engineering the biosphere espm 2 - rausser … › biometlab › espm2 › engineering...throughout...

79
Throughout the semester we have studied the state of the biosphere, its complexity and connections.  In many instances the evidence is pessimistic.  But is there room for hope and turnaround. In the last lecture you saw some examples of cleaner air and less polluted lakes and rain due to the clean air act.  In this lecture we will discuss options we have for turning knobs on the carbon, water and nitrogen cycles to remedy certain emerging problems 1

Upload: others

Post on 25-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Throughout the semester we have studied the state of the biosphere, its complexity and connections.  In many instances the evidence is pessimistic.  But is there room for hope and turn‐around. In the last lecture you saw some examples of cleaner air and less polluted lakes and rain due to the clean air act.  In this lecture we will discuss options we have for turning knobs on the carbon, water and nitrogen cycles to remedy certain emerging problems

1

2

As a biometeorologist and ecosystem ecology, I love the open space and relative healthy ecosystems we have at our door‐steps, living in Berkeley and northern California.  Some of my favorite places to hike are in the East Bay Regional parks

3

Yet in my work I travel widely and see some of the best and worst of the emerging world.  In a trip to China in 2009 it was nearly impossible to see the Forbidden City and other cultural icons, except up close.  In many of the megacities of the world this is the new normal.  But should it be, can it be reversed.  We see historically that cities like London and Los Angeles suffered from severe air pollution, until actions were taken. So there is open and solutions.

4

The consequence of all this air pollution can be elevated level of cardiovascular mortality and cancer from particulate matter, PM 2.5, and respiratory mortality from ozone.  Hot spots are especially high in India and China.

Lelieveld et al 2012 ACP

5

Assume the ‘horse has left the Barn’.  If global warming and environmental change are inevitable what can we do to adapt and mitigate this new and changing world?  

6

Tweaking the biosphere cannot be done in isolation.  It takes interactions and feedbacks with science and knowledge, modeling and measurements, societal buy in, funding and technology to accomplish goals

7

It is important to discuss engineering options, but I am of the mind of avoidance because we have to worry about unintended consequences and scaling.  Hence these are some of the more critical questions to ask and answer

8

9

10

Our goal is to try and maintain many aspects of the Biosphere within its safe operating space

Rockstrom et al 2009 Nature

11

Here are proposed settings of many of the issues we discussed last lecture on the AnthropoceneRockstrom et al 2009 Nature

12

Issues to consider when engineering the biosphere.  Scale, time, complexity, cost are among the leading factors

The ethical issue is one being debated at the Climate Change Conference in Poland.  Low lying less developed countries, like Bangladesh, are vulnerable to sea level rise. They are lobbying for the developed countries to pay reparations from the fossil fuels they have consumed for their economic development.

http://www.nytimes.com/2013/11/21/world/rich‐and‐poor‐nations‐spar‐over‐climate‐damages.html?_r=0

13

http://gingerbooth.com/flash/daisyball/

Toy models, like Daisyworld, can yield insights that are not obvious with thought experiments or simple feedback diagrams.  In this case the model is a proxy for the impact of life on the climate of Earth, and vice versa.

14

Daisyworld is a toy model developed by Andrew Watson and James Lovelock to examine the homeostasis of Earth and the role of life on regulating a habitable planet through feedbacks with albedo.  As the luminosity of the sun has increased over geological time one would expect the temperature of Earth to go from a very cold to a very hot temperature. Yet, the temperature of Earth has remained stable over 100s of millions of years, in part due to the presence of life.  In this simple model case if the solar luminescence is low, temperature is cold, black daisies can out compete white daisies, lower the albedo and warm the temperature.  As the sun emits more energy, the energy balance starts to favor whiter daisies, as the black ones may get too hot. Together these feedbacks produce a fairly steady temperature of the Earth across a wide range of solar radiation values.   Knowing about the interplay of many connected feedbacks is critical if we are to try and change the temperature of earth.  The lesson I take from this simple model is that it is sometime difficult to move the system.

15

16

In the future there will continue to be interest in astrobiology and travel to other planets.  Based on lessons from this class and experiences in Biosphere 2 is life sustainable on space ships that will travel for years to nearby planets and solar systems?  We did not hear much about this on Star Trek did we?  If you were to work on such a task for NASA what would you advise?

17

To build a sustainable, small scale artificial biosphere, do we have to mimic all the biomes of the globe??? Or just ensure the key processes are contained…This system required external energy to run pumps and circulate air and water…It is truly a self sustaining biosphere?

18

This small version of the Biosphere did not sustain the inhabitants in a sustainable manner due to a combination of engineering and design issues

19

20

Alan Robock is a professor of atmospheric sciences at Rutgers. He is a leading authority on climate issues and a thoughtful critic on the pitfalls of of geoengineering.

21

Here are some of the conclusions from the Robock article.  The remaining question is if we can afford to do nothing. I am certainly learning from my work on the Delta that ‘business as usual’ is not an option.  And while I remain skeptical of many geoengineering proposals, seeing the continued increase of CO2 emissions I am starting to believe that business as usual is not an option here, too.  If we can’t cut back on emissions fast enough, change our energy economy from a carbon consuming economy, we may need to have some geoengineering solutions in our quiver.

22

23

It is important to gain a systems approach or perspective to the biosphere to understand which knobs we can turn and what is the gain associated with turning given knobs

24

25

26

Solutions include preventing sunlight from reaching the earth’s surface or increasing the reflection of that light that does reach us.  Some solutions involve devices in space, others in the sky and clouds or modifying the surface of the sea and land.

27

Cluttering space with reflective surfaces is one idea to reduce the solar load on the planet. Think about the cost and energy of injecting this material in space. Ideally it will need to be at the Lagrange point, where the gravitation pull of the Sun and Earth are equal.

28

29

One idea is to inject aerosols into the atmosphere. Those into the troposphere from the ocean could promote cloud condensation nucleii and for reflective stratus clouds. This would prove effective only in regions without such clouds. It would not be so effective off the coast of California.Stratospheric aerosol injection takes a cue from volcanic eruptions and the effect they have on weather and climate

30

31

Reflective buildings is an old idea, one that is common in hot sunny climes, like Greece

32

“If all eligible urban flat roofs in the tropics and temperate regions were gradually converted to white (and sloped roofs to cool colors), they would offset the heating effect of the emission of roughly 24 Gt of CO2, but one‐time only,” says Rosenfeld, who returned to Berkeley Lab this year. “However, if we assume that roofs have a service life of 20 years, we can think of an equivalent annual rate of 1.2 Gt per year. That offsets the emissions of roughly 300 million cars (about the cars in the world) for 20 years!”

33

Oleson grl 2010

34

35

36

37

What are current carbon emissions?  These are the newest data from the global carbon project, just released this month.  Bottom line is we are releasing nearly 10 Pg‐C or 10 Gt‐C per year.  Remember a petagram is 10^15 grams or a billion (10^9) metric tons (10^6)

38

In recent years there has been a switch in carbon emission leadership between the US and China.  We also see an upsurge in emissions from India.

39

40

41

42

43

The Kaya principle help put our head around what economic and societal knobs we can turn to reduce carbon emissions. In some ways our hands are tied unless we decarbonize our economy. We see population is growing at more than 1% per year.  Per capita gross domestic product of developed countries continue to increase, while less developed countries continue to make a transition towards development.  Energy consumption is highly tied to GDP, so only the fuel mix leads to some reductions. But bottom line, emissions seem to continue to rise.

44

45

Back of the envelope calculations of potential CO2 burden with business as usual

46

What are potential scenarios of carbon emissions, in Pg‐C with most increases and decreases in growth.  A 2% increase from 8 PgC will produce over 20 PgC in 50 years. A 2% decrease will decrease C emissions to about 3 PgC/y in 50 years.

47

Note even reductions in C emissions still add CO2 into the atmosphere. This set of figures is important because it translates the rate of growth of the C burden into mixing ratio.  So even if we decrease C emissions by 2% per year we will still face a world with 500 ppm per year.More daunting is the fact that we continue to emit carbon at a growth rate of over 2% per year. So with business as usual we face a work with nearly 700 ppm in 50 years, when you will be in your late 60s and early 70s.

48

Because CO2 has a long lifetime in the atmosphere, remember life time or turn over time are important concepts stressed in this class, CO2 levels will remain high for several hundred years even if we adopt zero emissions immediately, yielding a 2 C warmer world.

49

So if we are reducing our C emissions fast enough, do we need to rely on C removalmethods?  What is in our tool box.  Ocean fertilization, alkalinity additions, direct carbon capture, biomass energy, afforestation and reforestation

50

51

52

53

Over 10 years of measurements of temperature over a oak woodland and grassland, 2 km apart, show the woodland leads to warmer air temperatures, by 0.5 C.

54

A more global survey using data from open fields in the vicinity of flux towers shows a similar finding; the air is warmer over forests

55

The reality of using plants to offset energy, reduce carbon emissions or sequester C has some limitations. There is no free lunch

56

See Christy, Kueppers and Bonfils

57

Klaus Lackner has developed plastic resin material that takes up carbon dioxide like a sponge.  It will still take a large area of sensors to sequester carbon and then the carbon has to be recovered and disposed.  But they can operate 24/7 unlike real trees. 10 million such artificial “trees” would be required to drop atmospheric concentrations by 0.5 ppm per year. Each machine would require roughly 1.1 megajoule of electricity for pumping and compressing per kilogram of CO2 captured. That's not to mention all the water required to wet the filters (and evaporate) in order to get the CO2 back out again so the resin can be re‐used to capture yet more CO2.

http://news.columbia.edu/carbondioxide

http://www.scientificamerican.com/article.cfm?id=prospects‐for‐direct‐air‐capture‐of‐carbon‐dioxide

58

Socolow and Pacala promoted a widely read essay on a number of approaches to reduce C emissions

59

A number of approaches need to be applied together.

60

Here are some suggestions to meet this wedge

61

Recently Mark Jacobson gave a seminar at ERG on his vision to attain an energy system that is 100% reliant on Renewable energy.  It is possible.

There is ample solar, wind and water power to meet the world’s energy demand.  The trick or challenge is how to harvest this energy and shift the carbon fuel paradigm with its infrastructure and vested interests.

The good news is that the investment lifetime of many power plants is about 30 years, so if one can recover one’s investment, then the next generation power plant can adopt this mix of energy sources

62

Here are the suggested ways to meet this demand via hydro power (dams, geothermal, tidal), wind and solar (photovoltaic and concentrated solar plants)

Jacobson and Delucchi, 2009 Scientific American

63

64

http://www.spur.org/publications/library/report/strategiesformanagingsealevelrise_110109

65

http://www.bcdc.ca.gov/laws_plans/plans/sfbay_plan.shtml

http://www.spur.org/publications/library/report/sealevelrise_110109

66

http://www.spur.org/publications/library/report/strategiesformanagingsealevelrise_110109

67

68

http://globalwarmingisreal.com/2013/07/24/sea‐level‐rise‐adaptation‐strategies‐for‐the‐san‐francisco‐bay‐area/

69

70

71

72

73

74

75

76

77

78

79