embedded cooling: a new thermal packaging paradigmmizsei/montech/eptc2012 keynote.pdf · embedded...

36
Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen DARPA/MTO United States EPTC 2012 14 th Electronics Packaging Technology Conference 5-7 December 2012 Resorts World Sentosa, Singapore Distribution Statement A, Approved For Public Release, Distribution Unlimited

Upload: hoangnguyet

Post on 14-Feb-2019

248 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

Embedded Cooling: A New Thermal Packaging Paradigm

Avram Bar-Cohen

DARPA/MTO

United States

EPTC 2012

14th Electronics Packaging Technology Conference

5-7 December 2012

Resorts World Sentosa, Singapore

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 2: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

2

Presentation Roadmap

Brief History of Thermal Packaging

1946 – present: 5 eras – 2 Paradigms

2000+ :Nanoelectronics Triple Threat (power-hot spots-3D)

Moore’s Law: End or Just Hiatus

DARPA Thermal Packaging Programs

Embedded Cooling Paradigm

Limitations of Remote Cooling

Near-Junction Thermal Transport

Intrachip/Interchip Microfluidic Cooling

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 3: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

http://ei.cs.vt.edu/~history/ENIAC.Richey.HTML

Electronic Numerical Integrator and Computer ENIAC (1946)

3 Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 4: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

Eras of Thermal Packaging

HVAC Era: 1945-1975 • ENIAC, IBM Mainframes • Telephone switching equipment • Vacuum tubes and early solid-state

transistors • Goal: Remove heated air from room/rack/cabinet

Rack Cooling Era: 1975-1985 • DIP’s and SMT’s on PCB’s • PCB’s in Card Cages • Goal: Maximize natural and forced

convection cooling in racks

IBM Mark I Mainframe (1950's)

Distribution Statement A, Approved For Public Release, Distribution Unlimited

IBM 360 Card Cage (1982)

Page 5: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

Eras of Thermal Packaging

Liquid/Refrigerant Cooling Era:1980-1990 • Maturation of bipolar devices: ~5W Chips,

~300W Multi Chip Modules • Honeywell, IBM, CDC, Hitachi, NEX,

Fujitsu,….mainframes/supers • Goal: Gain control over the local

“coldplate,” “cold bar” temperature

Enhanced Air Cooling Era: 1985-2000

• Thermally-engineered heat sinks for CMOS microprocessors

• Miniaturized servers create Data Center cooling challenge

• Goals: • Reduce “case-to-air” resistance

for chip package • Improve Data Center thermal

management

5

Fujitusu - 8CPU 470x580x80

1600W Airflow~3.5 m/s

IBM 3081

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 6: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

Chip Power/Heat Flux Trends (iNEMI)

6

0

100

200

300

400

500

600

2005 2006 2007 2008 2009 2010 2011 2012 2013

Year

Maxim

um

Ch

ip P

ow

er

(W)

0

50

100

150

200

250

300

350

2000 2002 2004 2006 2008 2010 2012 2014 2016

Year

Po

wer (

W), H

eat F

lux (

W/c

m2)

0

0.5

1

1.5

2

2.5

3

3.5

Ch

ip A

rea (

cm

2)

Max. Steady-State Chip Pow er

(W)

Max. Chip Heat Flux (W/cm2)

Chip Area (cm2)

Servers

Automotive

0

50

100

150

200

2000 2005 2010 2015 2020

Year

Max C

hip

Po

wer

(W)

2002

2004

2006Desk Top PC’s

Distribution Statement A, Approved For Public Release, Distribution Unlimited

0

50

100

150

200

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

0

50

100

150

200

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

2011

Page 7: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

S.M. Sri-Jayantha, G. McVicker, K. Bernstein, J.U. Knickerbocker IBM Journal,Res & Dev, 2008, Vol 52, No 6 q” hot spot = 500W/cm2, 2x2mm; q” avg = 50W/cm2, 40x40mm

Thermal Packaging Challenge Microprocessor Hot Spots (IBM, 2008)

7 Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 8: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

Heat Flux Challenge

8

0 1000 2000 3000 4000 5000 600010

-2

10-1

100

101

102

103

104

H

ea

t F

lux(W

/cm

2)

Temperature (K)

On Sun’s surface

Solar Flux On Earth’s surface

Rocket motor case

Reentry from earth orbit

Nuclear blast

Ballistic entry

Chip Hot Spots

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 9: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

(Dereje Agonafer and Bahgat Sammakia, InterPACK’05)

3D Packaging Configurations

9 Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 10: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

10

Heterogeneous Chip Stacks

Source: M. Swaminathan, Keynote Presentation ,ITherm 2012.

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 11: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

11

Next Semiconductor Revolution – 3D Integration

Source: M. Swaminathan, Keynote Presentation ,ITherm 2012.

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 12: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

12

Heat Density Challenge

Chip Stack

Human brain

Electric stove

IBM TCM Module

Cray-3 Module

Light-water nuclear reactor

Liquid Metal nuclear reactor

Mercury Vapor lamp

Halogen bulb

Home light bulb

SX-3 Module

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 13: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

High Power

Thermal Packaging “Triple Threat”

heat spreader

chip carrier

heat sink

heat sink

Hot Spots

13

Nanoelectronics Era 2000 - :

• GHz-level CMOS with features below 100 nanometers

• Power dissipation increasing, distinct on-chip “hot spots” on silicon/compound semiconductors

• Emergence of homogeneous/heterogeneous “chip stacks” denying access to back of chip for “thermal solution”

Thermal Management Goals: Remove large flux Reduce/eliminate on-chip “hot spots” Extract high heat density

3-Dimensional

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 14: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

14

Moore’s Law: Driver for the Industry

Source: M. Swaminathan, Keynote Presentation ,ITherm 2012.

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Intel I7

Source: Intel

Page 15: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

The Future of Computing Performance, Game Over or Next Level National Academies Press, 2010

Thermal Management Plateau – Performance Plateau

Mic

ropro

cess

or

Pow

er

dis

sipation (

W)

Source: Ellsworth, IBM ‘11

Source: Fuller and Millett, 2010

15

“The growth in the performance of computing systems will become limited by their power and thermal requirements within the next decade.”

Source: Ellsworth, ITHERM 2008

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 16: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

Concurrency only path left to processor designers – National Academy of Science report

16

Micro Processor Technology Landscape

CONCURRENCY • More but slower

cores. • Potentially more

performance. • Potentially more

power efficiency.

Year of Introduction

Mic

ropro

cess

or

pow

er

(watt

s)

Power limited

Transistor counts continue to increase

Meanwhile:

Tra

nsi

stor

count

Year of Introduction

2011 NRC/CSTB Study: “The Future of Computing

Performance”

Mic

ropro

cess

or

clock

fre

quency

(M

Hz)

Clock frequency stalled

Year of Introduction

Year of Introduction

SPECin

t2000 s

core

norm

aliz

ed t

o 1

985=

1

Single-threaded performance stalled

Distribution Statement A, Approved For Public Release, Distribution Unlimited

From Charles Holland - MTO

Single-threaded performance stalled!

Page 17: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

18

End of Moore’s Law or Just Hiatus

Moore’s Law progression stalled

by voltage and feature size limits

𝑓 ∝ 𝑃𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑓 ∝ ℎ𝑒𝑎𝑡

Ng = CMOS gates/unit area Cload = capacitive load/CMOS gate V = supply voltage f = clock frequency

Dennard’s Equation:

𝑓 =𝑃𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑁𝑔𝐶𝑙𝑜𝑎𝑑𝑉2

2011 NRC/CSTB Study: “The Future of

Computing Performance”

1985 1990 1995 2000 2005 2010 2015 2020 10

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Enhanced cooling can restore chip

frequency progression

Page 18: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

19

DARPA Thermal Management Programs Timeline

Heat Removal by Thermo-Integrated Circuits (HERETIC)

• 1998: DARPA PM Towe • 2001: DARPA PM Radack • 2002: HERETIC ends

Micro Cryo Coolers (MCC)

• 2006-2011: DARPA PM Dennis Polla

Technologies for Heat Removal in Electronics at the Device Scale (THREADS) • 2005-2006: DARPA PM Rosker • 2009-present: DARPA PM Albrecht

ACM

MACE NTI

TGP

98 00 02 04 06 08 10 12

TMT

MCC

THREADS

THREADS

NJTT

Thermal Management Technologies (TMT) • 2007-2010: DARPA PM Kenny • 2010-present: DARPA PM Bar-Cohen

14

ICECool

16

Intrachip Embedded Cooling (ICECool)

• 2012 - 2015: DARPA PM Bar-Cohen • ICECool will explore novel, disruptive, chip/package

level – embedded - thermal technologies in Si and non-Si electronics

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 19: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

20

Thermal Management Technologies (TMT) Program Goals (2008-2013)

• Leverage significant recent

advances in nanostructured

materials, active structures and

integrated manufacturing

• Enhance performance of DoD

systems through manipulation,

transport and rejection of waste

heat

Task Areas :

Microtechnologies for Air-Cooled Exchangers (MACE): Active surfaces and jets for enhanced heat sinks

Thermal Ground Plane (TGP): Nanostructured wicks and cases for 2-phase vapor chambers

Nano-Thermal Interfaces (NTI): Engineered, reworkable nanostructures for low resistivity TIMs

Active Cooling Modules (ACM): High COP cooler using novel TE materials and refrigeration concepts

Goal: To deliver transformative thermal management technology that will reduce

or remove thermal limitations on DoD platforms

Heat

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 20: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

21

Air-Cooled Heat Sink Approaches and Performance

MACE 1

MACE 2

MACE 5

MACE 3

MACE 4

Aavid

Wakefield

Radian

Alpha Novatech

1

10

100

1 10 100 1000

Th

erm

al R

esis

tivit

y (

K·c

m2/W

)

Base Area (cm2)

Current

COTS

Motor

Blower

Spiral

Fin-Diffuser

Active

Reeds

Motor

Blower

Spiral

Fin-Diffuser

Active

Reeds

Raytheon: Micro/Macro Fin;

Synthetic jets

MIT: 3D vapor chamber; fan/fin

integration

Honeywell: Jet-driven entrainment

Thermacore: 3D vapor chamber,

vibrating elements

United Technologies Research Center:

Integrated blower/heat sink with optimized fin

geometry

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 21: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

Motor

Blower

Spiral

Fin-Diffuser

Active

Reeds

Motor

Blower

Spiral

Fin-Diffuser

Active

Reeds

Active Heat Transfer Enhancement

0

50

100

150

200

1.5 2.0 2.5 3.0Inp

ut P

ow

er

[mW

]

Rth [C/W]

Integrated Blower & Fin-Diffuser

Integrated Design Concept

Improved performance at

decreased volume

Full-scale Phase I demo

Single-channel enhancement test bed

Results Summary

Key Design Elements

Cool air

supplyHeated

ejected

air

Reed Enhanced

Baseline

20% 75 LPM

60 LPM

• United Technologies Research Center

• Georgia Institute of Technology

• Hamilton Sundstrand

MACE Recent Progress

5

9

13

17

21

0 5 10 15 20

Ne

t P

ow

er

De

ns

ity

(k

W/m

3)

Cooling Power (W)

Baseline (Natural Convection)

MACE At design point (10 W), Phase II MACE will allow power density to be increased by 60%

Source: UTRC Source: UTRC

Source: UTRC Source: UTRC

Source: UTRC

Source: UTRC

Distribution Statement A, Approved For Public Release, Distribution Unlimited 22

Page 22: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

23

Two-Phase Spreaders: Approaches and Performance

U Colorado: flexible/conformal case with Cu nanomesh wick

UC Berkeley: two phase flow with coherent porous

silicon wick

UC Santa Barbara: large scale titanium TGP

UCLA: metallic powder + biporous wick/posts

Teledyne: CNT/Si wick structures

GE: nanostructured super hydrophobic/philic wick

Northrop Grumman: SiC oscillating heat

pipe

Raytheon: Patterned CNTs on Cu wick

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 23: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

24

Thermal Interface Materials (TIMs): Approaches and Performance

General Electric: Copper Nanosprings

Teledyne: Laminated Graphite and Solder

Georgia Tech: Well-Aligned Open-End Carbon Nanotubes

Raytheon: Double-sided Multi-walled Carbon Nanotubes

coppercopper

siliconsilicon 5 m

coppercopper

siliconsilicon 5 m

RCu-CNT = 0.9 0.5 mm2K/W

RCNT layer1 < 0.1 mm2K/W

RCNT-CNT = 2.1 0.4 mm2K/W

RCNT layer2 < 0.1 mm2K/W

RSi-CNT = 0.8 0.5 mm2K/W

Intra-Interface

Thermal Resistances

Commercial TIM data courtesy of: D. Altman (Raytheon) Y. Zhao (Teledyne)

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 24: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

NTI Recent Progress: General Electric Global Research

Compliance scales with turns for larger area bonding

Patterned GLAD, 3 turns, diameter=250nm, 550 nm pitch

Worlds 1st Cu GLAD Nanosprings

R GLAD Process

Tungsten TIM base

GLAD fabrication by Micralyne (Alberta, CA)

Source: GE

Source: GE

Source: GE

* GERC team leapfrogs to Phase 3 goals, with

GLAD fabrication of copper nano springs * More than 50% of samples providing thermal resistivities below Phase 3 goal of 0.01 cm2-K/W

Distribution Statement A, Approved For Public Release, Distribution Unlimited 25

Page 25: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

Program Final Goal

NTI Recent Progress: Teledyne Scientific

Teledyne – graphite/solder laminate

Thermal performance at 30 Psi

Thermal performance at 58 Psi

NTI Prototypes Heat flux

range

Total thermal

resistivity

Number Thickness

(m)

W/cm2 cm2 C/W

1 150 80-120 0.023

2 150 80-120 0.016

3 150 90 0.020

4 200 90 0.012

Average 0.018

NTI Prototypes Heat flux

range

Total thermal

resistivity

Number Thickness

(m)

W/cm2 cm2 C/W

1 150 80-120 0.023

2 150 80-120 0.016

3 150 90 0.020

4 200 90 0.012

Average 0.018

Microscopic Image

200 µm

NTI prototypes

Comparison with SOAs

Novel TIM – laminated layers of aligned graphite films and solder

• Thermal resistivity ~ 0.02 cm2 C/W on 150-200 µm thick prototypes at 30 Psi

• Thermal resistivity ~ 0.01 cm2 C/W on 125 µm thick prototypes at 58 Psi

Source: Teledyne Source: Teledyne

Source: Teledyne

Source: Teledyne 26 Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 26: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

28

Remote cooling paradigm: Heat rejection to a remote fluid involving thermal conduction and spreading in substrates across multiple material interfaces with associated thermal parasitics

Limitations of Remote Cooling H

eat

• Accounts for a large fraction of SWaP-C of advanced high power electronics, lasers, and computer systems

• Stymies attempts to port advanced systems

to small form-factor applications

• Frustrates attempts to reach SWaP-C

targets for electronic systems

Limitations:

• Incapable of effectively limiting the device “junction” temperature rise

• Can not selectively target the thermally-critical devices

• Can not extract heat efficiently from 3D package

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 27: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

30

High Performance Computing – IBM Supercomputers

IBM ASCI Purple Supercomputer

• Built in 2005 for Lawrence Livermore National Laboratory

• Peak compute performance = 100 Tflops • 100% air-cooled

IBM Power 775

• Built in 2011 • Peak compute performance = 93 TFlops • Integral cold plate: 100% water-cooled

Metric Remote Cooling (ASCI Purple)

Integral Cooling (Power 775)

Decrease

Weight 178,715 kg 3,410 kg 52x

Volume 1800 m3 6 m3 300x

System Power 3400 kW 175 kW 20x

Source: IBM

Source: IBM

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 28: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

Thermal Management Drives Computational Efficiency

31

In 2011 Japanese K-computer ~ 1 PetaFLOP/kW Rise in MFLOPS/W parallels rise in chip q” (W/cm2) • 1995-2005, CMOS q” from 1 W/cm2 to 10W/cm2 HPC

from ~1MFLOP/W to 200MFLOP/W (Blue Gene1).

Higher heat flux cooling can be used to improve HPC performance and energy efficiency

Power Consumption - Computation

Power Consumption - Communication

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 29: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

32

ICECool Technologies Achieve kW-level Chip Heat Dissipation

Technology Goals

• GaN MMIC PAs with 10x output power

• Microprocessors with up to 10x frequency

Areas of Focus

• Integrated Microfluidics

• Thermal Substrates and Interconnects

• Thermal Co-Design

Hea

t D

issi

pat

ed (W

)

SOA: Remote Cooling • Heat removed far from chip

• Low ∆T for heat transfer to ambient

• Limits power dissipation

• Contributes to high SWaP

ICECool: Intrachip Cooling • Heat is removed at the chip

• High ∆T for heat transfer to ambient

• Overcome SOA component thermal limits

• Reduces SWaP

Manifold Microcooler

On-Chip TECs

Evaporative Microfluidics

Source: UMD

Source: Nextreme

Serizawa and Feng (2001)

High k materials for vias/interconnects

Balandin (1999) Source: Wikipedia

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 30: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

33

Active Liquid Cooling • Eliminate impact on device

electrical properties due to time varying dielectric constant of liquid

High Thermal Conductivity Over-layer for Heat Removal from Topside of Devices

• High thermal conductivity in deposited material • Conformal coverage with no gaps

Embedded Thermal Vias • Micro-machined vias within ~1 micron

of junction • High thermal conductivity conformal fill

materials • Low coupling resistance for junction-to-

thermal via, thermal via-to-heat sink

Anisotropic Heat Transport • Efficient nanoscale phonon channel • Long LO phonon lifetime (3ps) • Extremely low electrical contact

resistance

High Thermal Conductivity Substrates • Integrate lattice-mismatched heat

spreaders • Eliminate thermal interface resistance • Match coefficient of thermal expansion

of electronic material

Substrate

Drain

Gate

Source ~ 1mm thickness

Thermal Management Technologies (TMT) Near-Junction Thermal Transport (NJTT)

Vision: Provide

localized thermal

management within

the device substrate

to increase Output

Power from WBG PA’s

by >3x

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 31: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

34

I. Passive “Thermally-Informed” Design

• Distribute functional tasks to reflect temperature distribution

• Avoid creating hot spots

II. Active Thermal Co-Design

• Functional blocks/paths and thermal elements placed in most favorable locations

• Functional blocks remapped to accommodate temperature effects

III. Fully-Integrated Thermal Co-Design

• Create passive/active thermal interconnect network

• Include local joule heating and temperature sensitivity of functionality

• optimize layout for energy consumption and functional performance

Hierarchy of Thermal-Electrical Co-Design

Source: B. Shi, A. Srivastava and A. Bar-Cohen, “Hybrid 3D-IC Cooling System Using Micro-Fluidic Cooling and Thermal TSVs “, To Appear ISVLSI, Aug 2012

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 32: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

35

ICECool Technologies and Challenges

Integrated Microfluidics & Thermal Substrates/Interconnects Thermal Co-Design

Evaporative Microfluidic Cooling

Thermal Vias and Integrated TECs

Microchannels and Microvalves Design of ICECool

Active Chips

Evaporative Microchannel Flow

Serizawa and Feng (2001)

Thin-film Thermoelectrics

Integrated high k vias

Challenges:

• Highly conductive thermal vias

• k > 1000 W/mK

• n > 1000 temp cycles

• TECs for hot spot cooling

• ΔT < 5 0C rise

• CoP > 2.5

• n > 1000 temp cycles

Challenges:

• > 90% vapor in exiting flow

• ΔT < 5 0C across chip

• CoP > 30 (Coefficient of Performance)

• Pressure drop < 10% Psat

SiC Microchannels

MEMS Valves

Challenges:

• Walls, channels in SiC and diamond

• < 50 micron thick

• >10:1 aspect ratio

• Microvalves:

• 10% to 90% control of maximum flow

• n > 1000 temp cycles

ICECool Design Schematic

Challenges:

• Evaluate impact of ICECool techniques on device performance

• Optimize placement and efficiency of thermal and electronic/RF features

• Achieve 10x in MMIC and microprocessor performance

CoP is defined as the ratio of heat removed to the power required to deliver the cooling.

Balandin (1999)

Source: Nextreme

Source: Texas Tech

Carter et al(2009)

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 33: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

Towards a New Thermal Packaging Paradigm

36

Challenges:

• Complete the Inward Migration of Thermal Packaging

• Extract heat directly from device, chip, and package

• Place thermal management on an equal footing with functional design and power delivery

Benefits:

• Allow electronic systems to reach material, electrical, optical limits

• Reduce SWaP-C for comparable performance

• Lead the way to integrated, intelligent system co-design

Enabling Technologies:

• Microfluidics – convective and evaporative

• Thermal interconnects – active/passive

• Microfabrication – channeling, hermeticity

• Thermal Co-Design

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 34: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

www.darpa.mil

37 Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 35: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

http://www.nasm.si.edu/research/dsh/artifacts/GC-CDC3800.htm http://www.cisl.ucar.edu/computers/gallery/cdc/7600.jsp

CDC Refrigerated Computers 7600 + Cyber 201/203 1971-1983

38

• Pioneering refrigeration cooled mainframe

• Refrigerant channels under large PCB’s, later Water cooled PCB’s

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Page 36: Embedded Cooling: A New Thermal Packaging Paradigmmizsei/Montech/EPTC2012 Keynote.pdf · Embedded Cooling: A New Thermal Packaging Paradigm Avram Bar-Cohen ... • ENIAC, IBM Mainframes

Water-Cooled Mainframe/Super Computers

39

Honeywell SLIC ~ 1980

NEX SX-3 ~1990

Distribution Statement A, Approved For Public Release, Distribution Unlimited