expected value of r.v.’s -...

41
BEEX – ECE 5605, Virginia Tech 19 Expected value of r.v.’s CDF or PDF are complete (probabilistic) descriptions of the behavior of a random variable. Sometimes we are interested in less information; in a partial characterization. 0 10 20 30 40 50 60 70 80 90 100 -4 -2 0 2 4 6 8 10 trial # i X i Y different center different spread

Upload: others

Post on 11-Sep-2019

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 19

Expected value of r.v.’s

CDF or PDF are complete (probabilistic) descriptions of the behavior of a random variable. Sometimes we are interested in less information; in a partial characterization.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0-4

-2

0

2

4

6

8

1 0

t r ia l #

iX

iY

different centerdifferent spread

Page 2: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 20

Expected value or MEAN

[ ] ( )XE X t f t dt∞

−∞∫ [ ] ( )k X k

k

E X x p x∑defined if integral or sum converges absolutely

( )XE X t f t dt∞

−∞

⎡ ⎤ = < ∞⎣ ⎦ ∫ ( )k X kk

E X x p x⎡ ⎤ = < ∞⎣ ⎦ ∑

there are random variables for which the above do not convergewe then say “the mean does not exist”

[ ] represents the "center of mass"E X

arithmetic average of large # independent observations of a r.v.will tend to the mean; it’s like the “average of X”

Page 3: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 21

Ex 3.29 mean of U[a,b]

[ ]

( )2 2

( )

1

2 2

X

b

a

E X t f t dt

t dtb a

b a b ab a

−∞

=−

− += =

[ , ]U a b

1b a−

a b x→

( )Xf x ↑

2b a+

midpoint of interval [a,b]

Page 4: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 23

Ex 3.31 mean of exponential r.v.

Time X between customer arrivals at a service station has an exponential PDF with parameter λ. Find the mean inter-arrival time.

[ ]0

0 0

0

1lim 0

t t t

tt

t

E X t e dt t e e dt

ete

λ λ λ

λλ

λ

λ λ

∞ ∞∞− − −

∞−−

→∞

= = +

= − + =−

∫ ∫udv uv vdu= −∫ ∫dvu

As λ is customer arrival rate in customers per second, themean inter-arrival time of λ-1 seconds/customer makes sense!

Page 5: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 24

Ex 3.32 mean of geometric r.v.

N is the number of times a computer polls a terminal until the terminal has a message ready for transmission. Assuming the terminal produces messages according to a sequence of independent Bernoulli trials, N has a geometric distribution. Find the mean of N.

[ ]

( )

1

1

21 1

1

k

kE N k pq

ppq

∞−

=

=

= =−

( )1

20 0

1 11 1

ddx

k k

k k

x kxx x

∞ ∞−

= =

= → =− −

∑ ∑

if probability of “success” is p, then it makes sensethat on average it takes p-1 trials to hit “success”

Page 6: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 25

Expected value of a function of a r.v.

[ ] ( )YE Y t f t dt∞

−∞∫

ky h

kx x→

( )y g x= ↑

kh

[ ]

( )

( )

( )

( )

( )

k Y kk

k X k kk

X

E Y y f y h

g x f x h

g x f x dx∞

−∞

=

=

alternative in terms of X

equivalent events

limit h→0

Page 7: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 26

Ex 3.33

Sampling a sinusoid with random phase. Find the expected value of Y and of Y2,the power of Y.

( )cosY a tω= +Θ

( ]~ 0, 2U πΘ

[ ] ( )

( )

( )

( ) ( )

2

0

2

0

cos

1cos2

sin2

sin 2 sin 02

E Y E a t

a t d

a t

a t t

π

π

ω

ω θ θπ

ω θπ

ω π ωπ

= +Θ⎡ ⎤⎣ ⎦

= +

−= +

−= + − =⎡ ⎤⎣ ⎦

( )

( )

( )

2 2 2

2

22

0

2

cos

1 cos 2 22

11 cos 2 22 2

2

E Y E a t

a E t

a t d

a

π

ω

ω

ω θ θπ

⎡ ⎤ ⎡ ⎤= +Θ⎣ ⎦ ⎣ ⎦

= + + Θ⎡ ⎤⎣ ⎦

⎡ ⎤= + +⎢ ⎥

⎣ ⎦

=

agreement with time-averages: “DC” value of 0, power a2/2

Page 8: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 28

Variance of XProvides information about a random variable – in addition to its mean value – regarding its deviations from the mean

[ ]D X E X−

[ ] [ ]( )2VAR X E X E X⎡ ⎤−

⎣ ⎦

deviation from the meanmeasures of “width/spread”

[ ] [ ] [ ][ ] [ ] [ ][ ]

2 2

2 2

2 2

2

2

VAR X E X E X X E X

E X E X E X E X

E X E X

⎡ ⎤= − +⎣ ⎦⎡ ⎤= − +⎣ ⎦⎡ ⎤= −⎣ ⎦

[ ] [ ]STD X VAR X standard deviation of r.v.

variance of r.v.

Page 9: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 29

Ex 3.36 variance of X~U[a,b]

[ ]2

b aE X +=

[ ]

( )

( )

( ) ( )

( )( )

2

22322

22

12

13 12

b

a

b ab a

b ab a

b aVAR X x dxb a

b ayy dyb a b a

−−

− −− −

+⎛ ⎞= −⎜ ⎟− ⎝ ⎠

−= = =

− −

[ ] [ ] ( ) [ ] ( )( )24 24 2

2, 4 1; 32 12

U E X VAR X− −+ −

− → = = = =

Page 10: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 5

3.38 variance of Gaussian r.v.

( )( )2

2212

x m

Xf x e xσ

σ π

− −

= −∞ < < ∞

( )2222

x m

e dxσσ π∞ − −

−∞

= ∫d

[ ] ( )( )2

22 2212

x m

VAR X x m e dxσ σσ π

∞ − −

−∞

= − =∫

( ) ( )22

2

232

x mx me dxσπ

σ

∞ − −

−∞

−= ∫

−∞∫

Page 11: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 6

Effect of VAR on the PDF of a Gaussian r.v.

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f X

PDF for Gaussian r.v.

VAR = 1VAR = 4VAR = 16

Page 12: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 7

Mean & variance

Are the two most important parameters for (partially) characterizing the PDF of a r.v.Others are sometimes used, e.g.

which measures the degree of asymmetry about the meanSkewness is zero for a symmetric PDF

Each involves nth moment of r.v. X:

Under certain conditions, a PDF is completely specified if all moments are known (more on that later)

[ ]( )3

3

E X E Xskewness

σ

⎡ ⎤−⎣ ⎦

( )n nXE X x f x dx

−∞

⎡ ⎤ =⎣ ⎦ ∫

[ ] [ ] [ ] [ ] [ ]20VAR c VAR X c VAR X VAR cX c VAR X= + = =

[ ] [ ]2 2VAR X E X E X⎡ ⎤= −⎣ ⎦

Page 13: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 2

Multiple r.v.’s

Several r.v.’s at a timeMeasuring different quantities simultaneously

Engine oil pressure, RPM, generator voltageRepeated measurement of the same quantity

Sampling a waveform, such as EEG, speech

Joint behavior of two or more r.v.’sIndependence of sets of r.v.’sCorrelation if not independent

Page 14: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 4

Ex 4.1

Let a random experiment be the selection of a student’s name from an urn: outcome ζ.

Define the following three functions:H(ζ) = student’s height, in inchesW(ζ) = student’s weight, in poundsA(ζ) = student’s age, in years

(H(ζ), W(ζ), A(ζ) ) is a vector r.v.

Page 15: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 6

Events & probabilities

Each event involving an n-dimensional r.v. X=(X1, X2,…, Xn) has a corresponding region in an n-dimensional real space

E.g. 2-D r.v. X=(X,Y)

x→

y ↑

10

10

{ }10A X Y= + ≤ { }min( , ) 5B X Y= ≤

x→

y ↑

5

5

x→

y ↑

5

5

{ }2 2 25C X Y= + ≤

Page 16: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 11

Independence

Intuitively, if r.v.’s X and Y are “independent,” then events that involve only X should be independent of events that involve only Y. In other words, if A1is any event that involves X only and A2 is anyevent that involves Y only, then

In general, n r.v.’s are independent if

[ ] [ ] [ ]1 2 1 2,P X A Y A P X A P Y A∈ ∈ = ∈ ∈

[ ] [ ] [ ]1 1 1 1, , n n n nP X A X A P X A P X A∈ ∈ = ∈ ∈where is an event that involves onlyk kA X

if r.v.’s are independent, knowing the probabilities of the r.v.’s in isolationsuffices to specify probabilities of joint events

Page 17: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 12

Pairs of discrete r.v.’s ( )vector r.v. ,X Y=X

( ){ }, , 1, 2, , 1, 2,j kS x y j k= = =

joint probability mass function:

( ) { } { }, ,

, 1, 2, 1, 2,

X Y j k j k

j k

p x y P X x Y y

P X x Y y j k

⎡ ⎤= = =⎣ ⎦⎡ ⎤= = = =⎣ ⎦

gives probability of occurrence of pairs (xj,yk)

For any event A: [ ] ( )( )

,,

,j k

X Y j kAx y

P A p x y∈

∈ = ∑ ∑X

( ) [ ],1 1

, 1X Y j kj k

p x y P S∞ ∞

= =

= =∑∑

Page 18: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 13

Marginal PMF’s

( ) ( ){ } { }{ } { } { }{ }

( )

( ) ( )

,

1 2

,1

,1

, any

,

,

X j X Y j k

j j

X Y j kk

Y k X Y j kj

p x p x y

P X x Y y X x Y y

p x y

p y p x y

=

=

=

⎡ ⎤= = = = =⎣ ⎦

=

=

∩ ∪ ∩ ∪

.2

.1.1

.2

.2

.1

.1

.2

.2

.3

.2

.1

Y

.1 .2 .2 .2 .2.1X

marginal PMF’s areinsufficient – in general -for specifying joint PMF

Page 19: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 14

Ex 4.6 tossing loaded dice

1 2 3 4 5 61 2 1 1 1 1 12 1 2 1 1 1 13 1 1 2 1 1 14 1 1 1 2 1 15 1 1 1 1 2 16 1 1 1 1 1 2

k joint PMF in units of 142

j777777

42

111111

67 7 7 7 7 7

1 1 1 1 1 1 marginals give no clue

Page 20: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 17

Joint CDF of X and Y

Basic building block:

( ) { } { }{ }1 1semi-infinite rectangle: , :x y x x y y≤ ≤∩

x→

y ↑

1x

1y

joint cumulative distribution function of X and Y:

( ) { } { }[ ]

, 1 1 1 1

1 1

,

,X YF x y P x x y y

P X x Y y

= ≤ ≤⎡ ⎤⎣ ⎦= ≤ ≤

∩ product-form event

long-term proportion of times in which the outcome (x,y)falls in the blue rectangle, or the probability mass in it

Page 21: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 18

properties of the joint CDF( ) ( ), 1 1 , 2 2 1 2 1 2i. , , ,X Y X YF x y F x y x x y y≤ ≤ ≤

non-decreasing in NE direction

( ) ( ), 1 , 2ii. , , 0X Y X YF y F x−∞ = −∞ =

( ),iii. , 1X YF ∞ ∞ =neither X nor Y takes on values <-∞

X and Y can take on only values <∞

( ) ( ) [ ] [ ],iv. , ,X X YF x F x P X x Y P X x= ∞ = ≤ < ∞ = ≤

( ) ( ) [ ] [ ], , ,Y X YF y F y P X Y y P Y y= ∞ = < ∞ ≤ = ≤marginal cumulative distribution functions

( ) ( ), ,v. lim , ,X Y X Yx a

F x y F a y+→

=

( ) ( ), ,lim , ,X Y X Yy b

F x y F x b+→

=continuous from N & E

Page 22: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 19

Ex 4.8 marginals for continuous joint r.v.’s

( ) ( )( ) ( ) ( ),Given , 1 1x yX YF x y e e u x u yα β− −= − −

( ) ( ) ( ) ( ),lim , 1 xX X Yy

F x F x y e u xα−

→∞= = −

( ) ( ) ( ) ( ),lim , 1 yY X Yx

F y F x y e u yβ−

→∞= = −

marginal CDFs are exponential distributionswith parameters α and β respectively

x→

y ↑

1x

1y

x→

y ↑

1x

1y

Page 23: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 23

Joint CDF in terms of joint PDF & v.v.

( ) ( ), ,, ', ' ' 'yx

X Y X YF x y f x y dx dy−∞ −∞

= ∫ ∫if jointly continuous r.v.’s

( ) ( )2,

,

,, X Y

X Y

F x yf x y

x y∂

=∂ ∂

if the CDF is discontinuous- or the partial derivatives are discontinuous -then the joint PDF does not exist

Page 24: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 24

( ){ }1 1 2 2, : ;A x y a x b a y b= < ≤ < ≤

[ ] ( )1 2

1 2

1 1 2 2 ,, ', ' ' 'b b

X Ya a

P a X b a Y b f x y dx dy< ≤ < ≤ = ∫ ∫

[ ] ( )

( )

,

,

, ', ' ' '

,

y dyx dx

X Yx y

X Y

P x X x dx y Y y dy f x y dx dy

f x y dxdy

++

< ≤ + < ≤ + = ∫ ∫

joint PDF specifies probability of product-form events:

{ } { }x X x dx y Y y dy< ≤ + < ≤ +∩

Dr. Mohamed Khedr
Rectangle
Page 25: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 25

Marginal PDF’s from joint PDF

( ) ( ) ( )

( )

, ,

,

, ', ' ' '

, ' '

x

X X Y X Y

X Y

d df x F x f x y dy dxdx dx

f x y dy

−∞ −∞

−∞

⎧ ⎫= ∞ = ⎨ ⎬

⎩ ⎭

=

∫ ∫

( ) ( ) ( ), ,, ', 'Y X Y X Ydf y F y f x y dxdy

−∞

= ∞ = ∫

marginal PDF’s are obtained by integrating out the other variable(s)

x→

y ↑

x dx+x

x→

y ↑

y dy+y

concentrating mass on x-axis

concentrating mass on y-axis

Page 26: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 27

Ex 4.10 CDF for jointly uniform r.v.’s

( ) ( ) [ ] [ ],

1 , 0,1 0,1,

0 . .X Y

x yf x y

o w⎧ ∈ ×

= ⎨⎩

( ) ( )

( )

( )

( )

( )

( )

, ,

0 0

1

0 0

1

0 01 1

0 0

, ', ' ' '

0 for ,

1 ' ' for ,

1 ' ' for ,

1 ' ' for ,

1 ' ' 1 for ,

yx

X Y X Y

yx

x

y

F x y f x y dx dy

x y I

dx dy xy x y II

dx dy x x y III

dx dy y x y IV

dx dy x y V

−∞ −∞

=

= ∈

= = ∈

= = ∈

= = ∈

= = ∈

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

x→

y ↑

1

10

I

II

III

IV

V

Page 27: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 28

Ex 4.11 finding marginal PDF’s

( ),0

,0 . .

x y

X Yce e y x

f x yo w

− −⎧ ≤ ≤ < ∞= ⎨⎩

x→

y ↑

0

0 0 0 0

0

1

1 21 2

x xx y x y

xx

ce e dydx ce e dydx

e cce dx c

∞ ∞− − − −

−∞ −

= =

−= = ⇒ =

∫ ∫ ∫ ∫

( ) ( )0

2 2 1 0x x y x x

Xf x e e dy e e x− − − −= = − ≤ < ∞∫

y x=

( ) ( ) 22 2 2 0x y y y yY y

f y e e dx e e e y∞ − − − − −= = = ≤ < ∞∫

are these PDF’s?

Page 28: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 29

Ex 4.12 Find P[X+Y≤1] in EX 4.11

y x=1y x= −y ↑

x→0

[ ]

( )

0.5 1

0

0.5 1

0

0.5 1

0

1 1 1

1 2

2

2

1 1 2

y x y

y

yy x

y

yy y

P X Y e e dxdy

e e dxdy

e e e dy

e e e

− − −

−− −

− −− −

− − −

+ ≤ =

=

⎡ ⎤= −⎣ ⎦= − + − = −

∫ ∫

∫ ∫

Page 29: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 30

Ex 4.13 Find marginal PDFs of jointly Gaussian PDF

( )( )

( )2 2

2

2

2 1, 2

1,2 1

x xy y

X Yf x y eρ

ρ

π ρ

− − +

−=

( )( ) ( )

( )

( )( ) ( )

( )

( )( ) ( )

22 2

22

22

22

22

22 2

2

22 12 1

2

122 1

2 1

2

2 22 1

2

2 1

2 1

1 0,12 21 2

x xy y

X

xxy y

y x

x

x x

ef x e dy

e e dy

e ee dy N

ρρρ

ρρρ

ρ

ρρ

ρ

π ρ

π ρ

π πρ π

− − − +−∞ −

−∞

−− − +−

∞ −

−∞

− −

− −∞ −

−∞

=−

=−

= = =−

∫it’s a PDF

completing the square

symmetry

( ) ( )Y Xf y f x=

Page 30: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 9

Independence of two r.v.’s

discrete r.v.'s and are independent

joint PMF is product of marginal PMFs,j k

X Y

x y∀

iff

Page 31: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 10

Ex 4.15 another look at Ex 4.6 loaded dice

1 2 3 4 5 61 2 1 1 1 1 12 1 2 1 1 1 13 1 1 2 1 1 14 1 1 1 2 1 15 1 1 1 1 2 16 1 1 1 1 1 2

k joint PMF in units of 142

j111111

61 1 1 1 1 1

marginals give no clue

( ) ( ) ( ), , ,X Y j k X j Y k j kp x y p x p y x y≠ ∀not independent

Page 32: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 14

Independence of two r.v.’s in general

( ) ( ) ( ), , ,X Y j k X j Y k j kp x y p x p y x y= ∀

( ) ( ) ( ), , ,X Y X YF x y F x F y x y= ∀

( ) ( ) ( ), , ,X Y X Yf x y f x f y x y= ∀

IFF

discrete

jointly continuous

Page 33: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 15

Ex 4.17 back to Ex 4.11

( ),2 0

,0 . .

x y

X Ye e y x

f x yo w

− −⎧ ≤ ≤ < ∞= ⎨⎩

( ) ( )0

2 2 1 0x x y x x

Xf x e e dy e e x− − − −= = − ≤ < ∞∫

( ) ( ) 22 2 2 0x y y y yY y

f y e e dx e e e y∞ − − − − −= = = ≤ < ∞∫

( ) 22 2 1 2x y x x ye e e e e− − − − −≠ −

joint

marginal PDFs

product?

x→

y ↑

0

y x=

X and Y are not independent

Page 34: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 16

Ex 4.18 back to Ex 4.13

( )( )

( )2 2

2

2

2 1, 2

1,2 1

x xy y

X Yf x y eρ

ρ

π ρ

− − +

−=

( )2

2

2

x

Xef x

π

=

( ) ( )( )2 222

2 2 2

22 2

x yyx

X Ye e ef x f y

ππ π

− +−−

= =

( )2

2

2

y

Yef y

π

= iff 0ρ≡ =

Page 35: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 18

Conditional probability

Many r.v.’s are not independent, such as when measuring one variable to learn about another one, or when sampling slowly relative to the rate of change of a signal.

We’re then interested in the probability of an event related to Y, given the knowledge of X=x (a measurement)

We’ll see that E[Y|X=x] is of significance also

Page 36: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 19

[ ] [ ][ ]

,|

P Y A X xP Y A X x

P X x∈ =

∈ = ==

X discrete

( ) [ ][ ] [ ],

| for 0kY k k

k

P Y y X xF y x P X x

P X x≤ =

= = >=

( ) ( )| |Y k Y kdf y x F y xdy

=

if derivative exists

[ ] ( )| |k Y ky A

P Y A X x f y x dy∈

∈ = = ∫

independence

( ) ( )|Y YF y x F y=

( ) ( )|Y Yf y x f y=

Conditional probability

Page 37: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 20

Conditional probability

[ ] [ ][ ]

,|

P Y A X xP Y A X x

P X x∈ =

∈ = ==

X and Y discrete

( ) [ ]( )( ) [ ] ( )

[ ] ( )

,

,| |

,for 0

0 for 0

k jY j k j k

k

X Y k jk X k

X k

k X k

P X x Y yp y x P Y y X x

P X x

p x yP X x p x

p xP X x p x

⎡ ⎤= =⎣ ⎦⎡ ⎤= = = =⎣ ⎦ =

⎧⎪ = = >

= ⎨⎪ = = =⎩

δ functions~ PMF weights

[ ] ( ) ( )| |j j

k Y j k Y jy A y A

P Y A X x p y x p y∈ ∈

∈ = = =∑ ∑if also independent

in general

Page 38: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 21

Ex 4.20 back to Ex 4.14

X is the input and Y the output of a communication channel. P[Y<0|X=+1]?

( ) [ ]|1 ~ 1,3Yf y U − [ ]0

1

1 10 | 14 4

P Y X dy−

< = + = =∫

integrate over event

Page 39: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 23

Conditional CDF of Y given X=x

( ) ( )

[ ][ ]

( )

( )

( )

( )

( )

( )

0

,

, ,

| lim |

', ' ' ',

' '

, ' ' , ' '

Y Yh

y x h

X Yx

x h

Xx

y y

X Y X Y

X X

F y x F y x X x h

f x y dx dyP Y y x X x h

P x X x hf x dx

h f x y dy f x y dy

hf x f x

+

−∞+

−∞ −∞

< ≤ +

≤ < ≤ += =

< ≤ +

=

∫ ∫

∫ ∫

if independent( ) ( )' '

y

Y Yf y dy F y−∞

= =∫

Page 40: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 24

Conditional PDF of Y given X=x

( )( )

( )

, , ' '|

y

X Y

YX

f x y dyF y x

f x−∞=∫

( ) ( ) ( )( )

, ,| | X Y

Y YX

f x ydf y x F y xdy f x

= =

almost Bayes’ rule

( ) ( )( )

, ,| X Y

YX

f x y dxdyf y x dy

f x dx=if independent

( ) ( )|Y Yf y x f y=

Page 41: Expected value of r.v.’s - webmail.aast.eduwebmail.aast.edu/~khedr/Courses/Undergraduate/Communication system II...BEEX – ECE 5605, Virginia Tech 20 Expected value or MEAN E[]Xtf

BEEX – ECE 5605, Virginia Tech 25

Ex 4.21 back to Ex 4.11

( ),0

,0 . .

x y

X Yce e y x

f x yo w

− −⎧ ≤ ≤ < ∞= ⎨⎩

x→

y ↑

0

( ) ( )2 1 0x xXf x e e x− −= − ≤ < ∞y x=

( ) 22 0yYf y e y−= ≤ < ∞

( ) ( )( ),

2

( , ) 2| ;2

x yx yX Y

X yY

f x y e ef x y e y xf y e

− −− −

−= = = ≤ < ∞

( ) ( ) ( ), ( , ) 2| ; 0

12 1

x y yX Y

Y xx xX

f x y e e ef y x y xf x ee e

− − −

−− −= = = ≤ <

−−