electromagnetic brain mapping physiology of source signals · the resting and active brain:...

98
Sylvain Baillet McConnell Brain Imaging Centre Montreal Neurological Institute McGill University [[email protected]] Google it! ’MEG MNI ’ Electromagnetic Brain Mapping Physiology of source signals

Upload: others

Post on 04-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Sylvain Baillet

McConnell Brain Imaging CentreMontreal Neurological InstituteMcGill University

[[email protected]]

Google it! ’MEG MNI ’

Electromagnetic Brain MappingPhysiology of source signals

Page 2: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Ongoing background brain activity (MEG)

[1.5-40] Hz

Amplitude scale

Page 3: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Ongoing background brain activity (MEG)

Amplitude scale

[40-350] Hz

Page 4: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Withsubject

Withoutsubject

Hamalainen et al., Rev. Mod. Phys., 1993

Power line contamination

The resting and active brain: frequency power spectrum

Page 5: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Withsubject

Withoutsubject

Hamalainen et al., Rev. Mod. Phys., 1993

Power line contamination

The resting and active brain: frequency power spectrum

Page 6: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

delta

theta alpha

beta terra

incognita

gamma

The resting and active brain: frequency power spectrum

Page 7: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

State-­‐dependent  expressions  of  neural  oscilla3ons      

Large-scale electrophysiology; oscillatory “brain rhythms”

aroused  β

relaxed  α

drowsy  𝜃

light  sleep  (spindles)

deep  sleep  δ

Page 8: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

State-­‐dependent  expressions  of  neural  oscilla3ons      

Raichle M. Brain Connectivity (2011)

?

fMRI - BOLD

Large-scale electrophysiology; oscillatory “brain rhythms”

aroused  β

relaxed  α

drowsy  𝜃

light  sleep  (spindles)

deep  sleep  δ

Page 9: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

State-­‐dependent  expressions  of  neural  oscilla3ons      

“Resting-state networks”Buckner RL et al. Ann NY Acad. Sci. (2008)Carhart-Harris R L , Friston K J Brain (2010)

Resting-state networks

Raichle M. Brain Connectivity (2011)

?

fMRI - BOLD

Large-scale electrophysiology; oscillatory “brain rhythms”

aroused  β

relaxed  α

drowsy  𝜃

light  sleep  (spindles)

deep  sleep  δ

Page 10: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

State-­‐dependent  expressions  of  neural  oscilla3ons      

“Resting-state networks”Buckner RL et al. Ann NY Acad. Sci. (2008)Carhart-Harris R L , Friston K J Brain (2010)

Resting-state networks

Raichle M. Brain Connectivity (2011)

?

fMRI - BOLD

Large-scale electrophysiology; oscillatory “brain rhythms”

aroused  β

relaxed  α

drowsy  𝜃

light  sleep  (spindles)

deep  sleep  δ

Page 11: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Electrophysiological  origins    of  MEG/EEG  signals

Page 12: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

The neural cell as elementary building block

Page 13: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

The neural cell as elementary building block

Page 14: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

The neural cell as elementary building block

Page 15: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

The neural cell as elementary building block

pyramidal  cell  as  canonical  source

Page 16: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

Page 17: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

Page 18: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

Page 19: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

primary current

Page 20: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

return (volume) currents

primary current

Page 21: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

return (volume) currents

primary current

Page 22: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

return (volume) currents

primary current

Page 23: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

primary current

Page 24: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

magnetic induction

primary current

Page 25: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

magnetometer

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

magnetic induction

primary current

Page 26: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

magnetometer

Basic  neural  electrophysiology

apical    dentrites

basal  dentrites

- - - - - - - -- - - - - - - -

++ + + + + + + + + + + +

magnetic induction

primary current

measured  induced  currents

Page 27: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

= +

The  equivalent  current  dipole    =    

current  source  model  of  PSP’s  and  AP’s  

current dipole model

Page 28: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

= +

The  equivalent  current  dipole    =    

current  source  model  of  PSP’s  and  AP’s  

current dipole model

Page 29: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

= +

The  equivalent  current  dipole    =    

current  source  model  of  PSP’s  and  AP’s  

current dipole model

Page 30: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

influence  of  cell  morphology  on  signal  strength

radial cell morphology

Page 31: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

influence  of  cell  morphology  on  signal  strength

radial cell morphology

net current dipole

Page 32: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

influence  of  cell  morphology  on  signal  strength

radial cell morphology

net current dipole

weaker net currents than from elongated cell morphology

Page 33: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensembles

Page 34: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensembles

Page 35: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensembles

Page 36: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensembles

Page 37: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensembles

Page 38: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensembles

Page 39: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensembles

Page 40: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensembles

overlap of multiple PSPs yields stronger contribution to MEG/EEG signalling

Page 41: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensembles

overlap of multiple PSPs yields stronger contribution to MEG/EEG signalling

stronger individual currents but poorer temporal overlap of APs

Page 42: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensembles

overlap of multiple PSPs yields stronger contribution to MEG/EEG signalling

stronger individual currents but poorer temporal overlap of APs

Page 43: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensembles

overlap of multiple PSPs yields stronger contribution to MEG/EEG signalling.

~50,000 cells, at minimum

stronger individual currents but poorer temporal overlap of APs

Page 44: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensembles

Page 45: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensembles

Page 46: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensemblesVoltage-­‐sensi3ve  ion  channels  (Llinás,  1988;  Hille,  2001)  

-­‐ Large,  detectable  PSP  sodium  spikes  

‣ from  10,000  synchronous  cells  

‣ a  possible  source  of  high-­‐frequency  bursts?

Page 47: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Mass  effect  of  neural  ensembles

experimental  data  (micro)MEG

Murakami  et  al.,  J.  Physiol  (2002)

Voltage-­‐sensi3ve  ion  channels  (Llinás,  1988;  Hille,  2001)  

-­‐ Large,  detectable  PSP  sodium  spikes  

‣ from  10,000  synchronous  cells  

‣ a  possible  source  of  high-­‐frequency  bursts?

Page 48: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

mesoscopic  distribu3on  of  currents

cortex

Page 49: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

mesoscopic  distribu3on  of  currents

cortex

Page 50: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

mesoscopic  distribu3on  of  currents

cortex

nuclei

Page 51: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

mesoscopic  distribu3on  of  currents

cortex

nuclei

Page 52: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

dynamicsa  rapid  overview

Page 53: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

dynamicsa  rapid  overview

Page 54: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Evidence  of  low-­‐to-­‐high  frequency  coupling   of  neural  oscilla3ons:  single  cells  &  assemblies

Contreras  &  Steriade,  J.  Neurosci.  (1995)

Page 55: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Temporal  ji_er  of  unitary  and  ensemble  responses

Thalamic stimulation Cortical responseContreras  &  Steriade,  J.  Neurophys.  (1996)

Page 56: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Ji_er  in  brain  responses  or  s3mulus  3ming  yields  slower  event-­‐related  components  and  lower  SNR

• Sloppy  s3mulus  3ming  (ji_er)  yields  smeared  MEG  responses  

• Physiological  ji_er  produces  similar  effects  

• The  longer  the  response  latency,  the  longer  and  smoother  the  response  

Somatosensory evoked fields

Latency

Adapted  from  L.  Parkkonen

Page 57: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Oscilla3onsa  scaffold  of  neural  dynamics  

Page 58: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Oscilla3onsa  scaffold  of  neural  dynamics  

Page 59: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Page 60: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

Page 61: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

MEG, EEG, LFP

Page 62: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

E EE

I I

MEG, EEG, LFP

Page 63: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

E EE

I I

MEG, EEG, LFP

δ-α cycles

Page 64: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

E EE

I I

MEG, EEG, LFP

δ-α cycles

𝜸

Page 65: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

E EE

I I

MEG, EEG, LFP

δ-α cycles

𝜸 𝜸

Page 66: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

E EE

I I

MEG, EEG, LFP

δ-α cycles

𝜸 𝜸 𝜸

Page 67: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

E EE

I I

STIM MEG, EEG, LFP

δ-α cycles

𝜸 𝜸 𝜸

Page 68: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

STIM MEG, EEG, LFP

Page 69: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

STIM MEG, EEG, LFP

Page 70: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

STIM MEG, EEG, LFP

Page 71: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relaySTIM MEG, E

EG, LFP

Page 72: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relay

β burstsSTIM MEG, E

EG, LFP

Page 73: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relay

β burstsSTIM MEG, E

EG, LFP

Page 74: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relay

β burstsSTIM MEG, E

EG, LFP

Page 75: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relay

β burstsSTIM MEG, E

EG, LFP

Page 76: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relay

β burstsSTIM STIM MEG, E

EG, LFP

Page 77: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relay

β burstsSTIM STIMSTIM MEG, E

EG, LFP

Page 78: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

E EE

I I δ-α cycles

𝜸 𝜸 𝜸

Theore3cal  framework:    Oscillatory  Implementa3on  of  Perceptual  Inference

A  possible  mechanism  for  op3mal  sensory  processing  (efficacy  in  3ming,  metabolism,  downstream  processing,  etc.)  

Donhauser,  Florin  &  Baillet,  CNS  2014  Schroeder  &  Lakatos,    TINS  2009  Arnal  &  Giraud,  TICS  2012

Slow Inhibitory

Fast InhibitoryExcitatory

Elementary cell assembly

SI

FIE

Higher-order region

Cortical hub, thalamic relay

β burstsSTIM STIMSTIM MEG, E

EG, LFP

Page 79: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Wrap-­‐up:  dis3nct  roles  for  dis3nct  frequencies  

Page 80: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Wrap-­‐up:  dis3nct  roles  for  dis3nct  frequencies  

Page 81: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Wrap-­‐up:  dis3nct  roles  for  dis3nct  frequencies  

δ-α: cycles of regional excitability

Page 82: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Wrap-­‐up:  dis3nct  roles  for  dis3nct  frequencies  

δ-α: cycles of regional excitability

β: bursts as expressions of top-down modulations

Page 83: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Wrap-­‐up:  dis3nct  roles  for  dis3nct  frequencies  

δ-α: cycles of regional excitability

β: bursts as expressions of top-down modulations

𝜸: bursts nested in slower rhythms, bottom-up signaling

Page 84: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Wrap-­‐up:  dis3nct  roles  for  dis3nct  frequencies  

δ-α: cycles of regional excitability

β: bursts as expressions of top-down modulations

𝜸: bursts nested in slower rhythms, bottom-up signaling

E EE

I I

Page 85: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Wrap-­‐up:  dis3nct  roles  for  dis3nct  frequencies  

δ-α: cycles of regional excitability

β: bursts as expressions of top-down modulations

𝜸: bursts nested in slower rhythms, bottom-up signaling

E EE

I I

higher 𝜸: PSP spiking ?

Page 86: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Correla3on  between  low-­‐,  high-­‐frequency  ongoing  brain  rhythms  and  BOLD

Schölvinck et al., PNAS (2010)

Delta/Theta/Alpha

Beta

Gamma

High-Gamma

Page 87: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

MEG  Res3ng-­‐State  Networks

Auditory+

VisualDMN

Dorsal, sensori-motor

fMRI

Florin  &  Baillet,  Neuroimage,  2015

Page 88: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

delta

theta alpha

beta terra

incognita

gamma

Cross-­‐frequency  coupling  (CFC):  A  generic  mechanism  regula3ng  local  and  long-­‐range  brain  dynamics?  

Page 89: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

delta

theta alpha

beta terra

incognita

gamma

Cross-­‐frequency  coupling  (CFC):  A  generic  mechanism  regula3ng  local  and  long-­‐range  brain  dynamics?  

Page 90: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

delta

theta alpha

beta terra

incognita

gamma

Cross-­‐frequency  coupling  (CFC):  A  generic  mechanism  regula3ng  local  and  long-­‐range  brain  dynamics?  

E EEI I

Page 91: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Review

Page 92: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Review

• Signal  origins

Page 93: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Review

• Signal  origins

๏ currents  induced  by  spa3o-­‐temporal  overlap  of  post-­‐synap3c  poten3als  in  cell  assemblies  (cortex  and  elsewhere)

Page 94: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Review

• Signal  origins

๏ currents  induced  by  spa3o-­‐temporal  overlap  of  post-­‐synap3c  poten3als  in  cell  assemblies  (cortex  and  elsewhere)

๏ possible  fast  spiking  ac3vity  

Page 95: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Review

• Signal  origins

๏ currents  induced  by  spa3o-­‐temporal  overlap  of  post-­‐synap3c  poten3als  in  cell  assemblies  (cortex  and  elsewhere)

๏ possible  fast  spiking  ac3vity  

• Dynamics

Page 96: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Review

• Signal  origins

๏ currents  induced  by  spa3o-­‐temporal  overlap  of  post-­‐synap3c  poten3als  in  cell  assemblies  (cortex  and  elsewhere)

๏ possible  fast  spiking  ac3vity  

• Dynamics

๏ event-­‐related  responses  as  resejng  of  ongoing  ac3vity

Page 97: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Review

• Signal  origins

๏ currents  induced  by  spa3o-­‐temporal  overlap  of  post-­‐synap3c  poten3als  in  cell  assemblies  (cortex  and  elsewhere)

๏ possible  fast  spiking  ac3vity  

• Dynamics

๏ event-­‐related  responses  as  resejng  of  ongoing  ac3vity

๏ dis3nct  roles  of  typical  frequency  bands:  net  excita3on,  bo_om-­‐up  vs  top-­‐down  signaling,  etc

Page 98: Electromagnetic Brain Mapping Physiology of source signals · The resting and active brain: frequency power spectrum. With subject Without subject Hamalainen et al., Rev. Mod. Phys.,

Review

• Signal  origins

๏ currents  induced  by  spa3o-­‐temporal  overlap  of  post-­‐synap3c  poten3als  in  cell  assemblies  (cortex  and  elsewhere)

๏ possible  fast  spiking  ac3vity  

• Dynamics

๏ event-­‐related  responses  as  resejng  of  ongoing  ac3vity

๏ dis3nct  roles  of  typical  frequency  bands:  net  excita3on,  bo_om-­‐up  vs  top-­‐down  signaling,  etc

๏ a  field  of  intense  research