environmental sustainability: the five forces...

49
Environmental Sustainability: The Five Forces Analysis Lewis University Green and Renewable Energy Workshop, by Dejan Ristic, FMS June 20, 2013

Upload: lamdieu

Post on 13-May-2018

220 views

Category:

Documents


1 download

TRANSCRIPT

Environmental Sustainability: The Five Forces Analysis

Lewis University Green and Renewable Energy Workshop, by Dejan Ristic, FMSJune 20, 2013

About Argonne

Located 25 miles southwest of Chicago, Illinois

~ 4,500 people work on the site

200+ ongoing research projects in three principal areas: 

• Energy (energy storage, alternative energy, nuclear energy)

• Biological and Environmental Systems, and  

• National Security 

Definitions

“Energy” word origin ~1590’s ‐ from late Latin energia.

Energy is the ability to perform the work

“Mrs. Cent“ – 7 forms of energy [Mechanical (kinetic + potential); Radiant (light); Sound; Chemical; Electrical; Nuclear; Thermal]

Development: Water power  Steam  Electrical  Nuclear

Some 14 Billions Years Ago…

Big Bang temperature: 10E+32 K

• Cosmic background radiation cooled to 2.7 K 

At Sun, 600,000,000 tons of H2 fuses into He every second, at 15E+06 K

• Proton‐proton reactions reduce Sun’s mass; 

• May last for another 5–10 billion Earth years

Due to strong absorption inside the Sun, light and warmth we receive on Earth today was diffused 1‐2 million years ago!

Earth receives many times more than world energy demand

• That energy is EM radiation, transmitted via massless energy packets (photons)

Major Primary Energy Sources

NONRENEWABLE  Coal

Crude oil & derivatives

Natural gas

Nuclear

RENEWABLE  Hydroelectric

Biomass & Biofuels

Wind

Solar

Geothermal

(Source: Association for the Study of the Peak Oil and Gas – USA)

Hydroelectric Power

6% of total U.S. electricity generation, and 63% of generation from renewable (2011)

In a run‐of‐the‐river system, the force of the current applies the needed pressure; 

In a storage system, water is accumulated in reservoirs created by dams, then released as needed. 

Oceans/seas: Tidal power; Wave power; Thermal energy conversion

Source: http://ga.water.usgs.gov/edu/watercycle.html

Wind Power Created by:

• Uneven heating of water and land 

• Irregularities of the Earth's surface

• Rotation of the Earth 

No CO2 emission

Took off in CA in 1980’s

~3% of total U.S. electricity generation 

Limitations

Solar Power

Converted to electricity in two ways:

• Photovoltaic (PV) devices convert sunlight directly into electricity

• Concentrating Solar Power (CSP) plants ‐ heat a fluid which produces steam that powers the generator  

Limitations: 

• Location‐dependent; 

• Intermittent. 

• Requires large areas 

• Solar‐grid parity not reached yet

Sunseeker Duo

PlanetSolar – Around the world in 19 Months

Geothermal Power

Using Earth as a heat sink (summer), or heat source (winter)

High temperatures inside the Earth caused by the slow decay of radioactive particles

Has potential: 99% of the Earth interior is hotter than 1800°F

Limitations:

• Cost of drilling

• Causes earthquakes?

Minor contribution to overall U.S. electricity production (0.4% in 2011)

Source: eia.doe.gov

The Sun ‐ a giant ball of H2 gas undergoing fusion into He gas and giving off vast amounts of energy in the process

Nuclear Power

Significant source of energy

Controlled nuclear energy release:

• Fission & Fusion

Uranium is nonrenewable, relatively rare element 

Zero carbon emissions

Chain Reactionmovie partially filmed at Argonne!

Electricity Generation, Transmission, and Distribution System

Source: http://www.juniorcitizen.org.uk/kids/electricalsafety/electricity.gif

Smart Grid

A hybrid-plug-in draws, stores, and gives energy

Dishwasher doesn't run if solar E is not available Responds to 

price signal

Source: http://online.wsj.com/article/SB123378462447149239.html#articleTabs%3Dinteractive

Sensors send e‐mails to utility/customers

Home computer monitors real‐time electricity usage & sets parameters

Source: Guardian

Renewable Energy Investment and Capacity

50

70

90

110

130

150

170

0 1 2 3 4 5 6 7 8 9 10Investmen

t Growth (%

)

Investment Ranking (2009 $) 

Global Renewable Energy Investment and Capacity, 2004‐2009

China US UK EU‐other SpainBrazil Germany Canada Italy India

The size of a bubble corresponds with capacity  of the country's 2004‐2009 

renewable energy installations (US: 53 GW)

How Green Are Electric Cars?(Hint: It Depends on eGRID Region)

Source: http://www.ucsusa.org/assets/documents/clean_vehicles/electric‐car‐global‐warming‐emissions‐exec‐summary.pdf

Natural Greenhouse Effect

IR‐absorbing gases (mostly water vapor, clouds, CO2 in the upper troposphere) work as a “blanket”

It’s good – keeps the Earth’s mean T=59°F (instead of 0°F)!

However, humans‐made emissions likely affected the balance

Image source: Dr. Roy W. Spencer

Biogenic vs Anthropogenic CO2 Emissions

Biogenic: “non‐fossilized and biodegradable organic material originating from plants … as well as … industrial and municipal waste …” (EPA, 2011) 

• Biogenic emissions have been treated as carbon neutral: Over time, the biomass fuel sources would regrow, and, in doing so, recapture the same amount of carbon previously emitted, eventually coming out as neutral. 

Anthropogenic: Caused by human activities 

Anthropogenic GHG Effect

Human activities increase concentrations of GHG (IR‐active trace gases):

• CO2, CH4, N2O, CFC, O3, H2O, others. 

GWP:

GHG ‐ along with water vapor and clouds ‐ absorb ~87% of IR radiation from the Earth’s surface and radiate almost all back, thus increasing average Earth’s T

Why does a “blanket” radiate most of it back to the Earth? 

GHG 20 yrs 50 yrs 100 yrs 200 yrs 500 yrs

CO2 1 1 1 1 1

CH4 35 20 11 7 4

N2O 260 280 270 240 170

CFC-12 7,100 7,600 7,100 6,200 4,100

Radiation Balance of Earth

Source: Schӧnwiese, C. (2003). Klimatologie, Stuttgart. 

Absorption spectrum

Majority of received solar radiation 0.3‐3 µm

Majority of emittedradiation 7‐13 µm. 

Adding CO2 increases T of water vapor

When T increases, partial pressure of water vapor increases as well

When partial pressure increases, absorption increases

Therefore, more IR is trapped and radiated back

That’s anthropogenic effect of CO2 that causes Earth’s  T to increase

Climate Disruption Contributors:

• GHG (79%); Black carbon (18%), and Heat islands (3%)

IPCC Report: 

• Frequency of heavy precipitation/droughts will increase;

• Heat waves will increase in length, frequency;

• Maximum wind speed of hurricanes will increase;

• Average sea level will rise.Sources: Jacobson, M. & Hoeve, J.E.T. (2011). Effects of urban surfaces and white roofs on global and regional climate. J. of Climate. http://dx.doi.org/10.1175/JCLI‐D‐11‐00032.1 ; The Intergovernmental Panel on Climate Changes Report on Global Warming and Extreme Weather (November 2011); ORNL; Science Magazine. 

Source: U.S. National Snow and Ice Data Center (NSIDC); 2012

When Ice in the Artic Ocean Melts…

…Polar Bears See More TrafficNew LNG corridor cuts travel time by 3 weeks to Japan

Social Cost of Carbon

SCC is an estimate of the monetized damages (negative externality) associated with an incremental increase in carbon emissions.

Complete oxidation of 1 lbm of C results in 3.67 lbm of CO2

Three assessment models: GDP, population, T change, discount rate, probability of catastrophe, equilibrium climate sensitivity, etc.

Outcome: Average SCC across all models is $21/ton; discount rate 3%.

Note: Social cost of carbon is just one major hidden cost.Sources: 1) Technical Support Document: Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866; Interagency Working Group on Social Cost of Carbon, United States Government (Feb 2010).  

GHG Summary

Blanket keeps Earth’s average T conducive to living organisms, but post‐industrial GHG emissions are most likely causing an imbalance.

Imbalance will likely cause non‐linear outcomes in global supply chain.

Current commitments won’t keep an increase of global mean T within 2°C by 2100 ‐ emphasis should be put on adaptation, rather than mitigation

Modeling consequences is tricky: Based on discount rate applied, risks over multi‐year period may appear immaterial.

Communicate and act upon climate disruption risk effectively and timely.

Final goal: Meeting growing energy demand in an economical, environmentally responsible manner. 

The Five Forces Analysis

Water

Energy

EnvironmentPolicy

Economy

Water Resources vs. Environmental Sustainability

“Of all the potential threats posed by climatic variability and change, those associated with water resources are arguably the most consequential for both society and the environment.” 

Competing demands for water supply affect availability of water supply.

Sustainability is “Meeting the needs of the present without compromising the ability of future generations to meet their own needs.”

Forrester, J. (1973): “World Dynamics”, 2e.; US Geological Survey, Circular 1347 (2010); The Intergovernmental Panel on Climate Changes Fact Sheet (2011); The World Commission on Environment and Development (1987); EO 13514.

U.S. Water-related Statistics

Sources of water for population

• 86% from privately‐ and publicly‐owned water systems & 14% from domestic wells

Total use: 410 billion gallons per day (2005). Of that:

• 201 Bgal/d for thermoelectric power & 128 Bgal/d for irrigation

4% of electricity goes toward moving and treating water.

• 80% for moving, and 20% for treating

The Earth’s surface is 70% water

• Saltwater 97.5% & freshwater 2.5%

• Only 1% (of 70%) is accessible freshwater.

Sources: Kenny, J.F. et al. (2009). Estimated Use of Water in the United States. U.S. Geological Survey (Circular 1344); EPA; Safe Drinking Water Act. 

US Freshwater Withdrawal

Source: EPRI, USGS

US Freshwater Withdrawal vs Consumption

Source: EPRI, USGS

Sources: U.S. Geological Survey, EPA, The Business Case for Fuel Cells 2011. 

Ready for Projected Increased Water Consumption?

0.5 gallons to generate 1 kWh from coal; 0.6 gallons from nuclear.

2.5 gallons of water for 1 gallon of gasoline from conventional crude; 3.5 gallons of water to produce 1 gallon of ethanol; 6 gallons of water to produce 1 gallon of gasoline from oil shale. 

“Fracking” can require 4+ million gallons per well!

On the other side, it takes much less water to generate electricity from renewable sources

• 400 kW fuel cell could save around 1.6 Mgal/yr of water, compared to U.S. grid. 

Levelized Cost of Energy

The LCOE is the discounted value of ALL costs incurred over the operating life of the plant (Y), divided by the discounted value (d, y) of all electricity generated: 

Example – LCOE for electricity generated from solar PV should include:

• Panel efficiency, irradiation (kWh/m2), conversion losses, (non)linearity of degradation rate, ITC/rebates, cost of capital, maintenance cost, insurance, extended warranty, decommissioning, etc. 

DOE SunShot Initiative: Solar electricity $0.06/kWh by 2020 – close to Solar Grid Parity.

Y

yy

y

Y

yyy

dyElectricit

dCosts

yElectricitGeneratedofPVCostsALLofPVLCOE

1

0

)1()(

)1()(

______

Source: Sandia National Laboratories

Impact of Regulations on Economic Factors

Theory: Regulation rearranges the distribution of economic output, but volume stays the same.

• Example 1 ‐Mandated environmental spending by 4 heavily polluting industries resulted in higher employment.

• Example 2 ‐ The cost of imposing Clean Air Act caused a loss of: 590,000 jobs, $37B  in capital stock, and $75B of output, in the 1972‐1987 period. 

Being laid off costs a “typical male” worker 11‐19% of his future earning (PV). 

Taking these factors into consideration, cost‐benefit equation may change.

Sources: Resources for the Future Study (2002) for pulp/paper, plastic, petroleum, iron/steel; M. Greenstone (2001): The Impacts of Environmental Regulations on Industrial Activity: Evidence from the 1970 & 1977 Clean Air Act Amendments and the Census of Manufactures; S. Davis & T. von Wachter(2011): Recessions and the Costs of Job Loss;  J.S. Masur & E.A. Posner (2011): Regulation, Unemployment, and Cost‐Benefit Analysis. 

Energy-Water Nexus Path Forward

Water, and water‐related energy consumptions will increase:

• In the U.S.: With population growth. In the world: With population growth AND modernization (supply, sanitary).

Regulate energy‐water relationship (Proposed “Energy and Water Integration Act of 2011” by Sen. Bingaman).

Energy Return Ratio should be at least 3:1

• Ratio of the energy input of any process that is intended to save or generate energy;

Site vs. source water transport/processing – look upstream supply chain. 

Implement a sensible policy that integrates energy‐water nexus, environment, and economic factors.

Sustainability Program at Argonne

Executive Order 13514 Federal Leadership in Environmental, Energy, and Economic Performance

“To establish an integrated strategy towards sustainability in the Federal Government and make reduction of greenhouse gas (GHG) emissions a priority for agencies.”

Renewable Energy

Solar PV time lapse: https://sharepoint.anl.gov/Groups/energy_water/Shared%20Documents/Miscellaneous/VideoSolarPanelElecChargingStationBld212TimeLapse.mov

Renewable Energy Initiatives

.

Advanced Metering & Dashboards

BuildingIQ

The Advanced Photon Source office building’s BuildingIQ system makes use of weather

forecast information and building temperature predictions to optimize, in real-time, the

heating and cooling loads

“Green” Buildings

Currently six building qualified as HPSBs ESB and APCF will qualify upon 

completion Evaluating other buildings as planned 

renovations and energy savings projects are implemented

0

2

4

6

8

10

12

FY10 FY11 FY12 FY13 FY14 FY15

Number of HPSBs at End of FY

Transportation GHG Emissions (Scope 3)

Top 3 Scope 3 emission sources:• Electricity T&D losses• Employee commuting• Business travel

Efforts to reduce transportation GHGs• BikeShare program with 120 bicycles • Sustainable Employee Commute Committee• GreenRide Connect rideshare matching software• Promoting telecommuting• VC hardware and support expansion

Net-zero Energy Buildings

Goal: Beginning in FY 2020, design all new Federal buildings to achieve net‐zero energy by FY 2030

Generate at least as much energy as they use over the course of a year

Technologically achievable - Focus should be on single-story buildings with low energy intensity (warehouses, for example)

Highest potential measures: Thermal insulation, lighting, plug and process loads, HVAC, dynamic windows, and solar

Outreach

Award‐Winning Middle School Teacher Sustainability Workshop

Site Sustainability Plans

COMMENTS? QUESTIONS?

Thank you!

Source: http://visibleearth.nasa.gov/view_rec.php?id=2429