electrocomp final

Upload: hsalkic

Post on 07-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 ElectroComp Final

    1/28

    FET Tuzla

    Numerical Calculation of Magnetic DissipationNumerical Calculation of Magnetic Dissipationat Power Transformersat Power Transformers

    Prof. Vlado MadareviProf. Alija Muharemovi

    Dr. Amir NuhanoviMr. Hidajet Salki

    Florida 16 18 March 2005.

    ElectroComp - Orlando,

  • 8/3/2019 ElectroComp Final

    2/28

    FET Tuzla

    Motivation: Transformer Design

    Better efficiencyLess dissipation = increased efficiency

    Reliability Less heat dissipation Increased device duration

    Quality of service Better voltage stability of secondary winding

    Cost

    Problem formulation: find dissipative inductance fora given transformer

  • 8/3/2019 ElectroComp Final

    3/28

    FET Tuzla

    Possible Approaches To The Problem

    Analytical Hard

    Experimental Expensive

    Numerical is our choice Input - transformer geometry [+ regime] Output

    Magnetic field at each point in space

    Dissipative inductance, energy

  • 8/3/2019 ElectroComp Final

    4/28

    FET Tuzla

    Conceptual View of Dissipation

    F F =i g-

    produced - useful = dissipative

    F g

    F i

  • 8/3/2019 ElectroComp Final

    5/28

    FET Tuzla

    Core

    PrimarySecondary

    Winding

    UsefulDissipated

    Flux

    Dissipation in PracticalTransformers

    Insulation

  • 8/3/2019 ElectroComp Final

    6/28

    FET Tuzla

    Short Circuit Setup

    Core

    Insulation

    Secondary current setup so that useful flux = 0.

    Enables measurement of dissipative flux

  • 8/3/2019 ElectroComp Final

    7/28

    FET Tuzla

    Energy Method - Outline

    Given prim. and sec. currents

    Find cross section current density [J]

    Find magnetic vector potential [A]

    Find energy stored in dissipative field [ ]m

    W

    Find dissipative inductance [L]

    Step 1

    Step 2

    Step 3

  • 8/3/2019 ElectroComp Final

    8/28

    FET Tuzla

    Energy Stored in Dissipative Magnetic Field

    Energy formula

    Current density [ ] Magnetic vector potential [ ]

    Magnetic field strength [ ] Magnetic induction [ ]

    ArJ

    r

    Br H

    r

    ( )rot A = Br r

    ( )D

    rot H = J +t

    rr r

    [layered transformer design]

    m

    (V)

    1W = H B dV

    2 r r

    m

    (V)

    1W = J A dV

    2

    rr

  • 8/3/2019 ElectroComp Final

    9/28

    FET TuzlaEnergy Method for Computing Dissipative

    Magnetic Field Energy

    m(V)

    1

    W = J A dV2

    rr

    m(S)

    1

    W ' = J A dS2

    Solve using

    method

    of finite moments

    Problem is

    2 - dimensional

    ( )D

    rot H = J +t

    rr r

    ( )rot A = Hr r

    Step2: Using A and J perform numeric integration.

    Step1: Using current density [J] find the magnetic vector potential [A].

    Step3: use formulam

    2

    2W 'L =

    I

    ( )( )-1rot rot A = Jr r

  • 8/3/2019 ElectroComp Final

    10/28

    FET TuzlaStep 1: Method of Finite Elements - Outline

    =

    Ferromag.ConductorInsulator

    Construct local equation for each element

    Solve the set of equations globally

    Use iterative procedures because of complexity [FEM 2D]

    ( )( )-1rot rot A = Jr r

  • 8/3/2019 ElectroComp Final

    11/28

    FET Tuzla

    Step 2: Numerical Integration

    m

    (S)

    1W ' = J A dS

    2 Need to Find

    There are 4 possible values of J Inside ferromagnetic material = 0 Inside insulator = 0 Inside primary windingInside secondary winding

    z

    p

    i= ii,a i,b i,c

    m i

    i= i

    A + A + AJW ' = S

    2 3

    For each value of J compute

    iS

    i,cA

    i,bAi,aA

    element inside

    primary winding

  • 8/3/2019 ElectroComp Final

    12/28

    FET Tuzla

    Method of Linked Fluxes - Outline

    Given prim. and sec. currents

    Find cross section current density [J]

    Find magnetic induction [B]

    Find dissipative flux [ ]

    Find dissipative inductance [L]

    Step 1

    Step 2

    Step 3

  • 8/3/2019 ElectroComp Final

    13/28

    FET TuzlaLinked Fluxes

    1F

    2F

    3F

    [ ]1 1 2 2 3 3-d n + n + n e =

    dt

  • 8/3/2019 ElectroComp Final

    14/28

    FET Tuzla

    Step1: Using current density [J] find the magnetic induction [B]

    ( )D

    rot H = J +t

    rr r

    B =H

    r r ( )-1rot B = Jr r Solve using

    method

    of finite moments

    Step2: Using B, calculate dissipative flux [ ] by numeric integration

    Step3: use formula

    nL =

    I

    Method of Linked Fluxes

    1 1 2 2 3 3

    n + n + n =

    n

    gF

  • 8/3/2019 ElectroComp Final

    15/28

    FET Tuzla

    Practical Example

    Manufacturer data Nominal power 300 VA Model OKT10 Make 1f Primary voltage 200V Primary windings 550 Primary wire diameter 0.7mm Secondary voltage 24V Secondary windings 60 Secondary wire diameter 0.7mm

    Core EI-VIII Body 90x108 mm

  • 8/3/2019 ElectroComp Final

    16/28

    FET Tuzla

    a

    b

    g

    k l

    f e d c

    Practical Example [cont.]

    a = 90 mm b = 108 mm c = 2 mm d = 9 mm e = 3 mm f = 2.5 mm g = 18 mm k = 50 mm l = 54 mm

  • 8/3/2019 ElectroComp Final

    17/28

    FET Tuzla

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

    FeSi MD200

    H (A/m)

    40

    160

    250

    400

    1000

    2000

    5000

    10000

    50000

    B (T)

    0.125

    0.86

    1.03

    1.17

    1.34

    1.45

    1.57

    1.70

    2.01

    Magnetization Characteristic of the Core

    H [A/m]

    B [T]

  • 8/3/2019 ElectroComp Final

    18/28

    FET Tuzla

    Core

    Insulator

    Primary

    Secondary

    1 - 1884

    1885 - 3054

    3055 - 3726

    3727 - 4398

    Concrete Discretization for Method of Finite Elements

  • 8/3/2019 ElectroComp Final

    19/28

    FET Tuzla

    Concrete Magnetic Vector Potential

  • 8/3/2019 ElectroComp Final

    20/28

    FET Tuzla

    Concrete Magnetic Induction

  • 8/3/2019 ElectroComp Final

    21/28

    FET TuzlaResults of the Two Proposed Methods

    Winding Energy Method Method of Linked Fluxes

    Prim.L

    P= 1.761 (mH) L

    P= 1.719 (mH)

    Sec.L

    S= 2.061 (mH) L

    S= 2.011 (mH)

    Total

    L = Lp+Ls = 3.821 (mH) L = Lp+Ls = 3.73 (mH)

  • 8/3/2019 ElectroComp Final

    22/28

    FET Tuzla

    Error Analysis

    TransformerMakeOKT10

    L = Lp+ L

    s(mH)

    EM MUF Experimental

    NN energytransformer

    3.821 3.730 3.895

  • 8/3/2019 ElectroComp Final

    23/28

    FET Tuzla

    Conclusion

    Both methods give satisfactory results Useful for transformer design Take into account non-linearity in the core

    Energy method is more reliable

    Energy method is simpler for implementation Method of linked fluxes can be used in any regime

  • 8/3/2019 ElectroComp Final

    24/28

    FET Tuzla

    Backup Slides

  • 8/3/2019 ElectroComp Final

    25/28

    FET Tuzla

    1F

    2F

    3F

    4F

  • 8/3/2019 ElectroComp Final

    26/28

    FET Tuzla

    Core

    Insulation

  • 8/3/2019 ElectroComp Final

    27/28

    FET TuzlaDissipation in Practical

    Transformers

    Core

    Insulation

    PrimarySecondary

    Winding

    UsefulDissipated

    Flux

  • 8/3/2019 ElectroComp Final

    28/28

    FET TuzlaDissipation in Practical

    Transformers

    Core

    Insulation

    PrimarySecondary

    Winding

    UsefulDissipated

    Flux

    Only

    CurrentDensity[J] isgiven