enea merja

15
Motori termik eshte mjeti qe kthen nxehtesine ne pune mekanike. Ai vepron midis nje rezervuari te ngrohte TH dhe nje rezervuari te ftohte me temperature TC. Ne cdo cikel motori thith nxehtesine QH nga rezervuari I ngrohte. Nje pjese e kesaj nxehtesie perdoret per te ktryer punen A dhe pjesa qe mbetet QC kalon ne rezervuarin e ftohte. Rendimenti I motorit termik eshte ose Parimi I dyte I termodinamikess sipas Kelvin Plankut phon: Eshte e pamundur per nje motor termik,qe vepron ne nje cikel te ktheje nxehtesine qe merr plotesisht ne pune. Sipas Klauzius: "Eshte e pamundur per nje motor qe punon ne menyre ciklike te kaloje nxehtesine vazhdimisht nga nje trup I ftohte ne nje trup te ngrohte pa futjen e punes ose e efekteve te tjera nga mjedisi I jashtem". Cikli Karno perbehet nga dy procese izotermike dhe dy procese adiabatike(dy izoterma dhe dy adiabat). Rendimenti teorik I Karno jepet ose Frigoriferi eshte nej makine termike qe punon ne drejtim te kundert. Ai merr nxehtesi Qc nga dhoma e ftohte dhe con nje sasi me te madhe nxehtesie Qh ne ajrin e jashtem me te ngrohte. Termodinamika

Upload: armando-shehi-sayhellotogoodbye

Post on 24-Oct-2014

336 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Enea Merja

Motori termik eshte mjeti qe kthen nxehtesine ne pune mekanike. Ai vepron midis nje rezervuari te ngrohte TH dhe nje rezervuari te ftohte me temperature TC. Ne cdo cikel motori thith nxehtesine QH nga rezervuari I ngrohte. Nje pjese e kesaj nxehtesie perdoret per te ktryer punen A dhe pjesa qe mbetet QC kalon ne rezervuarin e ftohte.

Rendimenti I motorit termik eshte ose Parimi I dyte I termodinamikess sipas Kelvin Plankut phon: Eshte e pamundur per nje motor termik,qe vepron ne nje cikel te ktheje nxehtesine qe merr plotesisht ne pune.Sipas Klauzius: "Eshte e pamundur per nje motor qe punon ne menyre ciklike te kaloje nxehtesine vazhdimisht nga nje trup I ftohte ne nje trup te ngrohte pa futjen e punes ose e efekteve te tjera nga mjedisi I jashtem".Cikli Karno perbehet nga dy procese izotermike dhe dy procese adiabatike(dy izoterma dhe dy adiabat).Rendimenti teorik I Karno jepet ose Frigoriferi eshte nej makine termike qe punon ne drejtim te kundert. Ai merr nxehtesi Qc nga dhoma e ftohte dhe con nje sasi me te madhe nxehtesie Qh ne ajrin e jashtem me te ngrohte.

Termodinamika

Termodinamika (prej gj.greke thermos që do të thotë nxehtësi dhe dynamis që do të thotë energji/fuqi) është

degë e fizikës që studion ndikimin e ndërrimit të temperaturës, shtypjes dhe vëllimit në sistemet fizike të

madhësisë makroskopike përmes analizimit të lëvizjeve kolektive të grimcave të tyre, duke përdorur statistikën.

Page 2: Enea Merja

Përafësisht, nxehtësi do të thotë “energji në tranzit (lëvizje)” dhe dinamika ka të bëj me “lëvizje/transferim”;

kështu që në thelb termodinamika studion lëvizjen e energjisë dhe se si energjia shndërrohet.

Përmbledhje

Pika e fillimit për çdo faktor termodinamik janë ligjet e termodinamikës, të cilat theksojnë se energjia mund të

transferohet/shndërrohet në mes sistemeve fizike, në trajtë të nxehtësisë ose punës. Ato gjithashtu thonë se

ekziston një madhësi e quajtur entropi, e cila mund të përcaktohet për çdo sistem. Në termodinamikë,

bashkëveprimet mes ansambleve të mëdha të objekteve janë studiuar dhe kategorizuar. Kryesore me këto

janë konceptet e sistemit dhe rrethinës. Një sistem është i përbërë prej grimcave, lëvizja mesatare e të cilave

përcakton vetitë, tëcilat siç duhet janë të lidhura me njëra tjetrën me ekuacionin e gjendjes. Vetitë mund të

bashkohen e të shprehin energjinë e brendshme, dhe potencialet termodinamike përdoren për të caktuar

konditat/kushtet për ekuilibër dhe procese spontane.

Me këto mjete, termodinamika përshkruan se si sistemi i përgjigjet ndërrimeve në rrethinë. Këto mund të

aplikohen gjerësisht në tema të ndryshme të shkencave dhe teknologjive si: motorët, kalimet fazore, reaksionet

kimike, fenomenin e transportit, madje edhe në vrimat e zeza. Përfundimet e termodinamikës janë esenciale

për fushat e tjera të fizikës, kimisë, inxhinerisë kimike, citologjisë, biomedicinës inxhinerike etj.

Historik i zhvillimit të termodinamikës

Page 3: Enea Merja

Sadi Carnot "babai" i termodinamikës

Një histori e shkurtër e termodinamikës fillon me shkencëtarin gjerman Otto von Guericke, i cili në vitin 1650

dizajnoi dhe ndërtoi pompën e parë të vakumit në botë dhe krijoi vakumin e parë ndonjëherë në botë i njohur si

hemisferat e Magdeburg – ut. Ai u shtyt ta bëjë vakumin/boshllëkun në mënyrë që ta përgënjeshtrojë/hedh

poshtë supozimin e gabuar e të mbajtur një kohë të gjatë të Aristotelit se “Natyra e urren vakumin”. Pak kohë

më pas fizkani dhe kimisti irlandez, Robert Boyle mësoi për konstruktimet e Guericke – s dhe më 1656 në

koordinim me shkencëtarin anglez Robert Hooke, ndërtoi një pompë ajri. Me këtë pompë, Boyle dhe Hooke

vërejtën korelacionin shtypje – temperaturë – vëllim. Në këtë kohë, ligji për gazin ideal u formulua. Më pas më

1679, bazuar në të njejtat koncepte, një koleg i Robert Boyle – it i quajtur Denis Papin konstruktoi një tretës të

eshtrave/“bone digester” që është një enë e mbyllur fort me një kapak të përshtatshëm, që e kufizon avullin të

dali derisa të nxirret presion i lartë.

Konstruktimet e mëvonshme implementuan një valvulë që lëshonte avullin, e cila e ruante makinën prej

eksplodimit. Duke e shikuar valvulën ritmikisht që shkonte posht – lart, Papini e konceptoi/mendoi idenë e

motorit/makinës me piston dhe cilindër. Sidoqoftë ai nuk e konstruktoi atë. Megjithatë, më 1697, i bazuar në

dizajnet/planet e Papin – it inxhinieri/makinisti Thomas Savery ndërtoi makinën e parë. Edhepse këto makinat e

hershme ishin të pa takt/papërpunuara dhe jo efikase, ato tërhoqën vëmendjen e shkencëtarëve kryesorë të

kohës. Një shkencëtar i tillë ishte, Sadi Carnot, “babai i termodinamikës”, i cili më 1824 botoi veprën

“Reflections on the motive power of fire” (Reflektim/pasqyrim në fuqinë lëvizëse të zjarrit), një ligjërim për

nxehtësinë, fuqinë, dhe efikasitetin e makinave. Kjo shënon fillimin e termodinamikës si shkencë moderne.

Termodinamika klasike

Termodinamika klasike është variacion i termodinamikës, i viteve të hershme të 1880, që u mor me gjendjet

termodinamike, dhe vetitë si energjia, puna dhe nxehtësia dhe me ligjet e termodinamikës, por të gjithave u

mungonte interpretimi atomik. Në formë paraprake, termodinamika klasike buron prej fizikanit Robert Boyle, i

Page 4: Enea Merja

cili më 1662 theksoi se shtypja/presioni p për një sasi të dhënë gazi ndryshon anasjelltas me vëllimin V në

temperaturë konstante; forma e ekuacionit pV = k, konstante. Prej këtu, një ngjasim i termo – shkencave filloi të

zhvillohet me konstruksionin e makinës së parë me avull/atmosferik në Angli nga Thomas Savery në 1697 dhe

Thomas Newcomen në 1712. Ligji i parë dhe i dytë dolën në të njejtën kohë më 1850, së pari nga punimet e

William Rankine, Rudolf Clausius dhe William Thomson (Lord Kelvin). Në fund – Lordi Kelvin e sajoi termin

termodinamikë më 1849 në botimin e “An account of Carnot’s theory of the motive power of heat”. Libri i parë i

mësimit të termodinamikës u shkrua më 1859 nga William Rankine, një qytetar dhe profesor i inxhinerisë

mekanike në Universitetin e Glasgow – it.

Termodinamika statistike

Me zhvillimin e teorisë molekularo – atomike në vitet e vona të 1880 dhe viteve të hershme të 1900,

termodinamikës iu dha një interpretim molekular. Kjo fushë u quajt termodinamikë statistike, e cila mund të

mendohet si një urë lidhëse në mes parametrave makro dhe mikroskopikë të sistemit. Esencialisht, statistika

termodinamike është një afrim i termodinamikës me statistikën mekanike, e cila përqendrohet

derivimin/rrjedhojën e rezultateve makroskopike prej fillesave të para. Mund t’i kundërvihet parardhësit historik

termodinamikës fenomenale, e cila jep përshkrime shkencore të fenomeneve duke iu shmangur detaleve

mikroskopike. Qasja statistike është të përfitojë të gjitha parametrat makroskopikë (temperatura, vëllimi,

shtypja, entropia etj.) prej parametrave të grimcave përbërëse në lëvizje dhe bashkëveprimit të tyre (duke

përfshirë edhe fenomenin/dukurinë e kuanteve). Është demonstruar mjaft e suksesshme, prandaj përdoret

shpesh.

Termodinamika kimike

Termodinamika kimike studion raportin e nxehtësisë me reaksionet kimike ose me ndryshimet fizike të gjendjes

pa kufizimin e ligjeve të termodinamikës. Gjatë viteve 1873 – 76 matematikani – fizikani amerikan Wiilard Gibbs

botoi tre teori/letra më e famshmja ishte On the Equilibrum of Heterogeneous Substances, në të cilën ai tregoi

se si proceset termodinamike mund të analizohen grafikisht, duke studiuar energjinë, entropinë, vëllimin,

temperaturën dhe shtypjen e sistemit termodinamik, në atë mënyrë që të kuptohet se a do të ndodhte procesi

Page 5: Enea Merja

spontanisht. Gjatë viteve të hershme të shek.XX, kimistë si Gilbert Lewis, Merle Randall dhe E. A. Guggenheim

filluan të aplikojnë metodat matematike të Gibbs – it për të analizuar proceset kimike.

Sistemet termodinamike

Një koncept i rëndësishëm në termodinamikë është “sistemi”. Sistemi është një regjion i universit nën studim.

Sistemi është i ndarë prej pjesës tjetër të universit me kufi, i cili mund të jetë i imagjinuar ose jo, por, i cili me

marrëveshje zë një vëllim të përcaktuar (i ka kufijtë e caktuar). Ndryshimet e mundshme në punë, nxehtësi ose

shkëmbim të materies mes sistemit dhe rrethinës bëhet rreth këtij kufiri. Janë pesë kategori dominuese

sistemesh:

1. Sistemet e izoluara – materia dhe energjia mund të mos e kalojnë kufirin.

2. Sistemet adiabatike – nxehtësia s’e kalon kufirin.

3. Sistemet diatermike – nxehtësia e kalon kufirin.

4. Sistemet e mbyllura – materia s’e kalon kufirin.

5. Sistemet e hapura – nxehtësia, puna, materia mund ta kalojnë kufirn.

Sistem quajmë një grup elementesh të veçanta që kryejnë një funksion të përbashkët.

Për sistemet e izoluara, sa më tepër që koha kalon, diferencat në sistem kanë tendencë të eleminohen: shtypja

dhe temperatura priren të barazohen, në atë mënyrë që densiteti ndryshon. Një sistem tek i cili të gjitha

proceset e barazuese praktikisht kanë përfunduar, konsiderohet të jetë në ekuilibër termodinamikë.

Page 6: Enea Merja

Në ekuilibër termodinamik, parametrat e sistemit sipas përcaktimit, të pandryshueshme në kohë. Sistemet në

ekuilibër janë shumë më të thjeshtë dhe më të lehtë për t’i kuptuar se sa sistemet që nuk janë në ekuilibër.

Shpesh, kur të analizohet një proces termodinamik, mund të supozohet se secila gjendje e ndërmjetme në

proces është në ekuilibër. Kjo në mënyrë të konsiderueshme na e lehtëson situatën. Proceset termodinamike

të cilat zhvillohen aq ngadalë sa të lejojnë që secili hap i ndërmjetëm të jetë në gjendje ekuilibruese është e

thënë të jenë procese reverzibile.

Parametrat termodinamik

Koncepti qëndror në termodinamikë është energjia, aftësia/kapaciteti për të kryer punë. Siç u përcaktua nga

ligji i parë, energjia e përgjithshme në sistem dhe në rrethinë konservohen/ruhen. Mund të transferohen në trup

ose përmes nxeht.sisë, ngjeshjës ose shtimit të materies, ose mund të ekstraktohet/nxirret nga trupi ose me

ftohje, zgjerim, ose nxjerrje të materies. Si krahasim në mekanikë, transferi i energjisë është rezultat i forcës që

shkakton zhvendosjen, prodhimi i të dyjave, është sasia e enrgjisë së transferuar. Në mënyrë të ngjajshme,

sistemet termodinamike mund të mendohen se transferojnë energjinë si një rezultat i një force të përgjithësuar

që shkakton një zhvendosje të përgjithësuar, prodhimi i të dyjave është sasia e energjisë së transferuar. Këto

çifte forcë – zhvendosje termodinamike njihen si ndryshore të konjuguara/bashkuara. Ndryshoret e konjuguara

më të shpeshta në termodinamikë janë: shtypje – vëllim (parametra mekanikë), temperaturë – entropi, dhe

potenciali kimik – numri i grimcave (parametra material).

Instrumentet termodinamike

Janë dy lloje të instrumenteve termodinamike, njehsori (meter) dhe rezervuari (reservoir). Një njehsor

termodinamikë është çdo paisje e cila mat çfarëdo parametri të një sistemi termodinamik. Në disa raste, në fakt

parametri termodinamik përcaktohet nën kushtet e një instrumenti matës të idealizuar. Për ilustrim, ligji i zeros

(zeroth law) thotë se nëse dy trupa janë në ekuilbër termik me një trup të tretë, atherë ata dy trupa janë në

ekulibër termik me njëri tjetrin. Ky parim, si e përmendi James Maxwell në vitin 1872, pohon se është e

mundshme t’i matet temperatura. Një termometër ideal është një mostër/shembull e në gazi ideal në shtypje

konstante. Prej ligjit për gazin ideal pV = nRT, vëllimi i një mostre të tillë mund të përdoret si indikator i

temperaturës; në këtë mënyrë e përcakton temperaturën. Edhepse shtypja është e përcaktuar/definuar

mekanikisht, paisja për matjen e shtypjes, e quajtur barometër mund të konstruktohet prej një mostre të gazit

ideal të mbajtur në temperaturë konstante. Kalorimetri është paisje e cila e mat dhe e përcakton/karakterizon

energjinë e brendshme të sistemit.

Një rezervuar termodinamik është një sistem i cili është aq i madh sa nuk i ndryshon dukshëm parametrat e

gjendjes kur është në kontakt me sistemin pilot/provues. Përdoret për të vënë një vlerë të caktuar/veçantë

parametrit të gjendjes mbi sistemin. Për ilustrim, rezervuari i shtypjes është një sistem me një shtypje të

Page 7: Enea Merja

caktuar, i cili ngarkon me atë shtypje cilindo sistem provues që është i lidhur mekanikisht me të. Atmosfera e

tokës shpesh përdoret si rezervuar i shtypjes.

Është me rëndësi të thuhet se këto dy lloje instrumentesh janë të ndryshme. Një njehsor nuk i paraqet të sakta

punët/detyrat e tij nëse sillet si rezervuar i parametrit të gjendjes i cili ndërron, të cilin është duke

tentuar/përpjekur ta masë. Nëse, për ilustrim, një termometër, do të duhej të vepronte sikur rezervuar i

temperaturës, ai do t’i ndryshonte temperaturat e sistemit që do t’i kishte matur dhe leximi i tyre do të ishte i

gabuar/inkorrekt. Njehsorët ideal nuk kanë efekt/veprim në parametrat/ndryshoret e gjendjes së sistemit të cilat

ato po i masin.

Gjendjet termodinamike

Kur një sistem është në ekuilibër në kushte/kondita të dhëna, është thënë se e ka të përcaktuar/karakterizuar

gjendjen. Gjendja e sistemit mund të përshkruhet si një numër ekstensiv dhe intensiv të

variableve/ndryshoreve. Parametrat e sistemit mund të përshkruhen me anë të një ekuacioni të gjendjes i cili

specifikon mardhëniet e këtyre ndryshoreve. Gjendja mund të mendohet si një përshkrim sasior i çastit të

sistemit me një numër të fiksuar/caktuar variablash/ndryshoresh të mbajtura konstante.

[redakto]Proceset termodinamike

Procesi termodinamik mund të definohet si evulucion/zhvillim energjetik i sistemit termodinamik i cili

rrjedh/kalon prej gjendjes iniciale/fillestare tek gjendja finale/përfundimtare. Në mënyrë tipike, secili proces

termodinamik ndryshon prej proceseve të tjera, në karakter energjetik, sipas cilit parametër, temperaturës,

vëllimit, shtypjes etj, mbahen konstantë. Veç kësaj, është me rëndësi t’i grupojmë këto procese në çifte, në të

cilën secila ndryshore e cila mbahet konstant është një antarë i një çifti të konjuguar. Gjashtë proceset

termodinamike më të shpeshta janë paraqitur më poshtë:

Page 8: Enea Merja

1. Procesi izobarik ndodh në shtypje konstante.

2. Procesi izohorik (izometrik/izovolumetrik) ndodh në vëllim konstant.

3. Procesi izotermik ndodh në temperaturë konstante.

4. Procesi izotropik ndodh në entropi konstante.

5. Procesi izoentalpik ndodh në entalpi konstante.

6. Procesi adiabatik ndodh pa humbje dhe marrje/pranim të nxehtësisë.

Ligjet e termodinamikës

Në termodinamikë, janë katër ligje me vlefshmëri të përgjithshme, aq sa ato nuk varen nga detalet e

bashkëveprimit ose sistemit që studiohet. Prandaj, ato mund të aplikohen/zbatohen në sistemet tek të cilat nuk

dihet asgjë, veçse balanca e energjisë dhe transferimi/shkëmbimi i materies. Shembujt e tillë përfshijnë

parashikimin e Einstein – it për emisionin spontan në shek.XX dhe hulumtimet e tanishme në termodinamikën e

vrimave të zeza (black holes).

Katër ligjet janë:

-Ligji i zeros në termodinamikë, i cili thotë se ekuilibri termodinamik është një relacion ekuavalencial

Nëse dy sisteme termodinamike janë në ekuilibër termik me sistemin e tretë,

atherë ato dy sisteme janë në ekuilibër termik me njëri

tjetrin.

-Ligji i parë i termodinamikës, rreth konservimit/ruajtjes së energjisë

Rritja e energjisë së një sistemi të mbyllur është e barabartë me sasinë e

energjisë së shtuar sistemit me anë të nxehtësisë,

minus sasinë e humbur të të punës së bërë të

sistemit në rrethinë.

-Ligji i dytë i termodinamikës, rreth entropisë

Entropia totale e një sistemi të izoluar termodinamik tenton të rritet sa herë

që i afrohet

vlerës maksimale.

-Ligji i tretë i termodinamikës, rreth temperaturës absolute

Page 9: Enea Merja

Kur sistemi asimptotikisht i afrohet temperaturës zero absolute të gjitha

proceset pothuaj mbarojnë dhe entropia e sistemit

asimptotikisht i afrohet vlerës minimale.

Potencialet termodinamike

Siç mund të nxirret prej ekuacionit të energjisë së balancuar/ekuilibruar në një sistem termodinamik ekzistojnë

madhësi enrgjetike të quajtura potenciale termodinamike, që matëse sasiore/kuantative e energjisë së ruajtur

në një sistem. Katër potencialet më të njohura të potencialeve janë:

Emri Simboli Formula Variablat natyrore

Energjia e brendshme

Energjia e lirë e Helmholtzit , 

Entropia

Energjia e lirë e Gibbsit

Energjia potenciale e Grandit , 

Potencialet përdoren për të matur ndërrimet e energjisë në sistem ashtu që ato zhvillohen prej gjendjes

fillestare te gjendja përfundimtare/finale. Përdorimi i potencialeve varet prej përmbajtjes së sistemit, si

temperatura ose shtypja konstante. Energjia e brendshme është energjia e brendshme e sistemit, entalpia

është energjia e brendshme plus energjia e që lidhet me punën presion-vëllim, dhe energjitë e lira të Helmholtz

– it dhe Gibbs – it janë energji në dispozicion në sistem që përdoren për të kryer punë kur temperatura dhe

vëllimi ose shtypja dhe temperatura janë të pandryshuara.

Citime dhe humor

Page 10: Enea Merja

Një shaka e shpeshtë shkencore, e thënë nga C. P. Snow shpreh 4 ligjet thjeshtë dhe çuditërisht saktë, në këtë

mënyrë:

Zeroja: "You must play the game" (Ti duhet ta luash lojën)I pari: "You can’t win" (Ti s’fiton dot)I dyti: "You cant’t break even" (Ti s’ke aftësi për të dhënë të ardhura, s’ke rentabilitet)I treti: "You can’t quit the gam"e (S’mund ta lësh lojën)

Citim:

"Termodinamika është një lëndë zbavitëse. Herën e parë që e kalon/lexon, s’e kupton dot fare.

Herën e dytë që e lexon, ti mendon se e kupton, përveç një ose dy gjërave. Herën e tretë që e

lexon, ti e di që s’do ta kuptosh, por në atë kohë ti je mësuar me të, nuk të bezdis/mërzit tashmë".

– Arnold Sommerfeld

]Degët e termodinamikës

Degët e termodinamikës janë:

1. Termodinamika atmosferike

2. Termodinamika e çekuilibrimeve

3. Termodinamika biologjike

4. Termodinamika e fenomeneve

5. Termodinamika e vrimave të zeza

6. Psikodinamika

7. Termodinamika kimike

8. Termodinamika kuantike

9. Termodinamika klasike

10. Termodinamika statistike

11. Termodinamika e ekulibrimeve

Page 11: Enea Merja

Temperatura

Nga teksti me larte shihet qe temperatura është mase e nxehtesise( energjise termike), kurse kjo e dyta varet

nga levizja apo energjia kinetike e grimcave qe levizin ne sistem apo trup. Temperatura matet me shkalle te

celzius, kelvin apo me shkalle te Farenheit-it. Na shqipetaret preferojme shkallen e celziusit, anglo-saksonet e

preferojne ate te Farenheitit kurse njesija zyrtare internacionale (SI) është kelvini(K).Jane vlera numerike qe

bejne lidhje e ketyre njesive. Me rendesi është për tu theksuar njesija kelvin (K) me qe është e lidhur me te

ashtuquajtur temperature absolute te trupit dhe numrin -273. Ky numer na ndihmon për ta shendruer kelvinin

(K- nuk thuhet shkalle K!) ne shkalle celzius. Kjo vlere e temperatures shenon zeron absolute e cila nuk (shum

veshtire munde) te arrihet. Ja pse: Si qe thame levizja e grimcave është ajo qe shkakton nxektesise e trupit, e

cila qe te zbret aq shum sa qe temperatura e tij te jete ne vleren e zeros absolute, do te thote qe grimcat duhet

te ndalen plotesisht-mos levizin. Por edhe ne metale, edhe ne trupin e vdekur, edhe ne akull dhe trupa tjere te

ftohet nuk ka mundesi qe plotesisht te ndalen grimcat prej te cilave është e ndertuar trupi. Nje cope hekuri apo

akulli qe mbajme ne dore janë te ftohet por gjethsesi atomet ne brendesine e trupave te tyre vibrojne pa

nderpre ne rrjetat kristalore qe ndetojne trupat ne fjale.

Parimet e Termodinamikes

Jane parime te termodinamikes te cilat zbatohen ne te gjitha lemite e zbatimeve te energjese por edhe ne ligjet

e levizjeve sociologjike, bilogjike, psikologjike dhe informative.

Parimi i pare thot qe sasija e nxehtesise qe futet ne nje sistem shkon ne rritjen e energjise se

brendeshme te sistemit dhe ne kryrjen e nje pune perkunder ambjenit perreth.

Parimi i dyte apo ligji i entropise thot qe ne sistemet e izoluara entrpia e tij eshe gjithmone ne

rritje. Nderrimi i entropise se nje sistemi definohet si shume e tersishme apo integral i nderrimeve te

nxehtesise pjestuar me temperaturen e sistemit ne shqyrtim.

Kur theksojme entropine (shenohet me S, aludojme ne ndrrimin e saje por duke filluar nga vlera e saje zero.

( E njeta gje vlen edhe me definimin e potencialit apo distances).

Me nderrimin e entopise se sistemit te caktuar analizohet kahja e levizjes se proceseve fizike, kimike ,

biologjike etj. Kur nderrimi i entropise(delta S) është me i madhe se zero procesi është irreverzibil ( i pa

kethyeshem), kur nderrimi është zero procesi është reverzibil dhe kur ndrrimi ne fjale ka vleren me i vogel se

zero procesi është i pamundur.

Page 12: Enea Merja

Ketu shihet roli i gjitheanshem i ligjit te nderrimit te enropise apo parimit te dyte te termodinamikes. Me ane te

tij parashihen levizjet e proceseve ne shkence shoqeri dhe kahet rrjedhjes se informacionece.Entropia ne

aspektin informative definohet si shkalle e crregullesise. Crregullsia apo kaosi dhe rregullesia janë procese

fundamentale ne te gjitha lemite e hulumtive.

Te themi psh. qe Universi si sistem i izoluar ka nje entropi ne rritje për cka dihet qe ai zgjerohet ne menyre te

pakethyeshme. Parimi i trete ne fakt quhet parimi zero(0) i termodinamikes.Keto nuk po e trajtojme por vetem

te themi qe ai ndihmone ne definimin e teperatures dhe për ta kuptuar shum lehte, te mendojme situaten si

vijon. Kur dy madhesi janë te njejta me nje madhesi te trete atehere ato janë te njejta edhe me njera tjetren.

Keto qe u trajtuan me sipër i perkasin termodinamikes fenomenologjike. Perndryshe ekziston edhe

termodinamika statistikore qe trajtohet me ane te teorise se probabilitetit e cla është jashte fushes se veshtrimit

te paraqitur ne kete shkrim.