electronic supplementary information · fig. s13 xrd patterns of the cs 3 sb 2 i 9 (a)...

14
1 Electronic Supplementary Information Top-down synthesis of single layered Cs4CuSb2Cl12 halide perovskite nanocrystals for pho- toelectrochemical application Xu-Dong Wang, Nai-Hua Miao, Jin-Feng Liao, Wen-Qian Li, Yao Xie, Jian Chen, Zhi-Mei Sun, Hong-Yan Chen, and Dai- Bin Kuang* a Xu-Dong Wang and Nai-Hua Miao contributed equally. Fig. S1 SEM image (a) and EDX spectrum (b) of the Cs4CuSb2Cl12 microcrystals. Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Upload: others

Post on 14-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electronic Supplementary Information · Fig. S13 XRD patterns of the Cs 3 Sb 2 I 9 (a) microcrystals and Cs 3 Bi 2 I 9 (b) microcrystals. Fig. S14 The XRD patterns of Cs 3 Sb 2 X

1

Electronic Supplementary Information

Top-down synthesis of single layered Cs4CuSb2Cl12 halide perovskite nanocrystals for pho-

toelectrochemical application

Xu-Dong Wang,† Nai-Hua Miao,† Jin-Feng Liao, Wen-Qian Li, Yao Xie, Jian Chen, Zhi-Mei Sun, Hong-Yan Chen, and Dai-Bin Kuang*a

†Xu-Dong Wang and Nai-Hua Miao contributed equally.

Fig. S1 SEM image (a) and EDX spectrum (b) of the Cs4CuSb2Cl12 microcrystals.

Electronic Supplementary Material (ESI) for Nanoscale.This journal is © The Royal Society of Chemistry 2019

Page 2: Electronic Supplementary Information · Fig. S13 XRD patterns of the Cs 3 Sb 2 I 9 (a) microcrystals and Cs 3 Bi 2 I 9 (b) microcrystals. Fig. S14 The XRD patterns of Cs 3 Sb 2 X

2

Fig. S2 XRD patterns of Cs4CuSb2Cl12 NCs and microcrystals.

Fig. S3 XPS spectra of Cs4CuSb2Cl12 before and after ultrasonic exfoliation: (a) Cs, (b) Cu, (c) Sb and (d)

Cl.

Page 3: Electronic Supplementary Information · Fig. S13 XRD patterns of the Cs 3 Sb 2 I 9 (a) microcrystals and Cs 3 Bi 2 I 9 (b) microcrystals. Fig. S14 The XRD patterns of Cs 3 Sb 2 X

3

Fig. S4 Photographs of ultrasonic exfoliation Cs4CuSb2Cl12 microcrystal in DMSO, DMF and NMP.

Fig. S5 TEM images of ultrasonic exfoliation Cs4CuSb2Cl12 nanocrystal in different solvents: (a) Toluene,

(b) CCl4, (c) Ethyl acetate, (d) Hexane.

四氯化碳 3nm量子点

甲苯 Toluene

3nm的颗粒

正己烷少量量子点~5nm

Solvents

Supporting information

在相同的条件下,在不同溶剂中超声剥离后Cs4CuSb2Cl12的的透射电镜表征。

a b

c d

乙酸乙酯几乎没有

Figure S4 TEM image of liquid-phase exfoliation Cs4CuSb2Cl12 in different solvents: (a)

Toluene, (b) CCl4, (c) EAC, (d) HEX.

50 nm 50 nm

50 nm 50 nm

Page 4: Electronic Supplementary Information · Fig. S13 XRD patterns of the Cs 3 Sb 2 I 9 (a) microcrystals and Cs 3 Bi 2 I 9 (b) microcrystals. Fig. S14 The XRD patterns of Cs 3 Sb 2 X

4

Fig. S6 (a) Schematic illustration of HCl assisted ultrasonic exfoliation in CH2Cl2. (b) Photographs of liq-

uid-phase exfoliation with and without HCl. TEM image of Cs4CuSb2Cl12 nanocrystals in CH2Cl2 without

HCl (c) and with HCl (d) after sonication and centrifugation with 500 rpm.

Fig. S7 XRD patterns of Cs4CuSb2Cl12 NCs obtained using different solvents (CHCl3, CCl4, toluene) and

by HCl assisted ultrasonic exfoliation in CH2Cl2.

CH2Cl2 CH2Cl2+HCl

a b

c d

pH indicator strips

Figure S5 (a) Schematic illustration of HCl assisted liquid-phase exfoliation in CH2Cl2. (b) Photographs of liquid-phase

exfoliation with and without HCl. TEM image of Cs4CuSb2Cl12 nanocrystals in CH2Cl2 without HCl (c) and with (d) HCl

after sonication and centrifugation with 500 rpm.

通入HCl气体验证HCl分子促进超声剥离

未通入HCl分子

通入HCl分子

Result & Discussion

HCl分子促进超声剥离

50 nm100 nm

Page 5: Electronic Supplementary Information · Fig. S13 XRD patterns of the Cs 3 Sb 2 I 9 (a) microcrystals and Cs 3 Bi 2 I 9 (b) microcrystals. Fig. S14 The XRD patterns of Cs 3 Sb 2 X

5

Fig. S8 TEM images of Cs4CuSb2Cl12 nanocrystals ultrasonic exfoliation in CHCl3 after centrifugation un-

der different speeds: (a) 500 rpm, (b) 1000 rpm, (c) 2000 rpm, (d) 4000 rpm.

Fig. S9 Photograph (a) and concentration (b) of Cs4CuSb2Cl12 nanocrystals in CHCl3 prepared after ultra-

sonication and centrifugation with different speeds.

Page 6: Electronic Supplementary Information · Fig. S13 XRD patterns of the Cs 3 Sb 2 I 9 (a) microcrystals and Cs 3 Bi 2 I 9 (b) microcrystals. Fig. S14 The XRD patterns of Cs 3 Sb 2 X

6

Fig. S10 Cs4CuSb2Cl12 NCs prepared by ultrasonication in CHCl3 without OA.

Fig. S11 XRD patterns of the Cs3Sb2Cl9 (a) microcrystals and Cs3Sb2Br9 (b) microcrystals.

Fig. S12 XRD patterns of the Cs3Bi2Cl9 (a) microcrystals and Cs3Bi2Br9 (b) microcrystals.

Page 7: Electronic Supplementary Information · Fig. S13 XRD patterns of the Cs 3 Sb 2 I 9 (a) microcrystals and Cs 3 Bi 2 I 9 (b) microcrystals. Fig. S14 The XRD patterns of Cs 3 Sb 2 X

7

Fig. S13 XRD patterns of the Cs3Sb2I9 (a) microcrystals and Cs3Bi2I9 (b) microcrystals.

Fig. S14 The XRD patterns of Cs3Sb2X9 and Cs3Bi2X9 before and after exfoliation. (The XRD patterns of

the as-prepared Cs3Sb2Cl9 matches with the α-Cs3Sb2Cl9 phase. Other peaks are assigned to a secondary

phase (No. ICSD 2066).)

a b c

d e f

Page 8: Electronic Supplementary Information · Fig. S13 XRD patterns of the Cs 3 Sb 2 I 9 (a) microcrystals and Cs 3 Bi 2 I 9 (b) microcrystals. Fig. S14 The XRD patterns of Cs 3 Sb 2 X

8

Fig. S15 Cs3Sb2Cl9 NCs in CHCl3 after sonication 60 min and centrifugation at 500 rpm.

Fig. S16 UV-Vis spectra of Cs3Sb2X9 microcrystals (a) and NCs (b); (c, d) corresponding Tauc plots.

颗粒尺寸10-20nm延长超声剥离时间能够将Cs3Sb2Cl9 剥离得到小尺寸纳米晶

Cs3Sb2Cl9 剥离处理后透射电镜形貌图

100 nm

Page 9: Electronic Supplementary Information · Fig. S13 XRD patterns of the Cs 3 Sb 2 I 9 (a) microcrystals and Cs 3 Bi 2 I 9 (b) microcrystals. Fig. S14 The XRD patterns of Cs 3 Sb 2 X

9

Fig. S17 UV-Vis spectra of Cs3Bi2X9 microcrystals (a) and NCs (b); (c, d) corresponding Tauc plots.

Fig. S18 Photoluminescence spectra of the Cs4CuSb2Cl12 NCs.

Page 10: Electronic Supplementary Information · Fig. S13 XRD patterns of the Cs 3 Sb 2 I 9 (a) microcrystals and Cs 3 Bi 2 I 9 (b) microcrystals. Fig. S14 The XRD patterns of Cs 3 Sb 2 X

10

Fig. S19 Electronic band structures of the bulk Cs4CuSb2Cl12.

Fig. S20 (a, b) UPS characteristics of Cs4CuSb2Cl12 NCs film, (c) Schematic diagram of the band structure

for Cs4CuSb2Cl12 NCs.

Page 11: Electronic Supplementary Information · Fig. S13 XRD patterns of the Cs 3 Sb 2 I 9 (a) microcrystals and Cs 3 Bi 2 I 9 (b) microcrystals. Fig. S14 The XRD patterns of Cs 3 Sb 2 X

11

Fig. S21 TA spectra at infrared region indicated delay time from 50 ps to 5 ns.

Fig. S22 SEM images (a-c) and inset, a photograph of Cs4CuSb2Cl12 NCs deposited on the FTO, (d) UV-

Vis-NIR spectra of the of Cs4CuSb2Cl12 film.

Page 12: Electronic Supplementary Information · Fig. S13 XRD patterns of the Cs 3 Sb 2 I 9 (a) microcrystals and Cs 3 Bi 2 I 9 (b) microcrystals. Fig. S14 The XRD patterns of Cs 3 Sb 2 X

12

Fig. S23 Stability tests of Cs4CuSb2Cl12 NCs: (a) heating at 80 ℃ (b) exposing to humidity of 65%, and

(c) illumination at 100 mWcm-2.

a b

c

Page 13: Electronic Supplementary Information · Fig. S13 XRD patterns of the Cs 3 Sb 2 I 9 (a) microcrystals and Cs 3 Bi 2 I 9 (b) microcrystals. Fig. S14 The XRD patterns of Cs 3 Sb 2 X

13

Table S1. Experimental and calculated structural parameters and bandgap of bulk Cs3Sb2Cl9,

Cs3Sb2Br9, Cs3Sb2I9 and Cs4CuSb2Cl12.

Table S2. Experimental and calculated structural parameters and bandgap of monolayer Cs3Sb2Cl9,

Cs3Sb2Br9, Cs3Sb2I9 and Cs4CuSb2Cl12.

Cs3Sb2Cl9 Cs3Sb2Br9 Cs3Sb2I9 Cs4CuSb2Cl12

a (Å) 7.594 7.935 8.444 13.167

b (Å) 7.594 7.935 8.444 7.315

PBE Eg(eV) 2.72 2.27 2.08 2.01

HSE06(PBE+U) Eg(eV) 3.47 2.93 2.61 0.68(0.91)

Expt. Eg(eV) 3.05 2.58 2.30 1.6

Cs3Sb2Cl9 Cs3Sb2Br9 Cs3Sb2I9 Cs4CuSb2Cl12

GGA Expt.

GGA Expt.

GGA Expt.

GGA Expt.

PBE PBE PBE PBE

a (Å) 7.645 7.610 7.976 7.930 8.458 8.348 13.175 13.026

b (Å) 7.645 7.610 7.976 7.930 8.458 8.348 7.349 7.327

c (Å) 9.370 9.320 9.820 9.716 21.268 20.928 13.161 13.006

a (°) 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00

β (°) 90.00 90.00 90.00 90.00 90.00 90.00 112.36 111.98

PBE Eg(eV) 2.42 2.91 1.90 2.51 1.73 2.02 0 1.02

HSE06

(PBE+U) Eg(eV) 3.03 - 2.52 - 2.30 -

0.48

(0.80) -

Page 14: Electronic Supplementary Information · Fig. S13 XRD patterns of the Cs 3 Sb 2 I 9 (a) microcrystals and Cs 3 Bi 2 I 9 (b) microcrystals. Fig. S14 The XRD patterns of Cs 3 Sb 2 X

14

Please note that: Usually, the HSE06 functional could well reproduce the experimental band gap

of most compounds as shown in Table S1, except for the gap of Cs4CuSb2Cl12 which is greatly

underestimated. While the GGA-PBE underestimates all the gaps or even gives wrong value as

often observed in the Cu-based compounds. [1-3] Therefore, in order to better reproduce the experi-

mental electronic band gap of the bulk and single-layer Cs4CuSb2Cl12, the GGA+U approach,

which shows better agreement with our experiments, has been adopted for the electronic band

structure and density of states.

References

1 M. Heinemann, B. Eifert, C. Heiliger, Phys. Rev. B: Condens. Matter Mater. Phys., 2013, 87,

115111.

2 R. Laskowski, P. Blaha, K. Schwarz, Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 67,

075102.

3 M. Nolan, S. D. Elliott, Phys. Chem. Chem. Phys., 2006, 8, 5350.