electrical quantum engineering - université paris saclay · electrical quantum engineering . ... 0...

55
Electrical quantum engineering with superconducting circuits P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability swap duration (ns) 10

Upload: buinhi

Post on 02-Apr-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Electrical quantum engineering with superconducting circuits

P. Bertet & R. Heeres

SPEC, CEA Saclay (France), Quantronics group

0 100 200 300 4000.0

0.2

0.4

0.6

0.8

1.0

11

00

01

switc

hing

pro

babi

lity

swap duration (ns)

10

Page 2: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Introduction : Josephson circuits for quantum physics

M.H. Devoret, J.M. Martinis and J. Clarke, PRL 85, 1908 (1985)

M.H. Devoret, J.M. Martinis and J. Clarke, PRL 85, 1543 (1985) YES THEY CAN

Discrete energy levels

CAN MACROSCOPIC « MAN-MADE » ELECTRICAL CIRCUITS BEHAVE QUANTUM-MECHANICALLY ????

From a fundamental question (25 years ago) ….

… to genuine artificial atoms

Page 3: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Introduction : Josephson circuits for quantum physics

M.H. Devoret, J.M. Martinis and J. Clarke, PRL 85, 1908 (1985)

M.H. Devoret, J.M. Martinis and J. Clarke, PRL 85, 1543 (1985) YES THEY CAN

Discrete energy levels

CAN MACROSCOPIC « MAN-MADE » ELECTRICAL CIRCUITS BEHAVE QUANTUM-MECHANICALLY ????

From a fundamental question (25 years ago) ….

… to genuine artificial atoms for quantum information and quantum optics on a chip

Page 4: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Introduction : Josephson circuits for quantum physics

M.H. Devoret, J.M. Martinis and J. Clarke, PRL 85, 1908 (1985)

M.H. Devoret, J.M. Martinis and J. Clarke, PRL 85, 1543 (1985) YES THEY CAN

Discrete energy levels

CAN MACROSCOPIC « MAN-MADE » ELECTRICAL CIRCUITS BEHAVE QUANTUM-MECHANICALLY ????

From a fundamental question (25 years ago) ….

… to genuine artificial atoms for quantum information and quantum optics on a chip

Page 5: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Introduction : Josephson circuits for quantum physics

M.H. Devoret, J.M. Martinis and J. Clarke, PRL 85, 1908 (1985)

M.H. Devoret, J.M. Martinis and J. Clarke, PRL 85, 1543 (1985) YES THEY CAN

Discrete energy levels

CAN MACROSCOPIC « MAN-MADE » ELECTRICAL CIRCUITS BEHAVE QUANTUM-MECHANICALLY ????

From a fundamental question (25 years ago) ….

… to genuine artificial atoms for quantum information and quantum optics on a chip

QUANTUM PHYSICS QUANTUM ALGORITHMS QUANTUM SIMULATORS

Page 6: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Outline

Lecture 1: Basics of superconducting qubits

Lecture 2: Qubit readout and circuit quantum electrodynamics

Lecture 3: Multi-qubit gates and algorithms

Lecture 4: Introduction to Hybrid Quantum Devices

Page 7: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Outline

Lecture 1: Basics of superconducting qubits

Lecture 2: Qubit readout and circuit quantum electrodynamics

Lecture 3: Multi-qubit gates and algorithms

Lecture 4: Introduction to Hybrid Quantum Devices

1) Introduction: Hamiltonian of an electrical circuit 2) The Cooper-pair box 3) Decoherence of superconducting qubits

Page 8: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Ener

gy (a

.u)

x (a.u.)

Real atoms

Hydrogen atom

2

0

( )4

eV rrπε

= − 2ˆˆ ˆ( )2pH V rm

= +

quantization [ ]ˆ ˆ,r p i=

|0>

|1> |2>

|3>

« two-level atom »

E01=E1-E0=hν01

I.1) Introduction

Page 9: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Real atoms

Hydrogen atom

2

0

( )4

eV rrπε

= − 2ˆˆ ˆ( )2pH V rm

= +

[ ]ˆ ˆ,r p i=

Frequency ν (a.u)

ν01

FWHM =Γ/2π

P(1

) (a.

u)

Spectroscopy (weak field)

laser 0( ) cos 2E t E tπν=

+ spontaneous emission Γ

Optical Bloch

equations

I.1) Introduction

quantization

𝐻𝐻𝐼𝐼 = 𝑒𝑒𝑟𝑟 ⋅ 𝐸𝐸(𝑡𝑡)

P(1

)

0

1

Time (a.u)

Rabi oscillations (short pulses, strong field at ν=ν01)

|0> |0>

|1>

( )1 0 12

+

Ω𝑅𝑅 = 𝑒𝑒 0 𝑟𝑟 1 ⋅ 𝐸𝐸0/ℏ

Page 10: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

X,φ

E

0ω|0> |1>

|2> |3>

|4>

Quantum regime ??

[ ]ˆ ˆ,x p i= ˆ ˆ, iQ = Φ

Electrical harmonic oscillator

k

m

x

2 2

( , )2 2

kx pH x pm

= +

+q φ

-q

2 2

( , )2 2

H QQL C

ΦΦ = +

0km

ω = 01

LCω =

( ) ( ') 't

t V t dt−∞

Φ = ∫( ) ( ') '

tQ t i t dt

−∞= ∫

I.1) Introduction

Page 11: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

LC oscillator in the quantum regime ?

2 conditions :

X,φ

E

|0> |1>

|2> |3>

|4> 0kT ω<<

Typic : L nH≈ C pF≈ 0 5GHzν ≈

At T=30mK : 0 8hkTν

X,φ

E

|0> |1>

|2> |3>

|4> 1Q >>

OK if dissipation negligible

Superconductors at T<<Tc

I.1) Introduction

Page 12: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

T<<Tc : dissipation negligble at GHz frequencies

Q=4 1010

at 51GHz and at 1K

Microwave superconducting resonators

Tc(Nb)=9.2K

S. Kuhr et al., APL 90, 164101 (2006)

Quantum regime

I.1) Introduction

Page 13: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Necessity of anharmonicity

How to prepare |1> ?

X,φ

E

0ω|0> |1>

|2> |3>

|4> +q φ

-q

Need non-linear and non dissipative element : Josephson junction

I.1) Introduction

Page 14: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Basics of the Josephson junction

The building block of superconducting qubits

B. Josephson, Phys. Lett. 1, 251 (1962)

P.W. Anderson & J.M. Rowell, Phys. Rev. 10, 230 (1963)

S. Shapiro, Phys. Rev. 11, 80 (1963)

I.1) Introduction

Josephson AC relation : 0d QVdt Cθϕ= =

Josephson DC relation : sinCI I θ=

( ) ( ') 't

t V t dt−∞

Φ = ∫( ) ( ') '

tQ t i t dt

−∞= ∫

N=Q/2e∈ ℕ

Josephson AC relation : 0d QVdt Cθϕ= =

Josephson DC relation : sinCI I θ=

[ ]R L0

= mod(2 )=θ -θ 2θ 0,π πϕ

∈Φ

N=Q/2e∈

RθLθ

( ) ( ') 't

t V t dt−∞

Φ = ∫( ) ( ') '

tQ t i t dt

−∞= ∫

N=Q/2e∈ ℕ

0 /(2 )eϕ =

Page 15: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Basics of the Josephson junction

The building block of superconducting qubits

Classical variables ??

NON-LINEAR INDUCTANCE ( )0

2( )

1 /J

C C

L II I I

ϕ=

POTENTIAL ENERGY 0( ) cos cosJ C JE I Eθ ϕ θ θ= − = −

Josephson AC relation : 0d QVdt Cθϕ= =

Josephson DC relation : sinCI I θ=

[ ]R L0

= mod(2 )=θ -θ 2θ 0,π πϕ

∈Φ

N=Q/2e∈

RθLθ

( ) ( ') 't

t V t dt−∞

Φ = ∫( ) ( ') '

tQ t i t dt

−∞= ∫

I.1) Introduction

0 /(2 )eϕ =

N=Q/2e∈ ℕ

Page 16: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Hamiltonian of an arbitrary circuit

=

HAMILTONIAN ???

M. H. Devoret, p. 351 in Quantum fluctuations (Les Houches 1995) G. Burkard et al., Phys. Rev. B 69, 064503 (2004)

Correct procedure described in :

G. Wendin and V. Shumeiko, cond-mat/0508729 M.H. Devoret, lectures at Collège de France (2008) accessible online

=

Page 17: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Hamiltonian of an arbitrary circuit

=

HAMILTONIAN ???

=

1) Identify the relevant independent circuit variables

2) Write the circuit Lagrangian

3) Determine the canonical conjugate variables and the Hamiltonian

Page 18: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Hamiltonian of an arbitrary circuit

=

=

1) Choose reference node (ground)

branch node

Identifying the relevant independent circuit variables

Page 19: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Hamiltonian of an arbitrary circuit

=

=

1) Choose reference node (ground)

2) Choose « spanning tree » (no loop)

Identifying the relevant independent circuit variables

Page 20: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Hamiltonian of an arbitrary circuit

=

=

1) Choose reference node (ground)

2) Choose « spanning tree » (no loop)

3) Define « tree branch fluxes »

φa

φc φd

φe φb

( ) ( ') 't

i t V t dtφ−∞

= ∫

Identifying the relevant independent circuit variables

Page 21: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Hamiltonian of an arbitrary circuit

=

=

1) Choose reference node (ground)

2) Choose « spanning tree » (no loop)

3) Define « tree branch fluxes »

4) Define node fluxes

Φ4= φb+ φd

Φ5 Φ1

Φ3 Φ2

Identifying the relevant independent circuit variables

φa

φc φd

φe φb

( ) ( ') 't

i t V t dtφ−∞

= ∫

branches leadingto nn β

β

φ=Φ ∑

Page 22: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Hamiltonian of an arbitrary circuit

=

=

Φ4= φb+ φd

Φ5 Φ1

Φ3 Φ2

φa

φc φd

φe φb

5) What about « closure branches » ??

φf

Page 23: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Hamiltonian of an arbitrary circuit

=

=

Φ4= φb+ φd

Φ5 Φ1

Φ3 Φ2

φa

φc φd

φe φb

5) What about « closure branches » ??

φf

PHASE QUANTIZATION CONDITION (superconducting loop)

φa

φc

φb φd φa+φb+φc+φd=Φext Φext

Page 24: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Hamiltonian of an arbitrary circuit

=

=

6) Classical Lagrangian ( , ) ( ) ( )i i electrostatic i pot iL E EΦ Φ = Φ − Φ

taking into account constraints imposed by external biases (fluxes or charges)

Φ4= φb+ φd

Φ5 Φ1

Φ3 Φ2

φa

φc φd

φe φb φf

Page 25: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Hamiltonian of an arbitrary circuit

=

=

Conjugate variables : ii

LQ ∂=

∂Φ

Classical Hamiltonian ( , )i i i iH Q Q LΦ = Φ −∑

Quantum Hamiltonian ˆˆ( , )i iH QΦ With ˆˆ ,i iQ i Φ =

ˆ ˆ( , )i iH nθ ˆ ˆ,i in iθ = or with

ˆˆ / 2i in Q e=ˆ ˆ (2 / )i i eθ = Φ

Φ4= φb+ φd

Φ5 Φ1

Φ3 Φ2

φa

φc φd

φe φb φf

Page 26: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Different types of qubits

Cooper-pair boxes Phase qubits Flux qubits

Junctions sizes

.01 to 0.04 µm2 .04µm2 100µm2

NIST Santa Barbara

TU Delft MIT

Berkeley NEC

Saclay Chalmers

NEC Yale

ETH Zurich

Shape Of the

Potential Energy

-1 0 1

E p (a

.u)

θ/π (rad)-2 0 2

Ep

(a.u

)

γm/π

-2 0 2 4

Ep (a

.u)

θ (rad)I.2) Cooper-Pair Box

Page 27: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Different types of qubits

Cooper-pair boxes Phase qubits Flux qubits

Junctions sizes

.01 to 0.04 µm2 .04µm2 100µm2

NIST Santa Barbara

TU Delft MIT

Berkeley NEC

Saclay Chalmers

NEC Yale

ETH Zurich

Shape Of the

Potential Energy

-1 0 1

E p (a

.u)

θ/π (rad)-2 0 2

Ep

(a.u

)

γm/π

-2 0 2 4

Ep (a

.u)

θ (rad)I.2) Cooper-Pair Box

Page 28: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Vg

The Cooper-Pair Box

1 degree of freedom 1 knob

θ̂,N̂ = i

ˆ ˆˆ cos2gC JEH = ( -E N N ) - θ

charging energy

𝑁𝑁𝑔𝑔 = 𝐶𝐶𝑔𝑔𝑉𝑉𝑔𝑔/2𝑒𝑒

𝐸𝐸𝑐𝑐 = 2𝑒𝑒 2/2𝐶𝐶 gate charge

𝐸𝐸𝐽𝐽,𝐸𝐸𝑐𝑐

𝐶𝐶𝑔𝑔

Page 29: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Vg

( )2

0ˆ cosˆ

cosˆˆ ˆ

J2

gCH = ( -N ) -2

E E2L

Nϕ δδ

θΦ −

+

1θ̂ , ˆ1N = i

2 d° of freedom

1N

2N

2θ̂ , ˆ2N = i

θ1

θ2L

inductance

2 knobs

Φ

2 11 2

ˆ ˆθ -θ ˆ ˆ ˆ2

,θ̂= =N N -N

=

ior

1 21 2

ˆ ˆˆˆ ˆ ˆ=θ +θ =2

, N +NKδ

=

i

δθ

The split CPB

𝐶𝐶𝑔𝑔

small

𝐿𝐿 ≪ 𝜙𝜙02/𝐸𝐸𝐽𝐽

Page 30: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Vg

ˆ cos cosˆ ˆ2JgCH = (E N E-N ) -

θ

θ̂,N̂ = i1 d° of freedom

JCE ,E

N

2 knobs

0

δ=ϕΦ

tunable JE

The split CPB

Page 31: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Energy levels of the CPB

ˆ ( , ) ( )cosˆˆΦ Φ θC J2

g gH N = ( - EN ) -E N

Solve either in charge basis |N>

{ }( , ), ( , )k g k gE N NψΦ Φ

,k k NN

c Nψ = ∑

( )ˆg

N

J2C

EE N N N N+1 NH = ( -N ) -2

N N+1∈

+∑

... ......

...

...

...

...

2

C Jg

2

C g

2

g

J J

CJ

N=-1 N=0 N=1

... ... ...

0 ...

... ...

... 0

... ... ..

...

E (-1- N )

E (0 - N )

-E /2

-E /2 -

E (1- N

E /2

-E

.

/2 )

Diagonalize

I.2) Cooper-Pair Box

(𝑁𝑁 ∈ ℕ)

Page 32: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Energy levels of the CPB

ˆ ( , ) ( )cosˆˆΦ Φ θC J2

g gH N = ( - EN ) -E N

… or in phase basis |θ>

{ }( , ), ( , )k g k gE N NψΦ Φ

[ ]0, 2θ π∈( ) 2

0

( )k kdπ

ψ θψ θ θ= ∫

ˆ ( , ) ( ) cosθθ∂

∂Φ Φ2

g gC JH N = ( -N ) -E1Ei

Solve Mathieu equation

( ) cosθψ θ ψ θθ

ψ θ∂∂

ΦJk kgC k k2 ( ) (( -N ) - =E)1 E

i(E )

I.2) Cooper-Pair Box

Page 33: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Two simple limits : (1) 𝐸𝐸𝐽𝐽 Φ ≪ 𝐸𝐸𝐶𝐶

0 0.5 1 1.5 2 2.5 3

0

1

2

Ng

Ene

rgy

0 0.5 1 1.5 2 2.5 3

0

1

2EJ/Ec=0

N

0 ( )c N

N

1( )c N3 2 1 0 1 2 3

1

3 2 1 0 1 2 3

1 0

0

0.5

0 0

0.5

θ

θ

20 ( )ψ θ

21( )ψ θ

(charge regime)

Page 34: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Two simple limits : (1) 𝐸𝐸𝐽𝐽 Φ ≪ 𝐸𝐸𝐶𝐶

0 0.5 1 1.5 2 2.5 3

0

1

2

Ng

Ene

rgy

EJ/Ec=0.1

E0(Ng) E1(Ng)

E2(Ng)

3 2 1 0 1 2 3

1

3 2 1 0 1 2 3

1

0 ( )c N

1( )c N

0 0

0.52

0 ( )ψ θ

21( )ψ θ

0 0

0.5

Ng=0.01

(charge regime)

QUBIT

Page 35: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

0 0

0.5

Two simple limits : (1) 𝐸𝐸𝐽𝐽 Φ ≪ 𝐸𝐸𝐶𝐶

0 0.5 1 1.5 2 2.5 3

0

1

2

Ng

Ene

rgy

EJ/Ec=0.1

E0(Ng)

E1(Ng)

E2(Ng)

0 ( )c N

1( )c N

20 ( )ψ θ

21( )ψ θ

Ng=0.5

3 2 1 0 1 2 3

1

3 2 1 0 1 2 3

1

0 0

0.5

(charge regime)

QUBIT

Page 36: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

0.0 0.2 0.4 0.6 0.8 1.01.00.5

0.00.51.01.52.0

From 𝐸𝐸𝐽𝐽 Φ ≪ 𝐸𝐸𝐶𝐶 to 𝐸𝐸𝐽𝐽 Φ ≫ 𝐸𝐸𝐶𝐶 E

nerg

y

Ng

EJ/Ec=0.5

0.0 0.2 0.4 0.6 0.8 1.02

1

0

1

2

3

Ng

EJ/Ec=2

0.0 0.2 0.4 0.6 0.8 1.0

4

2

0

2

Ene

rgy

Ng

EJ/Ec=5

0.0 0.2 0.4 0.6 0.8 1.08642

02

Ng

EJ/Ec=10

STILL A QUBIT !

Page 37: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Two simple limits : (2) 𝐸𝐸𝐽𝐽 Φ ≫ 𝐸𝐸𝐶𝐶

I.2) Cooper-Pair Box

(phase regime)

0.0 0.2 0.4 0.6 0.8 1.08642

02

Ng

EJ/Ec=10

4 2 0 2 41.00.5

0.00.51.0

4 2 0 2 41.00.5

0.00.51.0

0 ( )c N

1( )c N

0 0

0.5

0 0

0.5

20 ( )ψ θ

21( )ψ θ

J. Koch et al., PRA (2008) Transmon qubit

Page 38: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Experimental spectrum of a transmon J. Schreier et al., PRB (2008)

Page 39: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Ng(t)=∆Ngcosωt

One-qubit gates

Φ

TRANSMON QUBIT

( )ˆ ˆ ˆ( ) cost θ2

C g JH = E N-N -E

ˆ ˆ ˆˆcos 2 gN ωθ ∆2C J CH = E N -E - E cos tN

transmon drive

I.2) Cooper-Pair Box

01( )2 z

ω σΦ= − 01( )

2 zω σΦ

= −Two-level

approximation

ℏΩ𝑅𝑅 = 2𝐸𝐸𝐶𝐶 0 𝑁𝑁� 1 Δ𝑁𝑁𝑔𝑔

Page 40: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

I.2) Cooper-Pair Box

One-qubit gates

Φ

TRANSMON QUBIT

φ0

Rotation : X

|0>

|1>

X

Z

Y

ω=ω01

P(1)

0

1

F. Mallet et al., Nature Phys. (2009)

Page 41: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

I.2) Cooper-Pair Box

One-qubit gates

Φ

TRANSMON QUBIT

φ0 φ0+φ

Rotation : Xφ

|0>

|1>

X

Z

Y φ Xφ

X

ω=ω01

Page 42: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

I.2) Cooper-Pair Box

One-qubit gates

Φ+δΦ

TRANSMON QUBIT

φ0 φ0+φ

Rotation : Xφ

|0>

|1>

X

Z

Y φ Xφ

X

Z rotation

ω=ω01

All rotations on Bloch sphere

Fidelity ? >99.9%

R. Barends et al., Nature (2014)

Page 43: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Decoherence

Φ+dΦ(t)

Ng+dNg(t)

Noise in Hamiltonian parameters

DECOHERENCE

MAJOR OBSTACLE TO QUANTUM COMPUTING

I.3) Decoherence

Page 44: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

1

0

01ω

Relaxation (Spontaneous emission)

Decoherence in superconducting qubits (Ithier et al., PRB 72, 134519, 2005)

1 21 1 , 01( )

2T D Sλ λ

π ω−⊥= Γ =

environmental density of modes at qubit frequency

Pure dephasing

( )i te ϕα β+0 1

1

0

01( )iω λ

t

λi(t)

1 12 2 2

T ϕ− Γ

= Γ = + Γ

2, (0)zD Sϕ λ λπΓ =

2( )( ) ti tf t e eϕϕ

−Γ≡ ≈

Low-frequency noise

01,zDλ

ωλ

∂=

,1 0 1HDλ λ⊥

∂=

I.3) Decoherence

Page 45: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Decoherence

Φ+dΦ(t)

Ng+dNg(t)

Noise in Hamiltonian parameters

DECOHERENCE

Origin of the noise ???

I.3) Decoherence

Page 46: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Decoherence

Φ+dΦ(t)

Ng+dNg(t)

Noise in Hamiltonian parameters

DECOHERENCE

Origin of the noise ???

R

R

1) ELECTROMAGNETIC

Low-frequency : Johnson-Nyquist due to thermal noise

High-frequency : spontaneous emission (quantum noise)

≈ Under control

I.3) Decoherence

Page 47: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Decoherence

Φ+dΦ(t)

Ng+dNg(t)

Noise in Hamiltonian parameters

DECOHERENCE

Origin of the noise ???

R

R

2) MICROSCOPIC

e- Spin flips

I.3) Decoherence

Low-frequency noise

Charge noise Flux noise

𝑆𝑆𝑁𝑁𝑔𝑔(𝜔𝜔) ≈ 10−3 2/𝜔𝜔 𝑆𝑆Φ(𝜔𝜔) ≈ 10−6Φ02/𝜔𝜔

Page 48: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

I.3) Decoherence

Decoherence

Φ+dΦ(t)

Ng+dNg(t)

Noise in Hamiltonian parameters

DECOHERENCE

Origin of the noise ???

R

R

2) MICROSCOPIC

e- Spin flips

Low-frequency noise

Charge noise Flux noise

CPB in charge regime

Transmon

𝑆𝑆𝑁𝑁𝑔𝑔(𝜔𝜔) ≈ 10−3 2/𝜔𝜔 𝑆𝑆Φ(𝜔𝜔) ≈ 10−6Φ02/𝜔𝜔

𝑇𝑇2 ≈ 10 − 100ns

𝑇𝑇2 ≈ 10 − 100ms

𝑇𝑇2 ≈ 1 − 100𝜇𝜇𝜇𝜇 𝑇𝑇2 ≈ 1 − 100𝜇𝜇𝜇𝜇

Page 49: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Decoherence

Φ+dΦ(t)

Ng+dNg(t)

Noise in Hamiltonian parameters

DECOHERENCE

Origin of the noise ???

R

R

2) MICROSCOPIC

e- Spin flips

I.3) Decoherence

High-frequency « noise » (or equivalently « losses ») responsible for finite T1

• Imperfect dielectrics, causing microwave losses • Magnetic vortices trapped in the superconducting thin films • Unpaired electrons (« Quasiparticles ») in the superconductors

Page 50: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

Coherence times : measurements

ULTIMATE LIMITS ON COHERENCE TIMES UNKNOWN YET

1999 (Nakamura et al., Nature): 𝑇𝑇1 ≈ 𝑇𝑇2 ≈ 1ns

2002 : (« Quantronium experiment ») 𝑇𝑇1 = 2𝜇𝜇𝜇𝜇, 𝑇𝑇2∗=500ns

2013 (Barends et al., PRL) 𝑇𝑇1 = 30 − 100𝜇𝜇𝜇𝜇, 𝑇𝑇2 = 1 − 30𝜇𝜇𝜇𝜇

Page 51: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

I.3) Decoherence

SiO2

PMMA-MAA PMMA

e-

O2 Al/Al2O3/Al junctions

1) e-beam patterning 2) development 3) first evaporation 4) oxidation 5) second evap. 6) lift-off 7) electrical test

small junctions Multi angle shadow evaporation

Fabrication techniques small junctions e-beam lithography

Page 52: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

I.3) Decoherence

gate 160 x160 nm

QUANTRONIUM (Saclay group)

Page 53: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

FLUX-QUBIT (Delft group)

I.3) Decoherence

Page 54: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

I.3) Decoherence

40µm

2µm

TRANSMON QUBIT (Saclay group)

Page 55: Electrical quantum engineering - Université Paris Saclay · Electrical quantum engineering . ... 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability ... NEC

END OF FIRST LECTURE