elektrik sektöründe regülasyon ve rekabet...example calculate the average and instantaneous...

60
EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 1 METU AC Power by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department

Upload: others

Post on 18-Nov-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 1

METU

AC Power

by

Prof. Dr. Osman SEVAİOĞLU

Electrical and Electronics Engineering Department

Page 2: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 2

METU

AC Power

Voltage Waveform

Consider the following AC circuit driven by a source with voltage waveform;

V(t) = Vmax cos wt

Phasor representation of this voltage waveform will then be

Vmax 0 o

V(t) = Vmax cos wt

I(t)

+

Z = R2 + X2 , = Tan-1 (X / R)

-20,0

-15,0

-10,0

-5,0

0,0

5,0

10,0

15,0

20,0

25,0

0 2 4 6 8 10 12Time (msec)

Vmax

14 16 18 20

Load = R + j X

= Z

V(t)

Page 3: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 3

METU

AC Power

Phase Shift in Voltage Waveform

Consider now, the following AC circuit driven by a a source with an AC voltage waveform;

V(t) = Vmax cos ( wt - v )

Phasor representation of the shifted voltage waveform will then be

Vmax - v

V(t) = Vmax cos ( wt - v )

I(t)

+

Z = R2 + X2 , = Tan-1 (X / R)

Load = R + j X

= Z

-20,0

-15,0

-10,0

-5,0

0,0

5,0

10,0

15,0

20,0

25,0

0 2 4 6 8 10 12Time (msec)

14 16 18 20

V(t)

Vmax

v / w = t1

t1 = 3 msec

Page 4: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 4

METU

AC Power

Current Waveform

Load = R + j X

= Z

Z = R2 + X2 , = Tan-1 (X / R)

V(t)

+I(t) = Imax cos ( wt - I )

Relation Between Voltage

and Current Phasors

Vmax v

= Imax -I

Z

-20,0

-15,0

-10,0

-5,0

0,0

5,0

10,0

15,0

20,0

25,0

Time (msec)

I(t) I / w

Imax

0 2 4 6 8 10 12 14 16 18 20

= v - I = Tan-1 ( X / R )

-20,0

-15,0

-10,0

-5,0

0,0

5,0

10,0

15,0

20,0

25,0

0 2 4 6 8 10 12Time (msec)

14 16 18 20

V(t)

Vmax

v / w = t1

t1 = 3 msec

Page 5: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 5

METU

AC Power

Current Waveform

Waveform representation of this current will then be

I(t) = Imax cos ( wt - I )

I(t) = Imax cos ( wt - I )

V(t)

Phasor representation of this current will then be

Imax -I

+

Z = R2 + X2 , I = Tan-1 ( X / R )

-20,0

-15,0

-10,0

-5,0

0,0

5,0

10,0

15,0

20,0

25,0

Time (msec)

I / w

Imax

0 2 4 6 8 10 12 14 16 18 20

Load = R + j X

= Z

I(t)

Page 6: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 6

METU

AC Power

Voltage and Current Waveforms

Please note that the angle difference v - I depends only

on the resistance R and reactance X of the load

LoadI(t)

V(t)

+

= - 53.13 ^

I

= v - I = Tan-1 ( X / R )

Vmax

-20,0

-15,0

-10,0

-5,0

0,0

5,0

10,0

15,0

20,0

25,0

0 2 4 6 8 10 12

Time (msec)

/w =(v-I )/w

14 16 18 20

V(t)

V

Page 7: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 7

METU

AC Power

AC Power - Power Expression

Voltage and current waveforms are

V(t) = Vmax cos wt

I(t) = Imax cos ( wt - )

Power waveform will then be

S(t) = V(t) x I(t)*

= Vmax cos wt x Imax cos ( wt + )

cos (a + b) = cosa cos b - sin a sin b

cos (a - b) = cosa cos b + sin a sin b+

cos (a + b) + cos (a - b) = 2 cosa cos b

cosa cos b = ½ [ cos (a + b) + cos (a-b) ]

Please note that;“-” sign here has been altered due to the conjugation operation in the definition of power:

S = V x I*

/ w =(v-I ) / w

Vmax

V(t)

-20,0

-15,0

-10,0

-5,0

0,0

5,0

10,0

15,0

20,0

25,0

0 2 4 6 8 10 12

Time (msec)

14 16 18 20-2-4

I-

I *

V

V

I cos ( wt - )

I cos ( wt + )^

^

V cos ( wt )^

V cos ( wt )^

Page 8: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 8

METU

AC Power

AC Power - Power Expression

Power waveform is the product of the

voltage and conjugate of the current

waveforms

S(t) = Vmax Imax cos wt x cos ( wt + )

cosa x cos b = ½ [ cos (a + b) + cos (a - b) ]

S(t) = ½ Vmax Imax [ cos ( wt + wt + ) +

cos ( wt - wt - ) ]

= ½ Vmax Imax [ cos ( 2wt + ) + cos ]

= (Vmax / 2 ) (Imax / 2) [ cos ( 2wt+ )+

cos ]

=Vrms Irms [ cos ( 2wt + ) + cos ]

Vrms = Vmax / 2 = v - I = Tan-1( X/R)-400

-300

-200

-100

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

V(t) Vmax*coswt

I(t) Imax*cos(wt+theta)

S(t) V(t) * I(t)

S(t)

V(t)

I(t)*

Time (msec)

Page 9: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 9

METU

AC Power

AC Power – Decomposition of Power Expression

Power expression may be decomposed

into two components

S(t) = Vrms Irms cos ( 2wt + ) + Vrms Irms cos

Sinusoidal (AC) Term Constant (DC) Term

Sinusoidal (AC) Term

-400

-200

0

200

400

2 4 6 8 10 12 14 16

Time (msec)

Constant (DC) Term

18 20

-300

-200

-100

0

100

200

300

0 2 4 6 8 10 12 14 16 18 20

S(t) V(t) * I(t)

-100

0

100

200

300

400

500

0 2 4 6 8 10 12 14 16 18 20

DC Term =S(t)avg / w

0

Time (msec)

Time (msec)

Page 10: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 10

METU

AC Power

AC Power – Average Power Expression

S(t)avg = (1/T) P(t) dt

= (1/T) Vrms Irms [ cos ( 2wt + ) + cos ] dt

= (1/T) Vrms Irms cos ( 2wt + ) dt + (1/T) Vrms Irms cos dt

S(t) = Vrms Irms [ cos ( 2wt + ) + cos ]

Average Power

T

S (t)avg = (1 / T ) S(t) dt0

zero Constant (DC) Term

Sinusoidal (AC) Term

-400

-200

0

200

400

2 4 6 8 10 12 14 16 18

Time (msec)

Constant (DC) Term

20

Average is zero Sum of these areas is zero

-300

-200

-100

0

100

200

300

0 2 4 6 8 10 12 14 16 18 20

S(t) V(t) * I(t)

+

-

0

Time (msec)

Page 11: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 11

METU

AC Power

AC Power – Average Power Expression

S (t)avg = Vrms Irms cos

S(t)avg = (1/T) P(t) dt

= (1/T) Vrms Irms cos dt

= (1/T) Vrms Irms cos dt

= (1/T) T Vrms Irms cos

= Vrms Irms cos

LoadI(t)

V(t)

+

Average Power

T

dt = T0

-100

0

100

200

300

400

500

0 2 4 6 8 10 12 14 16 18 20

DC Term = S(t)avg / w

Time (msec)

Page 12: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 12

METU

AC Power

Example

Calculate the average and instantaneous powers dissipated in the load shown below

Parameters:

Vrms = 100 Volts

Zload = 3 + j 4 Ohms = 5 53.13o Ohms

Question

Load

I(t)+

Zload = 5 53.13o

V(t) = Vmax cos wt

= 2 Vrmscos wt

= 100 2 cos wt

= 144.4 cos wt

-400

-300

-200

-100

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

V(t) Vmax*coswt

I(t) Imax*cos(wt+theta)

S(t) V(t) * I(t)

S(t)

V(t) I(t)*

S(t)avg

Time (msec)

Page 13: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 13

METU

AC Power

Example

Solution

Vmax = 100 x 2 = 144.4 Volts

I = Vmax 0o Z

= 144.4 0o 5 53.13o

= 28.8 -53.13o Amp

Irms = Imax / 2 = 28.8 / 2 = 20 Amp

I(t)+

Zload = 5 53.13o

V(t) = Vmax cos wt

= 2 Vrmscos wt

= 100 2 cos wt

= 144.4 cos wt

Load

-400

-300

-200

-100

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

V(t) Vmax*coswt

I(t) Imax*cos(wt+theta)

S(t) V(t) * I(t)

V(t) I(t)*

S(t)avg

Time (msec)

S(t)

Page 14: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 14

METU

AC Power

Example

Solution

S(t)avg = Vrms Irms cos

= 100 x 20 cos 53.13 = 1200 Watt

S(t) = V(t) I(t)

= 2 x100 cos wt x 2 x 20 cos (wt + 53.13o)

= 4000 cos wt x cos (wt + 53.13o)

Load

I(t)+

V(t) = Vmax cos wt

= 2 Vrmscos wt

= 100 2 cos wt

= 144.4 cos wtZload = 5 53.13o

Please note that;“-” sign here has been changed to “+” due to the conjugate operation in the definition of power:

S = V x I*

-400

-300

-200

-100

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

V(t) Vmax*coswt

I(t) Imax*cos(wt+theta)

S(t) V(t) * I(t)

S(t)

V(t) I(t)*

S(t)avg

Time (msec)

Page 15: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 15

METU

AC Power

Example

Solution

S(t) = 4000 cos wt x cos (wt + 53.13o)

Load

I(t)+

cosa cos b = ½ [ cos (a + b) + cos (a - b) ]

or by using the following identity;

S(t) = 2000 [cos (2wt + 53.13o) + cos 53.13o ]

V(t) = Vmax cos wt

= 2 Vrmscos wt

= 100 2 cos wt

= 144.4 cos wt Zload = 5 53.13o

-400

-300

-200

-100

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

V(t) Vmax*coswt

I(t) Imax*cos(wt+theta)

S(t) V(t) * I(t)

S(t)

V(t) I(t)*

S(t)avg

Time (msec)

Page 16: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 16

METU

AC Power

Active Power Expression

Expanding the first term in the power expression;

S(t) = Vrms Irms [ cos ( 2wt + ) + cos ]

= Vrms Irms (cos2wt cos - sin2wt sin + cos )

LoadI(t)

V(t)

+

Complex Power

cos ( a + b ) = cosa cos b - sin a sin b

and recombining the cosine terms;

= Vrms Irms [ cos ( 1 + cos2wt ) - sin 2wt sin ]

P(t) = Active power Q(t) = Reactive power

-400

-300

-200

-100

0

100

200

300

400

500

0 2 4 6 8 10 12 14 16 18 20

V(t) Vmax*coswt

I(t) Imax*cos(wt+theta)

S(t) V(t) * I(t)

S(t)

V(t) I(t)*

S(t)avg

Time (msec)

Page 17: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 17

METU

AC Power

S(t) = Vrms Irms [ cos ( 1 + cos2wt ) - sin2wt sin ]

= Vrms Irms cos ( 1 + cos2wt ) - Vrms Irms sin sin2wt

= Vrms Irms cos ( 1 + cos2wt ) - Qmax sin2wt

Complex Power

Qmax = Vrms Irms sin

¼ Period = 2.5 msec P(t)avg

P(t) =Active power

Q(t) = Reactive power

-200

-100

0

100

200

300

400

500

0 2 4 6 8 10 12 14 16 18 20

S(t) V(t) * I(t)

P(t) Vrms Irms*cos(Theta)*(1+cos(2*wt))

Q(t) -Vrms Irms*SIN(Theta)*SIN(2*wt)

S(t)

P(t)

Time (msec)Q(t)

Page 18: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 18

METU

AC Power

Q(t) = - Qmax sin 2wt

Active and Reactive Powers – Summary

Active power

Reactive power

S(t) = Vrms Irms cos ( 1 + cos2wt ) - Vrms Irms sin sin2wt

P(t)avg = Vrms Irms cos

Marmara, Unimar Power Plant 470 MW

¼ Period = 2.5 msec P(t)avg

-200

-150

-100

-50

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18 20

P(t) Vrms Irms*cos(Theta)*(1+cos(2*wt))

Q(t) -Vrms Irms*SIN(Theta)*SIN(2*wt)

Q(t)

P(t)

Time (msec)

Page 19: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 19

METU

AC Power

AC Power

Active and Reactive Power Waveforms

Full period = 10 msec

¼ period = 2.5 msec

¼ period = 360o / 4 = 90o

Power (P, Q)

V(t)

+

Load

P(t) = Active power

Q(t) =Reactive power

¼ Period = 2.5 msec P(t)avg

-200

-150

-100

-50

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18 20

P(t) Vrms Irms*cos(Theta)*(1+cos(2*wt))

Q(t) -Vrms Irms*SIN(Theta)*SIN(2*wt)

Q(t)

P(t)

Time (msec)

Page 20: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 20

METU

AC Power

P

Q

2.5 msec 90o

AC Power

Active and Reactive Power Waveforms

One revolution = 10 msec

Hence,

2.5 msec = 360o / 4 = 90o

Please note that Q leads P by 90o

P(t) = Active power

Q(t) =Reactive power

¼ Period = 2.5 msec P(t)avg

-200

-150

-100

-50

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18 20

P(t) Vrms Irms*cos(Theta)*(1+cos(2*wt))

Q(t) -Vrms Irms*SIN(Theta)*SIN(2*wt)

Q(t)

P(t)

Time (msec)

Page 21: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 21

METU

AC Power

V(t) +

Load

Active Power (P)

P(t) = Vrms Irms cos ( 1 + cos2wt )

= Vrms Irms cos + Vrms Irms cos cos2wt

P (t)avg P(t) sinusoidal

AC Power

Active Power Waveform

P(t) = Active Power (Watt)

P(t)avg = 150 W

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18 20

Time (msec)

Page 22: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 22

METU

AC Power

AC Power

Reactive Power Waveform

V(t)

+

Load

Reactive Power (Q)

Q(t) = Vrms Irms sin x sin2wt

= Qmax sin 2wt

Q(t) sinusoidal Q max

¼ Period = 2.5 msec

-200

-150

-100

-50

0

50

100

150

200

0 2 4 6 8 10 12 14 16 18 20

Q(t) -Vrms Irms*SIN(Theta)*SIN(2*wt)

Q(t)

Q(t), Reactive Power (VAR)

Time (msec)

Page 23: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 23

METU

AC Power

AC Power

Reactive Power Waveform

(During the first 5 mseconds)

Load

Reactive Power (Q)

V(t)

+

Q max

Q(t), Reactive Power (VAR)

-200,0

-150,0

-100,0

-50,0

0,0

50,0

100,0

150,0

200,0

0 2 4 6 8 10 12 14 16 18 20

Time (msec)

¼ Period = 2.5 msec

Page 24: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 24

METU

AC Power

AC Power

Reactive Power Waveform

(During the next 5 mseconds)

Load

Reactive Power (Q)

V(t)

+

Q(t), Reactive Power (VAR)

-200,0

-150,0

-100,0

-50,0

0,0

50,0

100,0

150,0

200,0

0 2 4 6 8 10 12 14 16 18 20

Time (msec)

¼ Period = 2.5 msecQ max

Page 25: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 25

METU

AC Power

Mean of P(t) is called active power

Peak of Q(t) is called reactive power

Qmax = 160 VAR

Phosors Representation of Active and Reactive Powers

-200,0

-150,0

-100,0

-50,0

0,0

50,0

100,0

150,0

200,0

0 2 4 6 8 10 12 14 16 18 20

Time (msec)

P(t) = Active Power (Watt)

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18 20

Q(t), Reactive Power (VAR)

P(t)avg = 150 WTime (msec)

Page 26: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 26

METU

AC Power

Angular speed: w = 2 f

= 2 x 3.14 x 50 = 314 rad/sec

Time for one revolution = 1/f = 1/ 50 = 0.020 sec

= 20 msec

Hence,

Angle for ¼ revolution = 360o / 4 = 90o

Time for ¼ revolution = 20 msec / 4 = 5 msec

Phosors Representation of Active and Reactive Powers

Active and Reactive Power

Voltage and Current

Angular speed: w’ = 2 w = 4 f

= 2 x314 = 628 rad/sec

Time for one revolution = 10 msec

Time for ¼ revolution = 10 msec / 4 = 2.5 msec

Angle = 90o, Time for ¼ revolution = 20/4 =5 msec

Page 27: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 27

METU

AC Power

V

- 53.13o

S = V x I *

I *53.13o

I

Phosors Representation of Active and Reactive Powers

Power (P, Q, S)

V(t)

+

S(t) = V(t) x I(t)

Load

0 2 6 8 10 12Time (msec)

14 18 20-2-4

I(t)

S(t)

4 16

-100

-50

0

50

100

150

V(t)

Page 28: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 28

METU

AC Power

Phosors Representation of Active and Reactive Powers

S^

P = S cos

Q = S sin

QS

= 53.13 o

PPower (P, Q, S)

|Q | = Vrms Irms sin

|P | = Vrms Irms cos Active power

Reactive power

|S | = Vrms IrmsTotal power

|S | = P2 + Q2

V(t) +

S(t) = V(t) x I(t)

Load

Page 29: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 29

METU

AC Power

Please note that this angle depends only on the resistance R and reactance X of the load, i.e.

= Tan-1 X / R

= Tan-1 Q / P

Phosors Representation of Active and Reactive Powers

(k) VA (kVA)

(k) VAR (kVAR)

P- Active power

Q - Reactive power

(k) Watt (kW)

S - Total power

S^

P = S cos

Q = S sin

QS

= 53.13 o

P

Page 30: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 30

METU

AC Power

Basic Conversions

Please note that this angle depends only on the resistance R and reactance X of the load

= Tan-1 X / R

= Tan-1 Q / P

S

Polar

Representation

Rectangular

Representation P = S cos , Q = S sin

S = P2 + Q2 , = Tan-1 (Q / P)

P + j Q

X / R = Q / P

i.e. if X = 0 Q = 0

S^

QS

= 53.13 o

PP =S cos

Q =S sin

Page 31: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 31

METU

AC Power

AC Power

Active Reactive Powers

(in the first 5 mseconds)

Wagon P Active Power

(kW)

Railway

S Total (Complex) Power(kVA)

Q Reactive Power(kVAR)

Page 32: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 32

METU

AC Power

AC Power

Active Reactive Powers

(in the next 5 mseconds)

Railway

Wagon P Active Power(kW)

S Total (Complex) Power(kVA)

Q Reactive Power(kVAR)

Page 33: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 33

METU

AC Power

AC Power

Active Reactive Powers

P Active Power(kW)

Q Reactive Power(kVAR)

Wagon

0 20

40

60

80

100

120

140

160

180

200

02

46

810

12

14

16

18

20

-200

-150

-100

-50

0,0

50

100

150

200

0 2 4 6 8 10 12 14 16 18 20

Time (msec)

Tim

e (m

sec)

S

P(t) average > 0

Total Power(kVA)

Active Power(kW)

P

Reactive Power(kVAR)

Q

Railway

Wagon

Page 34: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 34

METU

AC Power

Active-Reactive Powers

P, Active Power(kW)

S, Total Power(kVA)

Q, Reactive Power(kVAR)

S

Polar

Representation

Rectangular

Representation

P + j Q

P = S cos , Q = S sin

S = P2 + Q2 , = Tan-1 (Q / P)

Wagon

Total Power(kVA)

Active Power(kW)

P

Reactive Power(kVAR)

Q

Railway

S

Page 35: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 35

METU

AC Power

S,

Total Power

(kVA)

P, Active Power

(kW)

S, Total (Complex) Power

(kVA)

Q, Reactive Power

(kVAR)

Wagon

Total Power(kVA)

Active Power(kW)

P

Reactive Power(kVAR)

Q

Railway

Active-Reactive Powers

S

|Q | = Vrms Irms sin

|P | = Vrms Irms cos Active power

Reactive power

|S | = Vrms IrmsTotal power

|S | = P2 + Q2

Page 36: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 36

METU

AC Power

Power Meters

Analog Digital Power Analyzer

Clamp Type Current Transformers

Page 37: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 37

METU

AC Power

Reactive Power Compensation

Reactive power compensation is partial or full

cancellation of the reactive component of complex

power by introducing a negative (compensation)

component

Definition

P, Active Power(kW)

S, Total Power(kVA)

Q, Reactive Power(kVAR)

P, Active Power

(kW)

Snew, Total Power(kVA)

new

Qnew

Reactive Power(kVAR)

Qcomp., Reactive Power Compensation (kVAR)

Page 38: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 38

METU

AC Power

Power Factor

Cosine of the angle between S and P is

called Power Factor of the load

P, Active Power(kW)

S, Total Power(kVA)

Q, Reactive Power(kVAR)Definition

Power Factor = p.f. = cos = cos ( Tan-1 Q / P )

Please note that reducing Q means reducing the angle , and hence increasing power factor

Hence, reactive power compensation is sometimes called as “Power Factor Correction”, i.e. correcting power factor to a value near unity

P, Active Power(kW)

Snew, Total Power(kVA)

new

Qnew

Reactive Power(kVAR)

Qcomp., Reactive Power Compensation (kVAR)

Page 39: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 39

METU

AC Power

Full or Partial Compensation

Partial Compensation

Power Factornew = p.f.new = cos new

= cos ( Tan-1 Qnew / P )

P, Active Power(kW)

Snew, Total Power(kVA)

new

Qnew

Reactive Power(kVAR)

Partial compensation is the case, where Power Factor is raised to a value not reaching unity

Full Compensation

Power Factornew = p.f.new = cos new

= cos ( Tan-1 0 / P ) = 1

Full compensation is the case, where Power Factor is unity

P, Active Power(kW)

Snew = Pnew = 0Qnew= 0

P, Active Power(kW)

S, Total Power(kVA)

Q, Reactive Power(kVAR)

Page 40: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 40

METU

AC Power

Charging Principle Applied by TEDAS

If

Q / P > 1/3

Then, reactive power is charged

If

Q / P < 1/3

Then, reactive power is freeP, Active Power

(kW)

S, Total Power(kVA)

Q, Reactive Power(kVAR)

Please note that

Q / P > 1/3

means;

Tan-1 (1/3) = 18.435o

cos 18.435o = 0.949 0.95

Page 41: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 41

METU

AC Power

Why Partial Compensation is Preferred ?

Partial Compensation

+

_

P + j QP + j Qnew

j Qcomp

Qcomp = Q = Q – Qnew

P = 3000 kW

p.f. = 0.65

= 49.46o (lag)

Q = 3507 kVAR

Due to economic reasons, full compensation is rarely implemented

Reactive power needed to raise p.f. from 0.95 to 1 is the same as that for raising p.f. from 0.83 to 0.95 (not worthwhile)

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

0,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00

Power Factor

Qcomp (MVAR)

Reactive power needed to

raise p.f. from 0.83 to 0.95 Reactive power needed

to raise p.f. from 0.95 to unity

Page 42: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 42

METU

AC Power

Application of Reactive Power Compensation

Cross

Section

Current

Capacity

( mm2 ) ( Amp )

1.0 12.0

1.5 16.0

2.5 21.0

4.0 27.0

6.0 35.0

10.0 48.0

16.0 65.0

25.0 88.0

35.0 110.0

50.0 140.0

70.0 175.0

95.0 215.0

120.0 225.0

Cross section (size) of the

cable (mm2)

Reduction of

Equipment Loading

• Transformers • Lines • Cables

are priced with respect to the power rating (kVA)

Prices of these equipments on the other hand, are determined by the cross-section ( mm2 ) of the equipment

Page 43: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 43

METU

AC Power

Reduction of Equipment

LoadingCable roller

Hence, the power rating S (kVA) of a cable is merely determined by the cross section, which must be minimized in order to reduce the investment to be made for the cable

Application of Reactive Power Compensation

Page 44: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 44

METU

AC Power

Power (S)

Load

V(t)

+ S(t) = V(t) x I(t)

Reduction of Equipment

Loading

Hence, S (kVA) must be minimized

Application of Reactive Power Compensation

Hence, the power rating S (kVA) of a cable is merely determined by the cross section, which must be minimized in order to reduce the investment to be made for the cable

S^

P = S cos

Q = S sin

QS

= 53.13 o

P

Page 45: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 45

METU

AC Power

Alternative Ways of Reducing S (kVA)

Alternative Ways of Reducing S (kVA)

Q, Reactive Power

(kVAR)

Qc, Compensation

(kVAR)

P, Active Power

(kW)

S, Total Power

(kVA)

P, Active Power

(kW)

Snew, Total Power

(kVA)

new

QnewReactive Power

(kVAR)

Please note that active power does not

change after compensation

a) Reducing the overall loading;

P + jQ (kW + j kVAR) (Overall comsumption)

Unreasonable, since the active consumption P

is determined by the needs of the comsumer,

who consumes electricity

a) Reducing only Q (kVAR) Possible, reasonable

Page 46: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 46

METU

AC Power

Example

Question

The factory shown on the RHS draws a load at 6300 V nominal voltage

P + j Q = 120 kW + j 140 kVAR

Calculate the amount of reactive power needed in order to raise the power factor of the factory to 0.95 (Lagging)

TEDAŞ 6300 V (rms) Mains+

_

P + j QP + j Qnew

j Qcomp

Qcomp = Q = Q – Qnew

3 km O/H line

P + j Q = 120 kW + j 140 kVAR

Page 47: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 47

METU

AC Power

Example

Answer

Tan = Q / P = 140 / 120 = 1.1667

= Tan -1 1.167 = 49.40o

p.f.: cos = 0.65 (lagging)

Q =140 kVAR

P = 120 kW

P = 120 kW

Snew, Total Power(kVA)

new

Qnew = 39.43 (kVAR)

Uncompensated (Given) Case

Compensated Case

cos new = 0.95,

new = cos -1 0.95 = 18.19o

Tan new = Tan 18.19o = 0.3286Tan new = Qnew / P Qnew = 0.3286 x P

= 39.43 kVAR

Qcomp = Q = Q – Qnew = 140 – 39.43 = 100.57 kVAR

S Total Power(kVA)

Qcomp., Reactive Power Compensation (kVAR)

Page 48: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 48

METU

AC Power

Example

Question

Now, for the previous problem, calculate the reduction in line losses as a result of this compensation by assuming that line impedance is

R + j X = 10 + j 20 Ohms

P + j QP + j Qnew

j Qcomp+

_

Qcomp = Q = Q – Qnew

3 km O/H line

R + jX = 10 + j20 Ohms

P + j Q = 120 kW + j 140 kVAR

TEDAŞ 6300 V Mains

Page 49: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 49

METU

AC Power

Example

P + j QP + j Qnew

j Qcomp+

_

Qcomp = Q = Q – Qnew

3 km O/H line

R + jX = 10 + j20 Ohms

P + j Q = 120 kW + j 140 kVAR

S = V I* I = S / V = 1402 + 1202 / 6300

= 184.39 x 1000 / 6300 = 29.268 Amp

Snew = V Inew* I new = 39.432 + 1202 / 6300

= 126.312 x 1000 / 6300 = 20.049 Amp

Ploss = 8566.39 – 4019.84

= 4546.55 Watts

TEDAŞ 6300 V Mains

Ploss = R I 2 = 10 x 29.2682 = 8566.39 Watts

Ploss-new = R Inew2 = 10 x 20.4952 = 4019.84 Watts

Page 50: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 50

METU

AC Power

Example

Now, calculate the return rate of the investment to be made for the compensator, by assuming that the retail price of electricity is 16 Cents/kWh and price of capacitor is 184.41 USD/kVAR

Ploss = 8566.39 – 4019.84 = 4546.55 Watts

Investment = 100.57 kVAR * 184.41 USD/kVAR

= 18546,11 USD

Saving = 4546.55 / 1000 * 16 Cent/kWh/ 100

= 0.7274 USD / hour

Return Rate = Investment / Saving

= 10057.00 / 0.7274

= 13825.9 hours = 576.8 days = 1.58 years

Page 51: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 51

METU

AC Power

Example

P + j QP + j Qnew

j Qcomp

+

_

Qcomp = Q = Q – Qnew

3 km O/H line

R + jX = 10 + j20 Ohms

P + j Q = 120 kW + j 140 kVAR

TEDAŞ 6300 V Mains

Question

Now, for the previous problem, determine the minimum cross section of the line for the alternative cases, when line is compansated and uncompensated

Iinitial = 29.268 Amp

Inew = 20.495 Amp

Cross

Section

Current

Capacity

( mm2 ) ( Amp )

1.0 12,0

1.5 16,0

2.5 21,0

4.0 27,0

6.0 35,0

10.0 48,0

16.0 65,0

25.0 88,0

35.0 110,0

50.0 140,0

70.0 175,0

95.0 215,0

120.0 225,0

The cheaper alternative

Page 52: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 52

METU

AC Power

Question

P + j QP + j Qnew

j Qcomp+

_

3 km O/H line

R + jX = 10 + j 20 Ohms

Qcomp = Q = Q – Qnew

P + j Q = 120 kW + j 140 kVAR

Now, for the previous problem, calculate the shunt capacitance in Farads needed for the amount of compensation found above

Qcomp = Q = Q – Qnew = 140 – 39.43 = 100.57 kVAR

Qcomp = V Icomp* Icomp = Qcomp / V = 100570 VA /6300 V = 15.963 Amp

Xcomp = V / Icomp = 6300 / 15.963 = 394.65 Ohms

Xcomp = 1 / ( jwC )

C = 1 / ( jwX ) = 1 / (314.15 x 394.65) = 123.98 mF

TEDAŞ 6300 V Mains

Question

Icomp

Qnew = Q + Qcomp

Qcomp < 0

Page 53: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 53

METU

AC Power

Medium Voltage Capacitor Banks

Shunt connection of large capacity capacitors in power systems

Page 54: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 54

METU

AC Power

Installation of MV Capacitor

Banks

Page 55: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 55

METU

AC Power

Electronic Capacitors in a Motherboard

Page 56: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 56

METU

AC Power

• Early in the history or electricity, Thomas Edison's General Electric company was distributing DC electricity at 110 volts in the United States.

• Then Nikola Tesla the devised a system of three-phase AC electricity at 240 volts. Three-phase meant that three alternating currents slightly out of phase were combined in order to even out the great variations in voltage occurring in AC electricity. He had calculated that 60 cycles per second or 60Hz was the most effective frequency. Tesla later compromised to reduce the voltage to 110 volts for safety reasons.

Another Example

Page 57: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 57

METU

AC Power

• Europe goes to 50 Hz:

• With the backing of the Westinghouse Company, Tesla's AC system became the standard in the United States. Meanwhile, the German company AEG started generating electricity and became a virtual monopoly in Europe. They decided to use 50Hz instead of 60 Hz to better fit their metric standards, but they kept the voltage at 110 V.

• Unfortunately,

• 50 Hz AC has greater losses and is not as efficient as 60 HZ.

Another Example

Page 58: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 58

METU

AC Power

• Due to the slower speed, 50Hz electrical generators are 20% less effective than 60Hz generators. Electrical transmission at 50 Hz is about 10-15 % less efficient. 50Hz transformers require larger windings and 50 Hz electric motors are less efficient than those meant to run at 60Hz. They are more costly to make to handle the electrical losses and the extra heat generated at the lower frequency.

• Europe goes to 220 V

• Europe stayed at 110 V AC until the 1950s, just after World War II. They then switched over to 220 V for better efficiency in electrical transmission. Great Britain not only switched to 220 V, but they also changed from 60Hz to 50Hz to follow the European lead. Since many people did not yet have electrical appliances in Europe after the war, the change-over was not that expensive for them.

• U.S. stays at 110 V, 60Hz

Another Example

Page 59: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 59

METU

AC Power

• The United States also considered converting to 220 V for home use but felt it would be too costly, due to all the 110V electrical appliances people had. A compromise was made in the U.S. in that 220 V would come into the house where it would be split to 110 V to power most appliances. Certain household appliances such as the electric stove and electric clothes dryer would be powered at 220 V.

Another Example

Page 60: Elektrik Sektöründe Regülasyon ve Rekabet...Example Calculate the average and instantaneous powers dissipated in the load shown below Parameters: V rms = 100 Volts Z load = 3 +

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 60

METU

AC Power

Did everybody follow this part

carefully ?