.Cam., U.K.)

Bouckovalas George (N.T.U.A., Greece)

Madabhushi Gopal (U.Cam., U.K.)

Papadimitriou Achilleas (U.Th., Greece)

Haigh Stuart (U.Cam., U.K.)

Seismic Engineering Research Infrastructures for European Synergies

Concluding Workshop - Joint with US-NEES:

“Earthquake Engineering Research Infrastructures” JRC-Ispra, May 28-30, 2013, in memory of Prof. Roy Severn

Cambridge University Technical Services

Page 2: Experimental Verification of Shallow Foundation

Niigata, Japan (1964)

M=7.5

Caracas, Venezuela (1967)

M=6.5

Liquefaction Performance of Shallow Foundations

in Recent Earthquakes

Page 3: Experimental Verification of Shallow Foundation

Luzon, Philippines (1990)

M=7.8

Chi-Chi, Taiwan (1999)

M=7.3

Liquefaction Performance of Shallow Foundations

in Recent Earthquakes

Page 4: Experimental Verification of Shallow Foundation

Kocaeli (Izmit)

Turkey (1999)

M=7.8

Liquefaction Performance of Shallow Foundations

in Recent Earthquakes

Page 5: Experimental Verification of Shallow Foundation

non-liquefiable

surface "crust"

liquefiable

soil

H

Zliq

D

0 2 4 6 8 10

H / D

0

2

4

6

8

10

Zli

q / D

D=

1m

D=

3m

Failure (D=1m)

Failure (D>3m)

Non-failure

Acacio et al (2001)

Data from Dagupan (1990)

Modified curves after Ishihara (1985)

Can a sufficiently thick and shear resistant non-liquefiable crust

ensure the viable performance-based design of shallow foundations?

Page 6: Experimental Verification of Shallow Foundation

Karamitros et al (2013)

Fully-Coupled Effective-Stress Analyses

Liquefiable Sand: Dr=40,50,60%

Clay Cap: Cu=25,40kPa

tied-node boundary conditions

B=5m

q=40,70,100,140kPa

H=2,4,6m

Z=6,11,16,21m

60m

73 parametric analyses

for strip foundations (2D)

N=5,10,20amax=0.05, 0.10, 0.15, 0.25, 0.35g

T=0.25, 0.35, 0.50sec

at

18 parametric analyses

for square foundations (3D)

Liquefiable Sand: D r=50%

Clay: cu=25, 40kPa

15m

50m

H=

2,4

,6m

Z=

5.2

5,1

0.5

0,1

5.7

5m

p'

q

Dilatancy Surface

Critical State Surface

Bounding Surface

Yield Surface(vanished)

r3 r2

r1

r

rIP

rLR

NTUA-Sand constitutive model…

…implemented into FLAC & FLAC3d (U.D.M.)

Calibrated against laboratory tests for Nevada Sand

Verified against centrifuge tests (incl. VELACS #12)

Page 7: Experimental Verification of Shallow Foundation

Square footing (3D)

c=0.008

Strip footing (2D)

c=0.035

0 0.2 0.4 0.6 0.8 1 1.2

1 / FSdeg

0

0.01

0.02

0.03

0.04

ρd

yn / [

(am

ax T

2 N

) (Z

liq / B

)1.5

]

31.5

liq2dyn max

deg

Z 1c a T N

B FS

Seismic Settlements

Page 8: Experimental Verification of Shallow Foundation

Meyerhof & Hanna (1978):

u cs

ult ,deg

u s q qs

2 c F

q min H 12c s H BN F HN F

B 2

functions of φ

Cascone &

Bouckovalas (1998)

φ → φdeg

degtan 1 U tan

Post-shaking Degraded Bearing Capacity

Clay cap

Liquefied Sand

qult,deg

B

H

cu,γ'

φ,γ',U

Page 9: Experimental Verification of Shallow Foundation

0.00

10.

01 0.1 1

0.00

2

0.00

50.

020.

05 0.2

0.5 2

ρdyn (m) - experimental

0.001

0.01

0.1

1

0.002

0.005

0.02

0.05

0.2

0.5

2

ρd

yn (

m)

- a

na

lyti

ca

l50

%

200%

Dynamic Settlements (Centrifuge & Shaking-table Tests):

Yoshimi & Tokimatsu (1977)

Liu & Dobry (1997)

Kawasaki et al (1998)

Acacio et al (2001)

Adalier et al (2003)

Coelho et al (2004)

38 experiments

Verification Against Experimental Data

Post-shaking degraded bearing capacity: no experimental data

Page 10: Experimental Verification of Shallow Foundation

Centrifuge Model Configuration

Test

1

Test

2

Test

3

H = 2.0m 3.0m 5.0m

Zliq = 14.5m 13.5m 11.5m

Kaolin Clay (Grade E)

Leighton-Buzzard Sand(Fraction E)

Square FootingB=3m , q = 94 kPa

HydraulicActuator

Load Cell

Accelerometer

P.P.T.

L.V.D.T.MEMS Accelerometer

Potentiometer

H

Zliq

Page 11: Experimental Verification of Shallow Foundation

0 Load (Q)0

Dis

pla

ce

me

nt

(ρ)a

b

d'd

c

static lo

adin

g

to fa

ilure

Test Procedure

Each test consisted of 3 steps:

Static loading (spin-up phase)

Seismic loading applied using S.A.M. actuator

Post-shaking loading applied by the hydraulic piston

ρst

ρd

yn

Qultdeg

Page 12: Experimental Verification of Shallow Foundation

Experimental Facilities

Philip Turner

Centrifuge

(Schofield Centre)

Radius = 4.125m

Capacity = 150g

Tests performed at 50g

Stored Angular Momentum

S.A.M. Actuator

amax = 0.25g (up to 0.4g)

T = 1.0sec (0.2÷1.0sec)

N = 20cylces (up to 100)

Equivalent Shear Beam

E.S.B. Box

Inside plan area: 673mm ×253mm

33.6m × 16.5m prototype, at 50g (sealed by spraying with synthetic plastic coating)

Page 13: Experimental Verification of Shallow Foundation

Dry Sand Pluviation

Robotic apparatus for uniform sand deposition

Leighton-Buzzard Sand (Fraction E)

Instrumentation Placement

Accelerometers PPTs

Page 14: Experimental Verification of Shallow Foundation

Model Saturation

Safety pressure release valve CO2 flushing

de-aired water – methylcellulose

mixture (viscosity = 50cSt)

vacuum applied through

computer-controlled

pressure regulator

for automatic control

of the saturation process

Page 15: Experimental Verification of Shallow Foundation

Clay Crust Preparation

1 10 100 1000

Applied Pressure (KPa)

220

230

240

250

260

270

280

Cla

y T

hic

kn

es

s (

mm

)

σ'v=80kPa

σ'v,max=400kPa

over-consolidated

Grade-E Kaolin Clay

Page 16: Experimental Verification of Shallow Foundation

Centrifuge Model

hydraulic actuator

pressure switch

L.V.D.T.s load cell footing web-cam

junction & power boxes Model Footing

Standpipe for excess pore water dissipation

Page 17: Experimental Verification of Shallow Foundation

Typical Results: Accelerations

5 10 15 20 25 30 35 40

time (sec)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

ac

ce

lera

tio

n (

g)

5 10 15 20 25 30 35 40

time (sec)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

ac

ce

lera

tio

n (

g)

5 10 15 20 25 30 35 40

time (sec)

-1.5

-1

-0.5

0

0.5

1

1.5

ac

ce

lera

tio

n (

g)

Page 18: Experimental Verification of Shallow Foundation

Typical Results: Excess Pore Pressure Ratios

5 10 15 20 25 30 35 40

time (sec)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

r u =

Δu

/ σ

' v,o

5 10 15 20 25 30 35 40

time (sec)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

r u =

Δu

/ σ

' v,o

Page 19: Experimental Verification of Shallow Foundation

Typical Results: Settlements

5 10 15 20 25 30 35 40

time (sec)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

se

ttle

me

nt

(m)

Page 20: Experimental Verification of Shallow Foundation

New Evidence:

Post-Shaking Loading

0 10 20 30 40 50 60 70 80 90 100

time (sec)

-100

0

100

200

300

400

500

600

700

q (

kP

a)

0 10 20 30 40 50 60 70 80 90 100

time (sec)

-1

-0.5

0

0.5

1

r u =

Δu

/ σ

' v,o

0 10 20 30 40 50 60 70 80 90 100

time (sec)

-2.5

-2

-1.5

-1

-0.5

0

0.5

se

ttle

me

nt

(m)

0.7

165kPa

Page 21: Experimental Verification of Shallow Foundation

Effect of Clay Crust on Dynamic Settlements

0.1 10.2 0.3 0.5 2

ρdyn (m) - analytical predictions

0.1

1

0.2

0.3

0.5

ρd

yn (

m)

- e

xp

eri

me

nta

l re

su

lts

+50%

-50%

0.5 1 1.5 2

H / B

0.1

1

0.2

0.3

0.5

ρd

yn (

m)

- e

xp

eri

me

nta

l re

su

lts

cu=32kPa

cu=21kPa

cu=32kPa

cu=21kPa

cu=32kPacu=32kPa

(H/B)cr = 1.54

B

H

B

H'

Subsoil liquefaction

does not affect foundation performance

in general: (ρdyn/B)cr<1%

Page 22: Experimental Verification of Shallow Foundation

Thank you for your attention!