epa method 1699: high selective multi-residue hrgc/hrms …€¦ · an extra-wide thermo scientific...

1
EPA Method 1699: High Selective Multi-residue HRGC/HRMS Pesticide Analysis Applied to Food Samples Krumwiede D 1 , Mehlmann H 1 , Muenster H 1 , Theobald F 2 1 Thermo Fisher Scientific, Hanna-Kunath-Str. 11, 28199 Bremen, Germany 2 Environmental Consulting Cologne, Cologne, Germany Purpose: The aim of this study was to extend the scope of applicable matrices for this method to include food samples. Furthermore the compatibility of this method with QuEChERS extracts has been investigated. Results and Discussion With the above described experimental conditions the combined selectivity of the GC column and high resolution of the DFS mass spectrometer ensured an unambiguous identification of all measured pesticides. Figure 3 shows the TIC chromatogram of 61 native pesticides and 32 13 C- or D- labeled standards. Conclusions It could be demonstrated that EPA method 1699 for measurement and determination of selected organochlorine, organo-phosphorus, triazine and pyrethroid pesticides in environmental matrices is also suitable for highly sensitive analysis of food samples using the QuEChERS sample preparation approach. References 1. EPA Method 1699: Pesticides in Water, Soil, Sediment, Biosolids and Tissue by HRGC/HRMS, December 2007 FIGURE 4. Figure 2: Example of setting up the SIM Method for Heptachlor and 13 C 10 Heptachlor FIGURE 1. Experimental Setup Thermo Scientific DFS with two TRACE GC Ultra and TriPlus Autosampler Introduction Among recent official methods introduced by the United States Environmental Protection Agency (U.S. EPA) EPA Method 1699 can be found [1]. This method is used for the determination of organochlorine, organo-phosphorus, triazine and pyrethroid pesticides in environmental samples by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using isotope dilution and internal standard quantitation techniques. This EPA method is generally applied to aqueous, solid, tissue and biosolids matrices. GC parameters Carrier Gas Flow Rate 1.2 ml/min Oven Temp. Program 100°C (2min) 9.0°C/min – 180°C 1.5°C/min – 200°C (3min) 6.0°C/min – 290°C (3min) Transfer Line Temp. 250°C SSL or PTV Injector 250 C or Temp. Program MS Parameter Ionization Mode EI positive Ion Electron Energy 45eV Ion Source Temperature 250 °C Resolution (10% valley) 10000 AS Parameter Injection Volume 1 microliter RT: 17.93 - 18.86 18.0 18.2 18.4 18.6 18.8 Time (min) 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 Relative Abundance 20 40 60 80 100 18.45 18.45 18.41 18.43 NL: 1.18E4 m/z= 271.797- 271.824 MS FT_pest _1004 22_034b NL: 9.63E3 m/z= 273.794- 273.821 MS FT_pest _1004 22_034b NL: 1.35E5 m/z= 276.813- 276.841 MS FT_pest _1004 22_034b NL: 1.05E5 m/z= 278.810- 278.838 MS FT_pest _1004 22_034b Experimental Conditions Standard and sample preparation: According to the EPA method 1699 standard mixtures were prepared either from neat material or commercially available solutions. 13 C-labeled standards were obtained from CIL (Cambridge Isotope Laboratories), native pesticides and deuterium-labeled standards from Dr. Ehrenstorfer GmbH Analytical Standards. Tea and rucola salad samples were prepared via the QuEChERS method. GC and MS Conditions: Extracts and standards were analyzed on a Thermo Scientific DFS high resolution sector field mass spectrometer coupled to two Thermo Scientific TRACE GC Ultra gas chromatographs supported by an extra-wide Thermo Scientific TriPlus XT autosampler. The selected ionization mode was EI positive with an electron energy of 45eV. The instrument sensitivity using this EPA method was proven with standard measurements and resulted for most of the measured compounds in the fg/μl (ppt) range. Even for pesticides with strong tendency to fragment like Aldrin, Dieldrin, Endrin, Nonachlor and Endosulfan a sub ppb sensitivity could be achieved. The instrument detection limit for Endosulfan-sulfate is about 1pg/μl (Endosulfan-sulfate in Matrix, Figure 6). No significant difference between PTV and SSL injections have been found. It should be noted that in general detection and quantitation levels are limited by matrix interferences and noise rather than by the instrument performance. Exceptions are a few OP pesticides and captan, where the intense formation of small fragments limits the achieved sensitivity. Detection limits of some of the OP pesticides strongly depend on the activity of the injection port liner. FT_pestscan_100219_09 # 1698-1706 RT: 18.44-18.53 AV: 9 SB: 21 17.85-18.06 NL: 2.32E6 T: + c EI Full ms [ 49.50-500.50] 100 150 200 250 300 350 400 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 271.9 100.0 273.9 269.9 236.9 266.0 230.0 65.0 264.0 194.0 275.9 102.0 196.0 336.9 160.0 338.9 300.9 135.0 302.9 229.0 99.1 340.9 162.1 219.0 373.9 303.9 73.0 377.9 RT: 11.93 - 44.65 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 Time (min) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Relative Abundance 39.78 14.01 38.51 30.39 28.26 16.82 35.06 40.77 33.35 38.60 32.37 31.88 16.39 18.19 20.51 20.05 41.04 23.54 21.86 42.78 14.78 14.99 21.69 41.43 16.98 16.07 36.08 23.86 12.52 22.61 18.46 33.93 31.12 26.82 24.91 26.66 17.10 A high resolution MS multi-window selected ion monitoring (SIM, MID) method was set up including the usage of suitable reference masses (FC43). A mass resolution of 10,000 (10 % valley) was employed for ultimate selectivity. Extracts and standards were injected in splitless mode either via a temperature programmable PTV injector or split/splitless injector on a 30 m DB17ms column (0.25mm ID, 0.25 um film thickness). The measurements of QuEChERS extracts from different food samples showed very good selectivity for most of the targeted pesticides with detection limits well below the range requested by food regulations. Figure 6 show 4 different pesticides in salad and tea matrix. Calibration of the system by isotope dilution technique was carried out by injection of 6 calibration solutions and calculation of the relative response factor for each pesticide. Figure 4 shows typical calibration curves for 4 selected pesticides. Figure: 4 Calibrations curves for Aldrin ( 13 C-labeled Isotope Dilution), Endosulfansulfate (Internal Std.), Diazinon (D-labeled Isotope Dilution) and Pirimiphos-methyl (Internal Std.) Diazinon+D10-Diazinon (16pg/80pg) RT: 15.51 - 16.36 15.6 15.8 16.0 16.2 Time (min) 50 100 50 100 50 100 Relative Abundance 50 100 16.00 16.00 15.78 15.78 NL: 9.59E3 m/z= 276.0560- 276.0836 MS FT_pest_100422_0 42a2 NL: 8.04E3 m/z= 304.0859-304.1163 MS FT_pest_100422_0 42a2 NL: 4.60E4 m/z= 314.1481-314.1795 MS FT_pest_100422_0 42a2 NL: 2.96E4 m/z= 282.0933-282.1215 MS FT_pest_100422_0 42a2 Aldrin + 13C12-Aldrin (12pg/80pg) RT: 19.84 - 20.67 SM: 5G 20.0 20.2 20.4 20.6 Time (min) 0 50 100 0 50 100 0 50 100 Relative Abundance 0 50 100 20.31 20.31 20.29 20.27 NL: 1 .97E4 m/z= 262.8438- 262.8700 MS FT_pest_100422_0 42a2 NL: 1 .24E4 m/z= 264.8408- 264.8672 MS FT_pest_100422_0 42a2 NL: 1 .15E5 m/z= 269.8669- 269.8939 MS FT_pest_100422_0 42a2 NL: 6.97E4 m/z= 271 .8639-271 .8911 MS FT_pest_100422_0 42a2 RT: 21.23 - 22.22 21.5 22.0 Time (min) 0 20 40 60 80 100 0 20 40 60 80 100 Relative Abundance 21.73 21.73 NL: 2.84E4 m/z= 290.0583- 290.0873 MS FT_pest_10 0422_042a 2 NL: 2.52E4 m/z= 276.0434- 276.0710 MS FT_pest_10 0422_042a 2 Pirimiphos-methyl (16 pg) RT: 35.72 - 36.38 35.8 36.0 36.2 Time (min) 20 40 60 80 100 20 40 60 80 100 Relative Abundance 36.06 35.87 36.34 36.25 36.06 35.90 36.11 36.29 35.82 NL: 3.31E3 m/z= 271.8- 271.8 MS FT_pest_10 0422_042a 2 NL: 2.23E3 m/z= 273.8- 273.8 MS FT_pest_10 0422_042a 2 Endosulfan-sulfate (6pg) Diazinon+D10-Diazinon (16pg/80pg) RT: 15.51 - 16.36 15.6 15.8 16.0 16.2 Time (min) 50 100 50 100 50 100 Relative Abundance 50 100 16.02 16.00 15.79 15.80 NL: 1 .07E4 m/z= 276.0560- 276.0836 MS FT_pest_100422_ 042a NL: 8.96E3 m/z= 304.0859-304.1163 MS FT_pest_100422_ 042a NL: 4.52E4 m/z= 314.1481-314.1795 MS FT_pest_100422_ 042a NL: 3.26E4 m/z= 282.0933-282.1215 MS FT_pest_100422_ 042a Aldrin + 13C12-Aldrin (12pg/80pg) RT: 19.84 - 20.67 SM: 5G 20.0 20.2 20.4 20.6 Time (min) 0 50 100 0 50 100 0 50 100 Relative Abundance 0 50 100 20.32 20.32 20.29 20.28 NL: 1.95E4 m/z= 262.8438- 262.8700 MS FT_pest_100422_ 042a NL: 1.30E4 m/z= 264.8408- 264.8672 MS FT_pest_100422_ 042a NL: 1.15E5 m/z= 269.8669- 269.8939 MS FT_pest_100422_ 042a NL: 7.03E4 m/z= 271 .8639-271.8911 MS FT_pest_100422_ 042a RT: 21.23 - 22.22 21.5 22.0 Time (min) 0 20 40 60 80 100 0 20 40 60 80 100 Relative Abundance 21.72 21.72 NL: 2.89E4 m/z= 290.0583- 290.0873 MS FT_pest_10 0422_042a NL: 2.68E4 m/z= 276.0434- 276.0710 MS FT_pest_10 0422_042a Pirimiphos-methyl (16 pg) RT: 35.72 - 36.38 35.8 36.0 36.2 Time (min) 20 40 60 80 100 20 40 60 80 100 Relative Abundance 36.08 36.25 35.76 35.98 36.08 36.29 35.98 35.81 NL: 2.74E3 m/z= 271.8- 271.8 MS FT_pest_10 0422_042a NL: 2.13E3 m/z= 273.8- 273.8 MS FT_pest_10 0422_042a Endosulfan-sulfate (6pg) FT_pestscan_100219_05 1682-1691 RT: 18.27-18.37 AV: 10 SB: 37 12.69-13.08 NL: 2.51E6 T: + c EI Full ms [ 49.50-500.50] 100 150 200 250 300 350 400 m/z 0 10 20 30 40 50 60 70 80 90 100 Relative Abundance 276.9 105.1 242.0 278.9 240.0 274.9 244.0 204.1 70.1 280.9 107.1 206.0 170.1 346.9 311.0 239.0 140.0 246.0 344.9 104.1 309.0 119.8 172.1 142.0 350.9 226.0 102.1 383.9 273.0 314.0 308.0 Heptachlor Heptachlor + 13 C Heptachlor (6pg / 80pg) FIGURE 3: TIC chromatogram of 61 native pesticides and 32 13 C- and D-labeled standards and the 13 according SIM Sections SIM Sections Figure 5: Native and internal standards of EPA Method 1699 with instrumental LODs # RT MID sec. name QM RM LOD [pg/μl] # RT MID sec. name QM RM LOD [pg/μl] [min] [m/z] [m/z] [min] [m/z] [m/z] 1 8.01 1 Methamidophos 94.0058 95.0136 8.000 49 26.29 8 13C10-t-Chlordane 269.8804 271.8775 0.091 2 12.07 2 Tecnazene 260.8732 258.8761 0.008 50 26.3 8 t-Chlordane 262.8569 264.854 0.227 3 13.85 2 13C6-HCB 289.8303 291.8273 0.003 51 26.45 8 13C10-t-Nonachlor 269.8804 271.8775 0.084 4 13.86 2 HCB 283.8102 285.8072 0.003 52 26.51 8 t-Nonachlor 262.8569 264.854 0.220 5 14.1 2 Phorate 260.0128 262.0086 0.092 53 27.59 8 c-Chlordane 262.8569 264.854 0.224 6 14.6 3 13C6-alpha-BHC 224.9317 222.9346 0.019 54 27.75 8 13C9-alpha-Endosulfan 269.8804 271.8775 0.161 7 14.61 3 Alpha-BCH 218.9116 220.9086 0.031 55 27.8 8 alpha-Endosulfan 262.8569 264.854 0.349 8 14.83 3 Desethylatrazine 172.039 174.036 0.047 56 27.66 8 D5-Cyanazine 245.1204 247.1175 0.004 9 15.65 4 Diazinon-d10 314.1638 282.1074 0.290 57 27.89 8 Cyanazine 240.089 242.0861 0.353 10 15.86 4 Diazinon 276.0698 304.1011 0.070 58 27.96 8 o,p-DDE 246.0003 247.9974 0.029 11 15.89 4 Quintozene 236.8413 238.8384 0.047 59 27.98 8 13C12-PCB-79 301.9626 303.9597 0.010 12 16.01 4 Diazinon-oxon 273.1004 288.1239 0.063 60 30.12 8 13C12-p,p-DDE 258.0406 260.0376 0.014 13 16.2 4 13C3-Atrazine 218.1038 220.1009 0.103 61 30.15 8 p,p-DDE 246.0003 247.9974 0.037 14 16.21 4 Atrazine 215.0938 217.0908 0.048 62 30.16 8 13C12-Dieldrin 269.8804 271.8775 0.043 15 16.62 4 Simazine 201.0781 203.0752 0.046 63 30.19 8 Dieldrin 262.8569 264.854 0.124 16 16.61 4 13C6-gamma-BHC 224.9317 222.9346 0.015 64 30.89 9 Captan 263.9653 265.9623 1.048 17 16.63 4 gamma-BCH 218.9116 220.9086 0.024 65 31.67 10 o,p-DDD 235.0081 237.0052 0.012 18 16.78 4 13C6-Fonofos 252.0503 253.0537 0.030 66 32.01 10 Disulfoton-Sulfone. 213.0173 214.0251 0.073 19 16.79 4 Fonofos 246.0302 247.0336 0.256 67 32.17 10 Perthane 224.152 223.1487 0.087 20 16.9 4 Disulfoton 274.0285 275.0318 0.434 68 32.25 10 13C12-Endrin 269.8804 271.8775 0.112 21 17.97 5 13C6-beta-BHC 224.9317 222.9346 0.015 69 32.28 10 Endrin 262.8569 264.854 0.226 22 17.99 5 Beta-BHC 218.9116 220.9086 0.024 70 32.56 10 13C10-c-Nonachlor 269.8804 271.8775 0.068 23 18.23 5 13C4-Heptachlor 276.8269 278.824 0.059 71 32.57 10 c-Nonachlor 262.8569 264.854 0.173 24 18.25 5 Heptachlor 271.8102 273.8072 0.036 72 33.14 11 13C12-o,p-DDT 247.0484 249.0454 0.013 25 19.8 5 13C6-delta-BHC 224.9317 222.9346 0.014 73 33.16 11 o,p-DDT 235.0081 237.0052 0.017 26 19.82 5 delta-BHC 218.9116 220.9086 0.024 74 33.62 11 p,p-DDD 235.0081 237.0052 0.010 27 19.95 5 Chlorothalonil. 265.8786 263.8816 0.019 75 33.72 11 13C9-beta-Endosulfan 269.8804 271.8775 0.185 28 20.15 5 13C12-Aldrin 269.8804 271.8775 0.026 76 33.74 11 beta-Endosulfan 262.8569 264.854 0.345 29 20.19 5 Aldrin 262.8569 264.854 0.067 77 34.88 11 13C12-p,p-DDT 247.0484 249.0454 0.012 30 20.27 5 Chlorpyriphos-methyl 285.9261 287.9232 0.009 78 34.89 11 p,p-DDT 235.0081 237.0052 0.013 31 20.76 5 13C12-PCB-52 301.9626 303.9597 0.014 79 35.18 11 Endrin-aldehyd 249.8491 251.8456 0.062 32 21.42 6 Parathion-methyl 263.0017 264.0051 0.168 80 35.9 11 Endosulfan-sulfate 262.8569 264.854 1.066 33 21.59 6 Ametryn 227.1205 228.1238 0.047 81 38.35 12 Hexazinone 171.0882 172.0916 0.104 34 21.63 6 Pirimiphos-methyl 290.0728 276.0572 0.050 82 38.42 12 13C8-Mirex 241.8581 243.8551 0.017 35 22.1 6 Metribuzin 198.0701 199.0735 0.060 83 38.44 12 Mirex 236.8413 238.8384 0.023 36 22.13 6 Dacthal 300.8807 298.8836 0.044 84 38.44 12 13C12-Methoxychlor 239.1475 240.1508 0.012 37 22.2 6 Octachlorostyrene 272.8413 270.8443 0.055 85 38.45 12 Methoxychlor 227.1072 228.1106 0.022 38 22.25 6 D10-Chlorpyriphos 324.0202 326.0172 0.036 86 38.64 12 Endrin-ketone 249.8491 247.8521 0.248 39 22.62 6 Chlorpyriphos 313.9574 315.9545 0.226 87 39.64 13 Phosmet 160.0399 161.0432 0.019 40 23.25 7 Fenitrothion 277.0174 260.0146 0.045 88 40.62 13 13C6-Permethrins-Pk1 189.1011 190.1045 0.020 41 23.28 7 Malathion 283.9942 285.002 0.575 89 40.63 13 Permethrins-Peak_1 183.081 184.0843 0.040 42 23.4 7 13C10-Oxychlordane 269.8804 271.8775 0.073 90 40.89 13 13C6-Permethrins-Pk2 189.1011 190.1045 0.029 43 23.45 7 Oxychlordane 262.8569 264.854 0.189 91 40.9 13 Permethrins-Peak_2 183.081 184.0843 0.091 44 23.21 7 Parathio-ethyl-D10 301.0958 302.0992 0.000 92 39.63 13 Azinphos-methyl-d6 160.0511 161.0544 0.154 45 23.59 7 Parathion-ethyl 291.033 292.0364 0.167 93 39.63 13 Azinphos-methyl 160.0511 161.0544 0.125 46 23.6 7 Chlorpyriphos-oxon 269.949 271.9462 0.115 94 42.33 13 Cypermethrins-Peak_1 163.0081 165.0052 0.485 47 24.58 8 13C12-Heptachlor-epox. 269.8804 271.8775 0.081 95 42.51 13 Cypermethrins-Peak_2 163.0081 165.0052 0.515 48 24.63 8 Heptachlor-epoxide 262.8569 264.854 0.208 96 42.64 13 Cypermethrins-Peak_3 163.0081 165.0052 0.354 Figure 6: SIM Chromatogramm of four pesticides spiked at CS2 level into a salad matrix Figure 6: SIM Chromatogramm of four pesticides spiked at CS2 level into a tea matrix full scan according SIM section SIM chromatogram

Upload: others

Post on 19-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EPA Method 1699: High Selective Multi-residue HRGC/HRMS …€¦ · an extra-wide Thermo Scientific TriPlus XT autosampler. The selected ionization mode was EI positive with an electron

EPA Method 1699: High Selective Multi-residue HRGC/HRMS Pesticide Analysis Applied to Food SamplesKrumwiede D1, Mehlmann H1, Muenster H1, Theobald F2

1 Thermo Fisher Scientific, Hanna-Kunath-Str. 11, 28199 Bremen, Germany2 Environmental Consulting Cologne, Cologne, Germany

Purpose:

The aim of this study was to extend the scope of applicable matrices for this method to include food samples. Furthermore the compatibility of this method with QuEChERS extracts has been investigated.

Results and DiscussionWith the above described experimental conditions the combined selectivity of the GC column and high resolution of the DFS mass spectrometer ensured an unambiguous identification of all measured pesticides. Figure 3 shows the TIC chromatogram of 61 native pesticides and 32 13C- or D- labeled standards.

Conclusions It could be demonstrated that EPA method 1699 for measurement and determination of selected organochlorine, organo-phosphorus, triazine and pyrethroid pesticides in environmental matrices is also suitable for highly sensitive analysis of food samples using the QuEChERS sample preparation approach.

References1. EPA Method 1699: Pesticides in Water, Soil, Sediment, Biosolids and Tissue by HRGC/HRMS, December 2007

FIGURE 4.

Figure 2: Example of setting up the SIM Method for Heptachlor and 13C10 Heptachlor

FIGURE 1. Experimental SetupThermo Scientific DFS with two TRACE GC Ultra and TriPlus Autosampler

Introduction

Among recent official methods introduced by the United States Environmental Protection Agency (U.S. EPA) EPA Method 1699 can be found [1]. This method is used for the determination of organochlorine, organo-phosphorus, triazine and pyrethroid pesticides in environmental samples by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using isotope dilution and internal standard quantitation techniques. This EPA method is generally applied to aqueous, solid, tissue and biosolids matrices.

GC parametersCarrier Gas Flow Rate 1.2 ml/minOven Temp. Program 100°C (2min)

9.0°C/min – 180°C1.5°C/min – 200°C (3min)6.0°C/min – 290°C (3min)

Transfer Line Temp. 250°CSSL or PTV Injector 250 C or Temp. Program

MS ParameterIonization Mode EI positive IonElectron Energy 45eVIon Source Temperature 250 °CResolution (10% valley) 10000

AS ParameterInjection Volume 1 microliter

RT: 17.93 - 18.86

18.0 18.2 18.4 18.6 18.8Time (min)

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

Rel

ativ

e Ab

unda

nce

20

40

60

80

10018.45

18.45

18.41

18.43

NL:1.18E4m/ z= 271.797-271.824 MS FT_pest_100422_034b

NL:9.63E3m/ z= 273.794-273.821 MS FT_pest_100422_034b

NL:1.35E5m/ z= 276.813-276.841 MS FT_pest_100422_034b

NL:1.05E5m/ z= 278.810-278.838 MS FT_pest_100422_034b

Experimental Conditions

Standard and sample preparation:According to the EPA method 1699 standard mixtures were prepared either from neat material or commercially available solutions. 13C-labeled standards were obtained from CIL (Cambridge Isotope Laboratories), native pesticides and deuterium-labeled standards from Dr. Ehrenstorfer GmbH Analytical Standards. Tea and rucola salad samples were prepared via the QuEChERS method.

GC and MS Conditions:Extracts and standards were analyzed on a Thermo Scientific DFS high resolution sector field mass spectrometer coupled to two Thermo Scientific TRACE GC Ultra gas chromatographs supported by an extra-wide Thermo Scientific TriPlus XT autosampler. The selected ionization mode was EI positive with an electron energy of 45eV.

The instrument sensitivity using this EPA method was proven with standard measurements and resulted for most of the measured compounds in the fg/µl (ppt) range. Even for pesticides with strong tendency to fragment like Aldrin, Dieldrin, Endrin, Nonachlor and Endosulfan a sub ppb sensitivity could be achieved. The instrument detection limit for Endosulfan-sulfate is about 1pg/µl (Endosulfan-sulfate in Matrix, Figure 6). No significant difference between PTV and SSL injections have been found. It should be noted that in general detection and quantitation levels are limited by matrix interferences and noise rather than by the instrument performance. Exceptions are a few OP pesticides and captan, where the intense formation of small fragments limits the achieved sensitivity. Detection limits of some of the OP pesticides strongly depend on the activity of the injection port liner.

FT_pestscan_100219_09 #1698-1706 RT: 18.44-18.53 AV: 9 SB: 21 17.85-18.06 NL: 2.32E6T: + c EI Full ms [ 49.50-500.50]

50 100 150 200 250 300 350 400m/z

0

10

20

30

40

50

60

70

80

90

100

Relative Abu

ndan

ce

271.9100.0

273.9

269.9236.9

266.0

230.065.0 264.0194.0 275.9102.0

196.0 336.9160.0338.9300.9

135.0 302.9229.099.1 340.9162.1 219.0 373.9303.973.0 377.9

RT: 11.93 - 44.65

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e A

bund

ance

39.78

14.01

38.5130.39

28.2616.8235.06 40.7733.35 38.60

32.3731.8816.39 18.19 20.5120.05 41.0423.5421.8642.7814.78 14.99 21.69 41.4316.9816.07 36.0823.8612.52

22.6118.46 33.9331.1226.8224.91 26.6617.10

A high resolution MS multi-window selected ion monitoring (SIM, MID) method was set up including the usage of suitable reference masses (FC43). A mass resolution of 10,000 (10 % valley) was employed for ultimate selectivity. Extracts and standards were injected in splitless mode either via a temperature programmable PTV injector or split/splitless injector on a 30 m DB17ms column (0.25mm ID, 0.25 um film thickness).

The measurements of QuEChERS extracts from different food samples showed very good selectivity for most of the targeted pesticides with detection limits well below the range requested by food regulations. Figure 6 show 4 different pesticides in salad and tea matrix.

Calibration of the system by isotope dilution technique was carried out by injection of 6 calibration solutions and calculation of the relative response factor for each pesticide. Figure 4 shows typical calibration curves for 4 selected pesticides.

Figure: 4 Calibrations curves for Aldrin (13C-labeled Isotope Dilution), Endosulfansulfate(Internal Std.), Diazinon (D-labeled Isotope Dilution) and Pirimiphos-methyl (Internal Std.)

Diazinon+D10-Diazinon (16pg/80pg)

RT: 15.51 - 16.36

15.6 15.8 16.0 16.2Time (min)

50

100

50

100

50

100

Rel

ativ

e A

bund

ance

50

10016.00

16.00

15.78

15.78

NL:9.59E3m/z= 276.0560-276.0836 MS FT_pest_100422_042a2

NL:8.04E3m/z= 304.0859-304.1163 MS FT_pest_100422_042a2

NL:4.60E4m/z= 314.1481-314.1795 MS FT_pest_100422_042a2

NL:2.96E4m/z= 282.0933-282.1215 MS FT_pest_100422_042a2

Aldrin + 13C12-Aldrin (12pg/80pg)

RT: 19.84 - 20.67 SM: 5G

20.0 20.2 20.4 20.6Time (min)

0

50

1000

50

1000

50

100

Rel

ativ

e A

bund

ance

0

50

10020.31

20.31

20.29

20.27

NL:1.97E4m/z= 262.8438-262.8700 MS FT_pest_100422_042a2

NL:1.24E4m/z= 264.8408-264.8672 MS FT_pest_100422_042a2

NL:1.15E5m/z= 269.8669-269.8939 MS FT_pest_100422_042a2

NL:6.97E4m/z= 271.8639-271.8911 MS FT_pest_100422_042a2

RT: 21.23 - 22.22

21.5 22.0Time (min)

0

20

40

60

80

1000

20

40

60

80

100

Rel

ativ

e A

bund

ance

21.73

21.73

NL:2.84E4m/z= 290.0583-290.0873 MS FT_pest_100422_042a2

NL:2.52E4m/z= 276.0434-276.0710 MS FT_pest_100422_042a2

Pirimiphos-methyl (16 pg)

RT: 35.72 - 36.38

35.8 36.0 36.2Time (min)

20

40

60

80

100

20

40

60

80

100

Rel

ativ

e A

bund

ance

36.06

35.87 36.3436.25

36.06

35.90 36.11 36.2935.82

NL:3.31E3m/z= 271.8-271.8 MS FT_pest_100422_042a2

NL:2.23E3m/z= 273.8-273.8 MS FT_pest_100422_042a2

Endosulfan-sulfate (6pg)

Diazinon+D10-Diazinon (16pg/80pg)

RT: 15.51 - 16.36

15.6 15.8 16.0 16.2Time (min)

50

100

50

100

50

100

Rel

ativ

e A

bund

ance

50

10016.02

16.00

15.79

15.80

NL:1.07E4m/z= 276.0560-276.0836 MS FT_pest_100422_042a

NL:8.96E3m/z= 304.0859-304.1163 MS FT_pest_100422_042a

NL:4.52E4m/z= 314.1481-314.1795 MS FT_pest_100422_042a

NL:3.26E4m/z= 282.0933-282.1215 MS FT_pest_100422_042a

Aldrin + 13C12-Aldrin (12pg/80pg)

RT: 19.84 - 20.67 SM: 5G

20.0 20.2 20.4 20.6Time (min)

0

50

1000

50

1000

50

100

Rel

ativ

e A

bund

ance

0

50

10020.32

20.32

20.29

20.28

NL:1.95E4m/z= 262.8438-262.8700 MS FT_pest_100422_042a

NL:1.30E4m/z= 264.8408-264.8672 MS FT_pest_100422_042a

NL:1.15E5m/z= 269.8669-269.8939 MS FT_pest_100422_042a

NL:7.03E4m/z= 271.8639-271.8911 MS FT_pest_100422_042a

RT: 21.23 - 22.22

21.5 22.0Time (min)

0

20

40

60

80

1000

20

40

60

80

100

Rel

ativ

e A

bund

ance

21.72

21.72

NL:2.89E4m/z= 290.0583-290.0873 MS FT_pest_100422_042a

NL:2.68E4m/z= 276.0434-276.0710 MS FT_pest_100422_042a

Pirimiphos-methyl (16 pg)

RT: 35.72 - 36.38

35.8 36.0 36.2Time (min)

20

40

60

80

100

20

40

60

80

100

Rel

ativ

e A

bund

ance

36.08

36.2535.76 35.98

36.08

36.2935.9835.81

NL:2.74E3m/z= 271.8-271.8 MS FT_pest_100422_042a

NL:2.13E3m/z= 273.8-273.8 MS FT_pest_100422_042a

Endosulfan-sulfate (6pg)

FT_pestscan_100219_05 #1682-1691 RT: 18.27-18.37 AV: 10 SB: 37 12.69-13.08 NL: 2.51E6T: + c EI Full ms [ 49.50-500.50]

50 100 150 200 250 300 350 400m/z

0

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e Abu

ndan

ce

276.9

105.1242.0 278.9

240.0274.9

244.0204.1

70.1280.9107.1 206.0170.1 346.9

311.0239.0140.0 246.0 344.9104.1 309.0119.8 172.1142.0 350.9226.0102.1 383.9273.0 314.0308.0

HeptachlorHeptachlor + 13C Heptachlor (6pg / 80pg)

FIGURE 3: TIC chromatogram of 61 native pesticides and 32 13C- and D-labeled standardsand the 13 according SIM Sections

SIM Sections

Figure 5: Native and internal standards of EPA Method 1699 with instrumental LODs

#RT

MID sec. nameQM RM LOD

[pg/µl] #RT

MID sec. nameQM RM LOD

[pg/µl][min] [m/z] [m/z] [min] [m/z] [m/z]1 8.01 1 Methamidophos 94.0058 95.0136 8.000 49 26.29 8 13C10-t-Chlordane 269.8804 271.8775 0.0912 12.07 2 Tecnazene 260.8732 258.8761 0.008 50 26.3 8 t-Chlordane 262.8569 264.854 0.2273 13.85 2 13C6-HCB 289.8303 291.8273 0.003 51 26.45 8 13C10-t-Nonachlor 269.8804 271.8775 0.0844 13.86 2 HCB 283.8102 285.8072 0.003 52 26.51 8 t-Nonachlor 262.8569 264.854 0.2205 14.1 2 Phorate 260.0128 262.0086 0.092 53 27.59 8 c-Chlordane 262.8569 264.854 0.2246 14.6 3 13C6-alpha-BHC 224.9317 222.9346 0.019 54 27.75 8 13C9-alpha-Endosulfan 269.8804 271.8775 0.1617 14.61 3 Alpha-BCH 218.9116 220.9086 0.031 55 27.8 8 alpha-Endosulfan 262.8569 264.854 0.3498 14.83 3 Desethylatrazine 172.039 174.036 0.047 56 27.66 8 D5-Cyanazine 245.1204 247.1175 0.0049 15.65 4 Diazinon-d10 314.1638 282.1074 0.290 57 27.89 8 Cyanazine 240.089 242.0861 0.353

10 15.86 4 Diazinon 276.0698 304.1011 0.070 58 27.96 8 o,p-DDE 246.0003 247.9974 0.02911 15.89 4 Quintozene 236.8413 238.8384 0.047 59 27.98 8 13C12-PCB-79 301.9626 303.9597 0.01012 16.01 4 Diazinon-oxon 273.1004 288.1239 0.063 60 30.12 8 13C12-p,p-DDE 258.0406 260.0376 0.01413 16.2 4 13C3-Atrazine 218.1038 220.1009 0.103 61 30.15 8 p,p-DDE 246.0003 247.9974 0.03714 16.21 4 Atrazine 215.0938 217.0908 0.048 62 30.16 8 13C12-Dieldrin 269.8804 271.8775 0.04315 16.62 4 Simazine 201.0781 203.0752 0.046 63 30.19 8 Dieldrin 262.8569 264.854 0.12416 16.61 4 13C6-gamma-BHC 224.9317 222.9346 0.015 64 30.89 9 Captan 263.9653 265.9623 1.04817 16.63 4 gamma-BCH 218.9116 220.9086 0.024 65 31.67 10 o,p-DDD 235.0081 237.0052 0.01218 16.78 4 13C6-Fonofos 252.0503 253.0537 0.030 66 32.01 10 Disulfoton-Sulfone. 213.0173 214.0251 0.07319 16.79 4 Fonofos 246.0302 247.0336 0.256 67 32.17 10 Perthane 224.152 223.1487 0.08720 16.9 4 Disulfoton 274.0285 275.0318 0.434 68 32.25 10 13C12-Endrin 269.8804 271.8775 0.11221 17.97 5 13C6-beta-BHC 224.9317 222.9346 0.015 69 32.28 10 Endrin 262.8569 264.854 0.22622 17.99 5 Beta-BHC 218.9116 220.9086 0.024 70 32.56 10 13C10-c-Nonachlor 269.8804 271.8775 0.06823 18.23 5 13C4-Heptachlor 276.8269 278.824 0.059 71 32.57 10 c-Nonachlor 262.8569 264.854 0.17324 18.25 5 Heptachlor 271.8102 273.8072 0.036 72 33.14 11 13C12-o,p-DDT 247.0484 249.0454 0.01325 19.8 5 13C6-delta-BHC 224.9317 222.9346 0.014 73 33.16 11 o,p-DDT 235.0081 237.0052 0.01726 19.82 5 delta-BHC 218.9116 220.9086 0.024 74 33.62 11 p,p-DDD 235.0081 237.0052 0.01027 19.95 5 Chlorothalonil. 265.8786 263.8816 0.019 75 33.72 11 13C9-beta-Endosulfan 269.8804 271.8775 0.18528 20.15 5 13C12-Aldrin 269.8804 271.8775 0.026 76 33.74 11 beta-Endosulfan 262.8569 264.854 0.34529 20.19 5 Aldrin 262.8569 264.854 0.067 77 34.88 11 13C12-p,p-DDT 247.0484 249.0454 0.01230 20.27 5 Chlorpyriphos-methyl 285.9261 287.9232 0.009 78 34.89 11 p,p-DDT 235.0081 237.0052 0.01331 20.76 5 13C12-PCB-52 301.9626 303.9597 0.014 79 35.18 11 Endrin-aldehyd 249.8491 251.8456 0.06232 21.42 6 Parathion-methyl 263.0017 264.0051 0.168 80 35.9 11 Endosulfan-sulfate 262.8569 264.854 1.06633 21.59 6 Ametryn 227.1205 228.1238 0.047 81 38.35 12 Hexazinone 171.0882 172.0916 0.10434 21.63 6 Pirimiphos-methyl 290.0728 276.0572 0.050 82 38.42 12 13C8-Mirex 241.8581 243.8551 0.01735 22.1 6 Metribuzin 198.0701 199.0735 0.060 83 38.44 12 Mirex 236.8413 238.8384 0.02336 22.13 6 Dacthal 300.8807 298.8836 0.044 84 38.44 12 13C12-Methoxychlor 239.1475 240.1508 0.01237 22.2 6 Octachlorostyrene 272.8413 270.8443 0.055 85 38.45 12 Methoxychlor 227.1072 228.1106 0.02238 22.25 6 D10-Chlorpyriphos 324.0202 326.0172 0.036 86 38.64 12 Endrin-ketone 249.8491 247.8521 0.24839 22.62 6 Chlorpyriphos 313.9574 315.9545 0.226 87 39.64 13 Phosmet 160.0399 161.0432 0.01940 23.25 7 Fenitrothion 277.0174 260.0146 0.045 88 40.62 13 13C6-Permethrins-Pk1 189.1011 190.1045 0.02041 23.28 7 Malathion 283.9942 285.002 0.575 89 40.63 13 Permethrins-Peak_1 183.081 184.0843 0.04042 23.4 7 13C10-Oxychlordane 269.8804 271.8775 0.073 90 40.89 13 13C6-Permethrins-Pk2 189.1011 190.1045 0.02943 23.45 7 Oxychlordane 262.8569 264.854 0.189 91 40.9 13 Permethrins-Peak_2 183.081 184.0843 0.09144 23.21 7 Parathio-ethyl-D10 301.0958 302.0992 0.000 92 39.63 13 Azinphos-methyl-d6 160.0511 161.0544 0.15445 23.59 7 Parathion-ethyl 291.033 292.0364 0.167 93 39.63 13 Azinphos-methyl 160.0511 161.0544 0.12546 23.6 7 Chlorpyriphos-oxon 269.949 271.9462 0.115 94 42.33 13 Cypermethrins-Peak_1 163.0081 165.0052 0.48547 24.58 8 13C12-Heptachlor-epox. 269.8804 271.8775 0.081 95 42.51 13 Cypermethrins-Peak_2 163.0081 165.0052 0.51548 24.63 8 Heptachlor-epoxide 262.8569 264.854 0.208 96 42.64 13 Cypermethrins-Peak_3 163.0081 165.0052 0.354

Figure 6: SIM Chromatogramm of fourpesticides spiked at CS2 level into a saladmatrix

Figure 6: SIM Chromatogramm of fourpesticides spiked at CS2 level into a tea matrix

full scan according SIM section SIM chromatogram