energy-efficient circuit technologies for sub...

35
Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors and SoCs: Challenges and Opportunities IEEE Solid-State Circuits Society Webinar July 13 2016 Ram K. Krishnamurthy Senior Principal Engineer IEEE Fellow & SSCS Distinguished Lecturer Circuits Research Lab, Intel Labs Intel Corporation, Hillsboro, OR 97124, USA [email protected] Acknowledgements: Intel Circuits Research Lab, Vivek De, Matt Haycock, Shekhar Borkar, ADR Bangalore Design Lab

Upload: vanhanh

Post on 20-May-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors and SoCs:

Challenges and Opportunities

IEEE Solid-State Circuits

Society Webinar

July 13 2016

Ram K. KrishnamurthySenior Principal Engineer

IEEE Fellow & SSCS Distinguished Lecturer

Circuits Research Lab, Intel Labs

Intel Corporation, Hillsboro, OR 97124, [email protected]

Acknowledgements: Intel Circuits Research Lab, Vivek De, Matt Haycock,

Shekhar Borkar, ADR Bangalore Design Lab

Page 2: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

2

Era of Tera-scale ComputingTeraflops of performance operating on Terabytes of data

Terabytes

TIPS

Gigabytes

MIPS

Megabytes

GIPS

Perf

orm

ance

Dataset SizeKilobytes

KIPS

Mult-

Media

3D &

Video

Text

ModelsPersonal Media Creation and Management

Entertainment, learningand virtual travel

Health

Terascale

Multi-core

Single-core

Financial Analytics

Model-based AppsRecognition

MiningSynthesis

Page 3: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

3

3

Internet of Everything (IoE)

Need end-to-end energy efficiency & security

Page 4: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

4

4

Tera-scale Microprocessors and SoCs

Deliver best user experience under constraints

Scalable On-die Interconnect FabricScalable On-die Interconnect Fabric

Graphics

Video

SpecialPurposeEngines

IntegratedMemory

Controllers

Off Die interconnect

Cache Cache Cache

Last LevelCache

Last LevelCache

Last LevelCache

Scalable On-die Interconnect FabricScalable On-die Interconnect Fabric

Graphics

Video

SpecialPurposeEngines

IntegratedMemory

Controllers

Off Die interconnect

Cache Cache Cache

Last LevelCache

Last LevelCache

Last LevelCache

Scalable On-die Interconnect FabricScalable On-die Interconnect Fabric

Graphics

Video

SpecialPurposeEngines

Graphics

Video

SpecialPurposeEngines

IntegratedMemory

Controllers

Off Die interconnect

Cache Cache Cache

Last LevelCache

Last LevelCache

Last LevelCache

Cache Cache CacheCache Cache Cache

Last LevelCache

Last LevelCache

Last LevelCache

DynamicV/F control

IndependentV/F control

regions

Workload-basedcore activation

& shutdown

Scenario-basedpower allocation

Maximize

performance

& efficiency

Page 5: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

5

More, better transistors

More cores

Continued benefitsfrom Moore’s Law

Moore’s Law scaling

45nm

+

2007

105

103

107

10914nm

Trigate

2014

Source: Intel

Page 6: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

6

Performance/Energy Scaling Trends

Source: Intel

Page 7: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

22nm Interconnects

• M1 to M8 cross-section

• M1-M6 use ultra-low-k ILD and self-aligned vias providing 13-18% capacitance reduction

• Cross-section of integrated MIM capacitor

7

C. Auth, VLSI Symposium 2012

Page 8: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

Microprocessor Evolution

4004 Processor Westmere-EX Processor

Year 1971 2011

Transistors 2300 2.6 B

Process 10 µm 32 nm

Die area 12 mm2 513 mm2

Die photos not at scale

8

Source: Intel

Page 9: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

9

9

“Extreme” energy efficiency

2W –100 GigaFLOPS

10 year goal: ~300X Improvement in energy efficiency

Equal to 20 pJ/FLOPS at the system level

20MW - ExaFLOPS

Page 10: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

NTV Operation & Energy Efficiency

10

10-2

10-1

1

101

0

75

150

225

300

375

450

0.2 0.4 0.6 0.8 1.0 1.2 1.4Supply Voltage (V)

Acti

ve L

eakag

e P

ow

er

(mW

)

En

erg

y-E

ffic

ien

cy

(GO

PS

/Watt

)

320mV

9.6X

65nm CMOS, 50°C

Su

bth

res

ho

ld

1

101

103

104

102

10-2

10-1

1

101

102

0.2 0.4 0.6 0.8 1.0 1.2 1.4

65nm CMOS, 50°C

Maxim

um

Fre

qu

en

cy (

MH

z)

To

tal P

ow

er

(mW

)

Supply Voltage (V)

Frequency reduces almost

linearly first, then exponentially

Total power reduces by three to

four orders of magnitude

Energy efficiency improves by

one order of magnitude at NTV

Energy efficiency reduces in

subthreshold operation

Leakage power reduces by two

to three orders of magnitude

H. Kaul, R. Krishnamurthy et al, ISSCC 2008

Page 11: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

11

11

Voltage-frequency range limiters

Reliability & functional failures limit range

Voltage

Frequency

Vmax

Vmin

Fm

ax

• Reliability• Thermals• Power delivery

Vmax/Fmax limiters

• Circuit functional failures• Soft errors• Steep frequency roll-off• Aging

Vmin limiters

Page 12: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

12

12

NTV design techniques

m1 m2

m3 m4

m5

m7 m8

wrwl

rdwl

wrb

l#

rdb

l

bitx bit

m9

wrwl#

m10

m6

Modified Register File Cell (L1$)

Robust Flop Topologies

Multi-corner design

optimizations(SCL)

0.5 0.6 0.7 0.8 0.9 1 1.1

Fre

qu

en

cyVoltage (V)

Optimization Corners

Variation-aware design2X min Z, 40% lib cells used

0.4 0.5 0.6 0.7 0.8 0.9 1

Voltage (V)

Delay spread due to random variations

2-i

np

ut

NA

ND

gat

e d

ela

y

4:1 Mux

“1”

“1”

“1”

“0”

“0”

“0”

“1”

“1”

“1”

“0”

“0”

“0”

Narrow muxes No stack height > 2

input

output

vcch vcch

vcch

vccl

vcch

input

output

vcch vcch

vcch

vccl

vcch

Robust level converters

Page 13: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

NTV Across Technology Generations

13

0

0.5

1.0

1.5

2.0

2.5

3.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4Supply Voltage (V)

En

erg

y E

ffic

ien

cy

(T

OP

S/W

)

10-3

10-2

10-1

1

10

Ac

tiv

e L

ea

ka

ge

Po

we

r (m

W)

Reconfigurable Fabric, 32nm CMOS, 50 C

340mV

0.8mW

5.7x

Su

b-t

hre

sh

old

Re

gio

n

0.2 0.4 0.6 0.8 1.0 1.2

En

erg

y E

ffic

ien

cy

(G

OP

S/W

)

Supply Voltage (V)

Le

ak

ag

e P

ow

er

(mW

)

103

102

10

10-2

1

10-3

103

102

10

1

10-1

Sub

-th

resh

old

R

egi

on

22nm CMOS, 50°C

9x

9x

Register FilePermute Crossbar

0

1

2

3

4

5

6

7

8

9

0.15 0.40 0.65 0.90 1.15 1.40No

rma

lize

d E

ne

rgy

Eff

icie

nc

y

Supply Voltage (V)

300mV

8X

45nm CMOS

50 C32b Multiply

16b SIMD Multiply

72b Add 1.1V

0.980.870.740.590.370.15

Vhi

Vlo

H. Kaul, et. al., ISSCC 2009

A. Agarwal, et. al., ISSCC 2010

S. K. Hsu, et. al., ISSCC 2012

NTV operation improves energy

efficiency across 45nm-22nm CMOS

ISSCC 2012 Distinguished Paper Award,

ESSCIRC 2012 Best Paper Award

Page 14: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

14

Vector Flip-flops for VMIN

● Min-sized clock inverters shared across adjacent flip-flops no clock load increase

● Hold time VMIN improves by 175mV

Supply Voltage (a.u.)0

5

10

15

20Flip-flopVector Flip-flop

Hold Threshold

175mV

Ho

ld T

ime

(%

Cy

cle

)

22nm Tri-Gate CMOS Simulation 0°C-85°C, 3σsystematic, 6σrandom

Vector Flip-flop

D1 Q1

D0 Q0

CC#Cd

S. Hsu, R. Krishnamurthy et al, ISSCC 2012

Page 15: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

15

ULVS Level Shifter for VMIN

● Decouples CVSL stage from output driver stage and interrupts cross-coupled PMOS devices

● Reduced contention improves VMIN by 125mV

VCC2 VCC2

VCC1

VCC2

DOUT

DIN

Ultra Low Voltage Split-Output (ULVS)

VCC2 VCC2

VCC1

VCC2

DOUT

DIN

Conventional CVSL

ConventionalULVS

Delay Threshold

125mV

0

1

2

3

4

5

6

7

8

Supply Voltage (a.u.)

No

rma

lize

d D

ela

y

22nm Tri-Gate CMOS Simulation 0°C-85°C, 3σsystematic, 6σrandom

S. Hsu, R. Krishnamurthy et al, ISSCC 2012

Page 16: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

16

Ultra Low Voltage Graphics/Media and

Security Accelerators

DSP functions highly throughput-oriented: Amenable for parallelism/pipelining

Better power-performance optimization

Optimal partitioning of tasks between GP processor and dedicated engines

GO

PS

/W

PP

C

PP

C1-

SO

I

Sp

arc

Sp

arc2

PP

C2-

SO

I

Sp

arc1 P4

x86

PP

C77

0

Alp

ha

PP

C97

0

Alp

ha

PP

C

Itan

ium

SA

-DS

P

Hit

ach

i-D

SP

Fu

j-D

SP

Fu

j-D

SP

Cel

l-S

PE

KA

IST

-DS

P

NE

C-D

SP

Fu

j-M

ult

i

MP

EG

2

En

cryp

t

MU

D

MP

EG

2

802.

11a

Microprocessors

DSPs

DedicatedHW

10x

100x

10-100X higher performance/watt vs. GP cores

Fle

xib

ilit

y v

s.

en

erg

y-e

ffic

ien

cy

More flexible…More flexible…

More efficient…

Source: ISSCC

Vid

eo M

E

SIM

D V

ecto

r

SIM

D P

erm

uta

tio

n

AE

S E

ncr

ypti

on

Intel ISSCC, VLSI

2008-2016

Page 17: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

17

H. Kaul, R. Krishnamurthy et al, ISSCC 2012

NTV Variable Precision FPU

Page 18: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

18

18

Near threshold voltage IA processor

Technology 32nm High-K Metal Gate

Interconnect 1 Poly, 9 Metal (Cu)

Transistors 6 Million (Core)

Core Area 2mm2

IA-32

CorePLL

JTAG

I/O Area

I/O Area

I/O

Are

a

5 m

m

5 mm

IA-32 Core

Logic

Scan

RO

M

L1$-I L1$-D

Level Shifters + clk spine

1.1 mm

1.8

mm

Page 19: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

19

19

Power performance measurements

915MHz

500MHz

100MHz

3MHz

737mW

174mW

17mW2mW

0

100

200

300

400

500

600

700

800

1

10

100

1000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0.55 0.55 0.55 0.55 0.6 0.7 0.8 0.9 1 1.1 1.2

To

tal P

ow

er (m

W)F

req

uen

cy (

MH

z)

32nm CMOS, 25oC

Logic Vcc / Memory Vcc (V)

Page 20: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

20

20

Energy efficiency peaks near threshold

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1 1.2

32nm CPU process32nm SOC process

400mV

500mV

3X

5X

Voltage /Freq operating points

No

rma

lize

dE

ne

r gy

/ cy

cle

Normal operating range NTVSub-threshold

Page 21: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

21

21

NTV and variability

100

1000

0 100 200 300 400 500 600 700 800 900 1000

Fast Medium Slow

Leakage Comparison

Slow 1.0X

Medium 2.5X

Fast 7.5X

Frequency (MHz)

En

erg

y/C

ycle

(p

J)

16%30%

22%

28%

18%

32nm CMOS, 25oC

Page 22: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

Interconnect Trends

Al Cu

22

Page 23: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

On-chip Interconnect Trend

• Local interconnects scale with gate delay

• Global interconnects do not keep up with scaling

Source: ITRSGate delay (FO4)

Local interconnect (M1,2)

Global interconnect

with repeaters

Global interconnect

without repeaters

23

Page 24: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

Circuit-Switched On-Chip Interconnects

G. Chen, R. Krishnamurthy et al, ISSCC 2014

Page 25: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

25

25

Dynamic V & F adaptation

Clocking

Input

Buffer

Sensors

& Analog

DAB

TCP/IP

Processor

Core

JTAG

No

ise

ge

n

No

ise

ge

n

TCP/IP

processor

PLL0

PLL1

DAB

Control

Thermal

sensor

Div

PMOS

CBG

NMOS

CBG

core clk

gate

Droop

sensor

Time

Tem

p

Time

Vc

c

PLL2

NMOS body bias

PMOS body bias

I/O clk

Noise

injector

CL

OC

KIN

GC

ON

TR

OL

F0

Inp

ut b

uffe

r

Ou

tpu

t po

rt

F1

F2

1st droop

2nd droop 3rd droop

ctrl

PL

L c

om

man

d

VR

M

• Adapt F/V to V/T change reduce V/T margin

• Adapt F/V to aging reduce aging margin

Environment-aware dynamic adaptation

Prototype chip in 90nm

Source: Intel

Source: Intel

Y. Hoskote et al, 2003 ISSCC

Page 26: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

26

26

Integrated Voltage Regulators: Fine-grain power managementSpatial domain

•Same voltage to all cores•Same frequency for all cores

Coarse-grain management

TODAY

•Each core/cluster at optimum voltage•Each core/cluster at optimum frequency

Fine-grain management

FUTURE

•V/F domain interfaces•Synchronization overhead•Clock generation/distribution•Power grid routing•Optimum V/F for non-cores•Sub-core clock/leakage gating•Sub-core V/F domains

Page 27: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

Ciphertext

MerchantCustomerSecure channel

Plaintext Plaintext

ÅS

bo

x

Sb

ox

Sb

ox

Sb

ox

Sb

ox

Sb

ox

Sb

ox

Sb

ox

Sb

ox

Sb

ox

Sb

ox

Sb

ox

Sb

ox

Sb

ox

Sb

ox

Sb

ox

Rounddatain[127:0]

Rounddataout[127:0]

8

8

Roundkey[127:0]

*3*1*2

*3*1*2

*3*1*2

*3*1*2

*3*1*2

*3*1*2

*3*1*2

*3*1*2

*3*1*2

*3*1*2

*3*1*2

*3*1*2

*3*1*2

*3*1*2

*3*1*2

*3*1*2

2:1

Plaintext

AddRoundKey

Substitute Bytes

MixColumns/AddRoundKey

ShiftRows

Co

nv

en

tio

na

l A

ES

Ro

un

d

10

ite

rati

on

sNano-AES Hardware Accelerator

● Most popular symmetric-key encryption algorithm

● Conventional 128b AES datapath large area & power

● Not suitable for ultra-low power wearable systems 27

Page 28: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

28

ClockIO & Control

71µm

31

µm

76µm

36µ

m

En

cry

pt

De

cry

pt

Key Register Data RegisterIntermediate

Register

Data Map

SBOX

Mix ColumnKey Map

Key Generate

Data InvMap

Key Register Data Register Intermediate

Register

Data Map

SBOX

Mix ColumnKey Map

Key Generate

Data InvMap

Process22nm tri-gate high-K

metal gate CMOS

Die area 0.19mm2

Area (µm2)

Nom. throughput @ 0.9V, 25°C (Mbps)

Latency (cycles)

2736

671

216

289

2200

432

336

186Peak efficiency @ 0.43V, 25°C(Gbps/W)

Ground-field poly x4+x+1x

4+x

3+1

Extension-field poly x2+2x+Ex

2+6x+9

DecryptEncrypt

Gate Count 20901947

DecryptEncrypt

Total power @ 1.1GHz, 0.9V, 25°C (mW)

Leakage power @ 0.9V, 25°C (mW)

13

0.5

13

0.5

Area (µm2) 2200 2736

22nm CMOS NTV Nano-AES Accelerator

28Industry-leading energy efficiency of 289Gbps/Watt at 340mV!

S. Mathew, R. Krishnamurthy et al, 2014 VLSI circuits symposium

Page 29: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

0

50

100

150

200

250

300

350

0 10 20 30 40 50

Energy per AES-128 block (nJ)

En

erg

y-e

ffic

ien

cy

(G

bp

s/W

)

11X

This work

[EUROMICRO’06]

[EUROCRYPT’11]

[CHES’04]

Comparisons with prior-art

29

● 11x higher energy-efficiency than previously-

reported measurements

Page 30: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

30

30

AES symmetric-key crypto accelerator

S. Mathew, R. Krishnamurthy et al, 2010 VLSI circuits symposium

Page 31: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

31

31

All-digital random number generator

Scalable & PVT variation tolerant

S. Mathew, R. Krishnamurthy et al, 2015 ESSCIRC

S. Mathew, R. Krishnamurthy et al, 2010 VLSI circuits symposium

Page 32: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

32

32

Physically unclonable function (PUF)

S. Mathew, R. Krishnamurthy et al, 2014 ISSCC

Page 33: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

33

33

Neuromorphic computing

Page 34: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

34

34

“Extreme” efficiency research

Page 35: Energy-Efficient Circuit Technologies for Sub …sscs.ieee.org/images/files/Ram_Krishnamurthy_IEEE_SSCS_Webinar...Energy-Efficient Circuit Technologies for Sub-14nm Microprocessors

35

Legal DisclaimerThis presentation contains the general insights and opinions of intel corporation (Intel).

• This presentation is provided for informational purposes only and is not to be relied upon for any other purpose. Intel makes no representations or warranties regarding the accuracy or completeness of the information in this presentation. Intel accepts no duty to update this presentation based on more current information. Intel is not liable for any damages, direct or indirect, consequential or otherwise, that may arise, directly or indirectly, from

the use or misuse of the information in this presentation. Intel retains all rights to the Presentation, including any patent, trademark, trade secret, copyright, trade dress, mask works, or any other intellectual property rights. The provision of the Presentation does not constitute the grant or license of any such rights by Intel. Provision of the Presentation shall not be construed to constitute advice or consultation. Intel does not provide, and is not providing, any technical, legal, regulatory or compliance advice. Nor does Intel make any representation or warranty with respect to the effectiveness

of any information contained herein. • Intel may make changes to specifications and product descriptions at any time, without notice.• Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel

products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations. Intel does not control or audit the design or implementation of third party benchmarks or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar performance benchmarks are reported and confirm whether the referenced benchmarks are accurate and reflect performance of systems available for purchase.

• Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See www.intel.com/products/processor_number for details. Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

• Intel Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and applications enabled for virtualization technology. Functionality, performance or other virtualization technology benefits will vary depending on hardware and software configurations. Virtualization technology-enabled BIOS and VMM applications are currently in development.

• Intel® Turbo Boost Technology requires a Platform with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware, software and overall system configuration. Check with your platform manufacturer on whether your system delivers Intel Turbo Boost Technology. For more information, see http://www.intel.com/technology/turboboost.

• No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (Intel® TXT) is a security technology under development by Intel and requires for operation a computer system with Intel® Virtualization Technology, a Intel® Trusted Execution Technology-enabled Intel processor, chipset, BIOS, Authenticated Code Modules, and an Intel or other Intel® Trusted Execution Technology compatible measured virtual machine monitor. In addition, Intel® Trusted Execution Technology requires the system to contain a TPMv1.2 as defined by the Trusted Computing Group and specific software for some uses. 64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information.

• Intel, Intel Xeon, Intel Core microarchitecture, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. © 2008 Standard Performance Evaluation Corporation (SPEC) logo is reprinted with permission.

• * Other names and brands may be claimed as the property of others.