energy capturing pathways i. introduction a. history

45
Energy Capturing Pathways I. Introductio n A. History

Upload: nathanael-fowers

Post on 15-Dec-2015

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Energy Capturing Pathways I. Introduction A. History

Energy Capturing Pathways

I. Introduction

A. History

Page 2: Energy Capturing Pathways I. Introduction A. History

1. VanHelmont,1630, proved plants need2. Priestly, 1772, proved plants need3. Ingenhaus, 1779, proved plants need4. DeSaussure, 1804, organized all the pieces5. Van Neil, 1930,

water

gas (phlogiston)sunlight

proved hydrogen in the glucose comes from splitting water

Page 3: Energy Capturing Pathways I. Introduction A. History

B. Reduction/Oxidation Reactions

Page 4: Energy Capturing Pathways I. Introduction A. History

1. Redox = giving and receiving of electrons or energy

Figure 9.3

Page 5: Energy Capturing Pathways I. Introduction A. History

C. NADP+ and Energy Transfer

Page 6: Energy Capturing Pathways I. Introduction A. History

Figure 9.4

Page 7: Energy Capturing Pathways I. Introduction A. History

II. Photosynthesis

A. Organisms

Page 8: Energy Capturing Pathways I. Introduction A. History

1. Autotrophs are organisms that can fix energy into carbon molecules.

Figure 10.2

Page 9: Energy Capturing Pathways I. Introduction A. History

B. Structures

Page 10: Energy Capturing Pathways I. Introduction A. History

1. Chloroplasts

Figure 10.3

Page 11: Energy Capturing Pathways I. Introduction A. History

C. Background Info.

Page 12: Energy Capturing Pathways I. Introduction A. History

1. Light Properties

Figure 10.6

Page 13: Energy Capturing Pathways I. Introduction A. History

1. Light Properties

Figure 10.7

Page 14: Energy Capturing Pathways I. Introduction A. History

2. Pigments

Figure 10.10

a. Chlorophylls are primary

and reflect greens.

Page 15: Energy Capturing Pathways I. Introduction A. History

2. Pigmentsb. Xanthophylls are

secondaryand reflect yellows.

Page 16: Energy Capturing Pathways I. Introduction A. History

2. Pigmentsc. Carotenoids are secondary

and reflect oranges and protect chlorophylls.

Page 17: Energy Capturing Pathways I. Introduction A. History

2. Pigments

Figure 10.9

Page 18: Energy Capturing Pathways I. Introduction A. History

III. Light Dependent ReactionsA. Electron

Excitation

Page 19: Energy Capturing Pathways I. Introduction A. History

Figure 10.11

1. Magnesium absorbs light energy and electrons get excited

Page 20: Energy Capturing Pathways I. Introduction A. History

B. Where

Page 21: Energy Capturing Pathways I. Introduction A. History

1. Chloroplasts light dependent reactions via chlorophyll pigments in the thylakoid membrane of chloroplasts

Figure 10.12

Page 22: Energy Capturing Pathways I. Introduction A. History

C. Steps

Page 23: Energy Capturing Pathways I. Introduction A. History

1. Non-cyclic electron flow

Figure 10.13

Page 24: Energy Capturing Pathways I. Introduction A. History

Non-cyclic Stepsa. Light excites electrons of magnesium

(oxidizes) of chlorophyll of photo-system II and I.b. Electrons from II are passed through an ETC to make ATP, while electrons from I are passed through an ETC to reduce NADP+.

c. Electrons from II are used to backfill I chlorophyll that lost electrons to NADP+.

d. Water is split by II to fill electrons lost to I by stealing electrons from hydrogen and provide a hydrogen to form NADPH.

Page 25: Energy Capturing Pathways I. Introduction A. History

2. Cyclic electron flow

Figure 10.15

Page 26: Energy Capturing Pathways I. Introduction A. History

Cyclic Stepsa. Light excites electrons of magnesium (oxidizes) of chlorophyll of photo-system I only.b. Electrons from I are passed through an ETC to make ATP only.

c. Electrons from I are used to backfill I magnesium of the original chlorophyll.

d. Water is not split.

Page 27: Energy Capturing Pathways I. Introduction A. History

Figure 10.17

Page 28: Energy Capturing Pathways I. Introduction A. History

D. Outcomes

Page 29: Energy Capturing Pathways I. Introduction A. History

The ATP and NADPH chloroplast stroma used to energize CO2 (ATP) & add hydrogen (NADPH)The O2 to the stomata to be expelled or to mitochondria

Do plants need to keep expelling O2 for their benefit?Or

yours?

Page 30: Energy Capturing Pathways I. Introduction A. History

IV. Light Independent Rxns.A.

Where

Page 31: Energy Capturing Pathways I. Introduction A. History

1. Chloroplasts The eight step process (Calvin cycle, the light independent reactions, or the DARK reactions) in chloroplast’s stroma.

Figure 10.3

Page 32: Energy Capturing Pathways I. Introduction A. History

B. Steps

Page 33: Energy Capturing Pathways I. Introduction A. History

Figure 10.18

Page 34: Energy Capturing Pathways I. Introduction A. History

a. Rubisco attaches 3CO2 to RuBPb. Requires 6ATP and 6NADPH to make 6G3Pc. Separate 1G3P and hold in reserved. Rearrange other 5G3P back into RuBP requiring 3ATP

e. Repeat as long as you have enough ????

1Glucose requires

18ATP +

12NADPH

Page 35: Energy Capturing Pathways I. Introduction A. History

C. Outcomes

What to do with the glucose?

Page 36: Energy Capturing Pathways I. Introduction A. History

V. Alternative StrategiesA.

Photorespiration

1. Definition

2. Mechanism

Page 37: Energy Capturing Pathways I. Introduction A. History

B. C3 Plants1. Definition

2. Mechanism

Page 38: Energy Capturing Pathways I. Introduction A. History

C3 plants go senescent

rice, wheat, some grasses, and soybean

Page 39: Energy Capturing Pathways I. Introduction A. History

C. C4 Plants1. Definition

2. Mechanism

Page 40: Energy Capturing Pathways I. Introduction A. History

C4 plants turn CO2 into acid molecules then break up to give CO2 to Rubiscosugarcane, corn, and other

grasses

Figure 10.19

Page 41: Energy Capturing Pathways I. Introduction A. History

D. CAM Plants1. Definition

2. Mechanism

Page 42: Energy Capturing Pathways I. Introduction A. History

CAM plants completely separate light from dark reactionscactus, pineapples, and

succulents

Page 43: Energy Capturing Pathways I. Introduction A. History

C4 versus CAM plants

Figure 10.20

Page 44: Energy Capturing Pathways I. Introduction A. History

Figure 10.21

Page 45: Energy Capturing Pathways I. Introduction A. History

Learning is the key to growing.