electricity & magnetism lecture 6: electric potential lecture 06...checkpoint: electric field...

25
Electricity & Magnetism Lecture 6: Electric Potential Todays Concept: Electric Poten4al (Defined in terms of Path Integral of Electric Field) Electricity & Magne4sm Lecture 6, Slide 1

Upload: others

Post on 25-Apr-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

Electricity & Magnetism Lecture 6: Electric Potential

Today’sConcept:ElectricPoten4al

(DefinedintermsofPathIntegralofElectricField)

Electricity&Magne4smLecture6,Slide1

Page 2: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

Stuff you asked about:

!  “ExplainmorewhyEisnega4veofdeltaV”

!  “Idon'tlikethatweweretoldtousegradientswhenwehaven'tevendonetheminmathyet.”

!  “Sowejustneedtosuperimposetheradialfieldlineswhicharefoundbytakingthenega4veofthegradientoftheelectricpoten4alin3dcartesian/spherical/cylindricalcoordinatesystemandareperpendiculartoequipoten4als,thelocuspointofallpointwiththesamepoten4aldifference.Simpleenough...We'lljustdothat!....Ohhhhhwait...WHAT?.”

!  “soelectricpoten4alisthean4deriva4veofelectricfieldisthatcorrect?inotherwordstheareaunderelectricfieldfunc4ongivestheelectricpoten4al?

!  Whatisthedifferencebetweenanintegralofadotproductandaintegralofasimpleproduct?

!  How are the equipotentials spaced so far apart? doesn't the Voltage change continually with r?

Electricity&Magne4smLecture6,Slide2

Page 3: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

Big Idea

Last4mewedefinedtheelectricpoten4alenergyofchargeqinanelectricfield:

ΔUa→b = −r F ⋅d

r l = − q

r E ⋅d

r l

a

b∫

a

b∫

Theonlymen4onofthepar4clewasthroughitschargeq.Wecanobtainanewquan4ty,theelectricpoten4al,whichisaPROPERTYOFTHESPACE,asthepoten4alenergyperunitcharge.

Notethesimilaritytothedefini4onofanotherquan4tywhichisalsoaPROPERTYOFTHESPACE,theelectricfield.

ΔVa→b ≡ΔUa→b

q= −

rE ⋅ d

rl

a

b

vE ≡

rFq

Electricity&Magne4smLecture6,Slide3

Page 4: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

Electric Potential from E field

ConsiderthethreepointsA,B,andClocatedinaregionofconstantelectricfieldasshown.

WhatisthesignofΔVAC = VC-VA?

A)ΔVAC < 0B)ΔVAC = 0C)ΔVAC > 0 Rememberthedefini4on:

ΔVA→C = −rE ⋅ d

rl

A

C

Chooseapath(anywilldo!)

D

Δx

ΔVA→C = −rE ⋅ d

rl

A

D

∫ −rE ⋅d

rl

D

C

∫ ΔVA→C = 0 −rE ⋅ d

rl

D

C

∫ = −EΔx < 0

Electricity&Magne4smLecture6,Slide4

Page 5: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

CheckPoint: Zero Electric Field

Supposetheelectricfieldiszeroinacertainregionofspace.Whichofthefollowingstatementsbestdescribestheelectricpoten4alinthisregion?

A.  Theelectricpoten4aliszeroeverywhereinthisregion.B.  Theelectricpoten4aliszeroatleastonepointinthisregion.C.  Theelectricpoten4alisconstanteverywhereinthisregion.D.  Thereisnotenoughinforma4ongiventodis4nguishwhichoftheabove

answersiscorrect.

ΔVA→B = −rE ⋅ d

rl

A

B

Electricity&Magne4smLecture6,Slide5

Rememberthedefini4on

0=Er

0=Δ →BAV Visconstant!

Page 6: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

E from V Ifwecangetthepoten4albyintegra4ngtheelectricfield:

Weshouldbeabletogettheelectricfieldbydifferen4a4ngthepoten4al?

ΔVa→b = −rE ⋅ d

rl

a

b

VE ∇−=rv

InCartesiancoordinates:

Ex = −

dVdx

Ey = −dVdy

Ez = −dVdz

Electricity&Magne4smLecture6,Slide6

Page 7: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

CheckPoint: Spatial Dependence of Potential 1

Electricity&Magne4smLecture6,Slide7

Theelectricpoten4alinacertainregionisplodedinthefollowinggraph

AtwhichpointisthemagnitudeoftheE-FIELDgreatest?

o Ao Bo Co D

VE ∇−=rv

Page 8: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

CheckPoint: Spatial Dependence of Potential 1

Electricity&Magne4smLecture6,Slide8

Theelectricpoten4alinacertainregionisplodedinthefollowinggraph

AtwhichpointisthemagnitudeoftheE-FIELDgreatest?

o Ao Bo Co D

HowdowegetEfrom V ?

VE ∇−=rv Ex = −

∂Vdx Lookatslopes!

Page 9: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

CheckPoint: Spatial Dependence of Potential 2

Electricity&Magne4smLecture6,Slide9

Theelectricpoten4alinacertainregionisplodedinthefollowinggraph

Atwhichpointisthedirec4onoftheE-fieldalongthenega4vex-axis?

o Ao Bo Co D

“At B, the slope is decreasing (-) so the direction of the E field is negative “ “E is negative when the slope of V is positive (E=-dV/dx). Therefore E is directed along the x-axis at point C. “

HowdowegetEfrom V ?

VE ∇−=rv

Ex = −dVdx

Lookatslopes!

Page 10: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

Equipotentials Equipoten4alsarethelocusofpointshavingthesamepoten4al.

Equipotentials produced by a point charge

Equipoten4alsareALWAYS

perpendiculartotheelectricfieldlines.

TheSPACINGoftheequipoten4alsindicatesTheSTRENGTHoftheelectricfield.

Electricity&Magne4smLecture6,Slide10

Page 11: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

Contour Lines on Topographic Maps

Electricity&Magne4smLecture6,Slide11

Page 12: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

Electricity&Magne4smLecture6,Slide12

Visualizing the Potential of a Point Charge

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 2 / 19

Page 13: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

CheckPoint: Electric Field Lines 1

Electricity&Magne4smLecture6,Slide13

Thefield-linerepresenta4onoftheE-fieldinacertainregioninspaceisshownbelow.Thedashedlinesrepresentequipoten4allines.

AtwhichpointinspaceistheE-fieldtheweakest?

o Ao Bo Co D

“The electric field lines are the least dense at D” “ From what I know, the answer should be D” “ D is where the electric field lines are the least dense “ “ I’m pretty sure the electric field lines are the least dense at D” “ I’d guess D “

Page 14: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

CheckPoint: Electric Field Lines 2

Electricity&Magne4smLecture6,Slide14

Comparetheworkdonemovinganega4vechargefromAtoBandfromCtoD.Whichonerequiresmorework?

A.  Moreworkisrequiredtomoveanega4vechargefromAtoBthanfromCtoD

B.  Moreworkisrequiredtomoveanega4vechargefromCtoDthanfromAtoB

C.  Thesameamountofworkisrequiredtomoveanega4vechargefromAtoBastomoveitfromCtoD

D.  Cannotdeterminewithoutperformingthecalcula4on

Thefield-linerepresenta4onoftheE-fieldinacertainregioninspaceisshownbelow.Thedashedlinesrepresentequipoten4allines.

Page 15: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

Whatarethese?

ELECTRICFIELDLINES!

Whatarethese?

EQUIPOTENTIALS!

WhatisthesignofWAC = workdonebyEfieldtomovenega4vechargefromAtoC?

A)WAC<0B)WAC=0C)WAC>0

AandCareonthesameequipoten4al

Equipoten4alsareperpendiculartotheEfield:Noworkisdonealonganequipoten4al

Clicker Question: Electronic Field 2

WAC = 0

Electricity&Magne4smLecture6,Slide15

Page 16: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

CheckPoint Results: Electric Field Lines 2

Electricity&Magne4smLecture6,Slide16

Comparetheworkdonemovinganega4vechargefromAtoBandfromCtoD.Whichonerequiresmorework?

A.  Moreworkisrequiredtomoveanega4vechargefromAtoBthanfromCtoD

B.  Moreworkisrequiredtomoveanega4vechargefromCtoDthanfromAtoB

C.  Thesameamountofworkisrequiredtomoveanega4vechargefromAtoBastomoveitfromCtoD

D.  Cannotdeterminewithoutperformingthecalcula4on

Thefield-linerepresenta4onoftheE-fieldinacertainregioninspaceisshownbelow.Thedashedlinesrepresentequipoten4allines.

! AandCareonthesameequipoten4al! BandDareonthesameequipoten4al! Thereforethepoten4aldifferencebetweenAandBistheSAMEasthepoten4albetweenCandD

Page 17: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

CheckPoint: Electric Field Lines 3

Electricity&Magne4smLecture6,Slide17

Comparetheworkdonemovinganega4vechargefromAtoBandfromAtoD.Whichonerequiresmorework?

A.  Moreworkisrequiredtomoveanega4vechargefromAtoBthanfromAtoD

B.  Moreworkisrequiredtomoveanega4vechargefromAtoDthanfromAtoB

C.  Thesameamountofworkisrequiredtomoveanega4vechargefromAtoBastomoveitfromAtoD

D.  Cannotdeterminewithoutperformingthecalcula4on

Thefield-linerepresenta4onoftheE-fieldinacertainregioninspaceisshownbelow.Thedashedlinesrepresentequipoten4allines.

Page 18: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

Insulating charged sphere

Electricity&Magne4smLecture6,Slide18

Page 19: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

Prelecture Question

Electricity&Magne4smLecture6,Slide19

Which of the following equipotential diagrams best describes the spherical insulator in the previous example? (The colored

circle in the center represents the insulator.)

Page 20: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

Prelecture Question

Electricity&Magne4smLecture6,Slide20

The separation of the equipotentials is smallest at the outer radius of the pink sphere since the electric field is strongest

there. The separation of the equipotentials increases where the electric field is weaker; both toward the center of the sphere and

far away from the sphere.

Page 21: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

Calculation for Potential

Pointchargeqatcenterofconcentricconduc4ngsphericalshellsofradiia1,a2,a3,anda4.Theinnershellisuncharged,buttheoutershellcarrieschargeQ.WhatisVasafunc4onof r?

StrategicAnalysis:!  Sphericalsymmetry:UseGauss’LawtocalculateEeverywhere!  Integrate E togetV

metal

metal

+Q

a1

a2

a3 a4

+q

cross-sec4on

ConceptualAnalysis:!  ChargesqandQwillcreateanEfieldthroughoutspace

! 

V (r) = −rE

r0

r

∫ ⋅ drl

Electricity&Magne4smLecture6,Slide21

Page 22: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

Calculation: Quantitative Analysis

r > a4 : WhatisE(r)?A)0B)C)

50

metal

metal

+Q

a1

a2

a3 a4

D)E)

Why?

Gauss’law:

r

rE∫ ⋅ d

rA = Qenclosed

ε0

204

1rqQE +

=πε

+q

cross-sec4on

Electricity&Magne4smLecture6,Slide22

204

1rQ

πε rqQ +

021πε

204

1rqQ −

πε204

1rqQ +

πε

0

24ε

πqQrE +

=

Page 23: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

metal

metal

+Q

a1

a2

a3 a4

+q

cross-sec4on

Calculation: Quantitative Analysis

a3< r<a4:WhatisE(r)?

A)0B)C)

D)E)

Howisthispossible?-qmustbeinducedatr=a3surface

r

ApplyingGauss’law,whatisQenclosedforredsphereshown?

A)qB)-qC)0

chargeatr=a4surface=Q+q

Electricity&Magne4smLecture6,Slide23

204

1rq

πε rq

021πε

204

1rqQ −

πε204

1rq−

πε

E4πr2 = Q+ qε0

24

4 4 aqQ

πσ

+=

Page 24: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

metal

metal

+Q

a1

a2

a3 a4

+q

cross-sec4on

Calculation: Quantitative Analysis

Con4nueonin…

a2 < r < a3 :

TofindV:1) Chooser0suchthatV(r0)=0(usual:r0=infinity)2) Integrate!

Electricity&Magne4smLecture6,Slide24

E = 14πε0

qr2

r r < a1 : 204

1rqE

πε=

a1 < r < a2 : 0=E

r > a4 : V =14πε0

Q+ qr

a3 < r < a4 : A)

B)

C)

( ) 041

440

+→∞Δ=+

= aVaqQV

επ

3041

aqQV +

=επ

0=V

Page 25: Electricity & Magnetism Lecture 6: Electric Potential Lecture 06...CheckPoint: Electric Field Lines 1 Electricity & Magne4sm Lecture 6, Slide 13 The field-line representaon of the

r > a4 :

a3 < r < a4 :

Calculation: Quantitative Analysis

metal

metal

+Q

a1

a2

a3 a4

+q

cross-sec4on

Electricity&Magne4smLecture6,Slide25

V =14πε0

Q+ qr

V =14πε0

Q+ qa4

a2 < r < a3 : V (r) = ΔV (∞→ a4 )+ 0+ΔV (a3→ r)

V (r) = Q+ q4πε0a4

+ 0+ q4πε0

1r−1a3

⎝⎜

⎠⎟ V (r) = 1

4πε0Q+ qa4

+qr−qa3

⎝⎜

⎠⎟

a1 < r < a2 : V (r) = 14πε0

Q+ qa4

+qa2−qa3

⎝⎜

⎠⎟

0 < r < a1 : V (r) = 1

4πε0Q+ qa4

+qa2−qa3+qr−qa1

⎝⎜

⎠⎟