elastic_materials_for_robots flexible human like hand

6
8/9/2019 Elastic_materials_for_robots Flexible Human Like Hand http://slidepdf.com/reader/full/elasticmaterialsforrobots-flexible-human-like-hand 1/6 ELSEVIER Robotics and Autonomous Systems 18 (1996) 135-140 Robotics nd utonomous Systems lastic m aterials producing compliant robots Koichi Suzumori Toshiba Corporation 4-1 Ukishima-cho Kawasaki-ku Kawasaki 210 Japan Abstract A lot of research has been conducted on producing compliant robots by applying software algorithms such as force controls and compliance controls while little research has been done in applying soft materials to robot mechanical designs. The author believes that the use of soft materials has great potential for producing compliant robots which are cheap and reliable. This paper reports on a new pneumatic rubber actuator and its applications to robot mechanisms. This actuator is made of silicone rubber and is called a flexible microactuator an FMA. It has good compliance properties resulting from the elasticity of the materials and the compressibility of air. Keywords: Actuator; Microactuator; Robot; Rubber I Introduction Conventional designs of industrial robots have focused on positioning accuracy speed and load capacity. In order to achieve this it is important for designers to make robot structures mechanically rigid to decrease the deflection and vibrations of the robot arms. Because of this soft materials have been seldom used in industrial robot designs. On the other hand positioning accuracy and speed are not very important for human-friendly robots but safetyl gentle motions and a soft touch are important. To achieve compliant robots there are generally two categories of approach: namely control approaches and material approaches. Control approach means ap- plying software control such as force controls and compliance controls to conventional robots with rigid links. Its advantage is the compliance controllability achieved just by tuning control parameters. On the other hand material approach means using soft mate- rials such as rubbers and elastomers for robot designs. The advantage here is the simplicity of the mecha- 0921-8890/96/ 15.00 © 1996 Elsevier Science B.V. All rights SSDI 092 1-8890(95)00078-X nism which results in reliability and cheapness. Soft materials also enable continuous deformation for ex- ample compliant fingers which can deform to fit the shapes of different objects. There has been much applied research on control approaches but little research has been conducted in the material fields except some research on an artifi- cial rubber muscle [ 1 . The author believes that there is great potential in the material approaches. The flexible microactuator described in this paper was developed from this point of view [2-5]. 2 FMA mechanism and its motions Fig. 1 shows an FMA structure. It is made of silicone rubber reinforced with nylon fiber in the circumferential direction. The fiber gives the rubber an anisotropic elasticity i.e. the rubber is easily de- formed in the axial direction but resists deformation in the radial direction. For this reason when the pres- sure is increased in one chamber the FMA bends in reserved

Upload: ashok-vamsi-bathula

Post on 01-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Elastic_materials_for_robots Flexible Human Like Hand

8/9/2019 Elastic_materials_for_robots Flexible Human Like Hand

http://slidepdf.com/reader/full/elasticmaterialsforrobots-flexible-human-like-hand 1/6

E L S E V I E R

R o b o t i c s a n d A u t o n o m o u s S y s t e m s 1 8 ( 1 9 96 ) 1 3 5 - 1 4 0

Robotics nd

utonomous

Systems

lastic m aterials prod ucing com pliant robots

K o i c h i S u z u m o r i

Toshiba Corporation 4-1 Ukishima-cho Kawasaki-ku Kawasaki 210 Japan

Abstract

A lot of research has been conducted on producing c om plian t robots by apply ing software algorithms such as force controls

and com plian ce controls while l it t le research has been done in app lying soft materials to robo t mechanical designs. The

author believe s that the use of soft materials h as grea t potential for producing com pliant robots which are chea p and reliable.

This pap er reports on a new pneumatic rubb er actuator and its applications to robot mechanisms. This actuator is made of

silicone r ubb er and is called a flexible microactuator an FMA . It has goo d com plianc e properties resulting fr om the elasticity

of the materials and the com pressibili ty of air.

Keywords:

A ctua to r ; M ic roac tua to r ; R obo t ; R ubbe r

I I n t r o d u c t i o n

Co n v e n t i o n a l d e s i g n s o f i n d u s t r i a l r o b o t s h a v e

f o c u s e d o n p o s i t i o n i n g a c c u r a c y s p e e d a n d l o a d

c a p a c i t y . I n o r d e r t o a c h i e v e t h is i t i s i mp o r t a n t

f o r d e s i g n e r s t o ma k e r o b o t s t r u c t u r e s me c h a n i c a l l y

r i g i d t o d e c r e a s e t h e d e f l e c t i o n a n d v i b r a t i o n s o f t h e

r o b o t a r ms . Be c a u s e o f t h is s o f t ma t e r i a l s h a v e b e e n

s e l d o m u s e d i n i n d u s t r ia l r o b o t d e s i g n s .

O n t h e o t h e r h a n d p o s i t i o n i n g a c c u r a c y a n d s p e e d

a r e n o t v e r y i mp o r t a n t f o r h u ma n - f r i e n d l y r o b o t s b u t

s a f e ty l g e n t l e mo t i o n s a n d a s o f t t o u c h a r e i mp o r t a n t .

T o a c h i e v e c o m p l i a n t r o b o t s t h e r e a r e g e n e r a l l y t w o

c a t e g o r ie s o f a p p ro a c h : n a m e l y c o n t ro l a p p r o a c h e s

a n d m a t e r i a l a p p ro a c h e s . C o n t r o l a p p r o a c h m e a n s a p -

p l y i n g s o f t w a r e c o n t r o l s u c h a s f o r c e c o n t r o l s a n d

c o mp l i a n c e c o n t r o l s t o c o n v e n t i o n a l r o b o t s w i t h r i g i d

l i n k s . I t s a d v a n t a g e i s t h e c o mp l i a n c e c o n t r o l l a b i l i t y

a c h i e v e d ju s t b y t u n i n g c o n t r o l p a r a m e t e r s . O n t h e

o t h e r h a n d m a t e r i a l a p p r o a c h m e a n s u s i n g s o f t m a t e -

r i a ls s u c h a s r u b b e r s a n d e l a s t o m e r s f o r r o b o t d e s i g n s .

T h e a d v a n t a g e h e r e i s t h e s i mp l i c i t y o f t h e me c h a -

0921-8890 /96 / 15 . 00 © 1996 E l sev i e r S c i ence B . V . A l l r i gh t s

SSDI

0 9 2 1 - 8 8 9 0 ( 9 5 ) 0 0 0 7 8 - X

n i s m w h i c h r e s u l t s in r e li a b i li t y a n d c h e a p n e s s . S o f t

ma t e r i a l s a ls o e n a b l e c o n t i n u o u s d e f o r ma t i o n f o r e x -

a m p l e c o m p l i a n t f in g e r s w h i c h c a n d e f o r m t o fi t t h e

s h a p e s o f d i f f e r e n t o b j e c t s .

T h e r e h a s b e e n m u c h a p p l i e d r e s e a r c h o n c o n t r o l

a p p r o a c h e s b u t li tt le r e s e a r c h h a s b e e n c o n d u c t e d i n

t h e ma t e r i a l f ie l d s e x c e p t s o me r e s e a r c h o n a n a r t if i -

c i a l r u b b e r m u s c l e [ 1 . T h e a u t h o r b e l i e v e s t h a t t h e r e i s

g r e a t p o t e n t i a l i n th e ma t e r i a l a p p r o a c h e s . T h e f l e x ib l e

mi c r o a c t u a t o r d e s c r i b e d i n t h i s p a p e r w a s d e v e l o p e d

f r o m t h i s p o i n t o f v i e w [ 2 - 5 ] .

2 F M A m e c h a n i s m a n d i ts m o t i o n s

Fi g . 1 s h o w s a n FM A s t ru c t u r e . I t i s ma d e o f

s i l i c o n e r u b b e r r e i n f o r c e d w i t h n y l o n f i b e r i n t h e

c i r c u m f e r e n t i a l d i r e c ti o n . T h e f i b e r g i v e s t h e r u b b e r

an an i so t rop ic e l as t i c i ty i . e . t he rub ber i s eas i ly de-

f o r me d i n t h e a x i a l d i r e c t i o n b u t r e s i s t s d e f o r ma t i o n

i n th e r a d i a l d ir e c t io n . Fo r th i s r e a s o n w h e n t h e p r e s -

s u r e is i n c r e a s e d i n o n e c h a mb e r t h e FM A b e n d s i n

r e se rved

Page 2: Elastic_materials_for_robots Flexible Human Like Hand

8/9/2019 Elastic_materials_for_robots Flexible Human Like Hand

http://slidepdf.com/reader/full/elasticmaterialsforrobots-flexible-human-like-hand 2/6

136

K. Suzumo ri/Robotics and Autonom ous Systems 18 199 6) 135-140

Z

x l O 3

C e n t e r a x i s

~- ~ '

~

3 0

' ,

C h a m ~ i..__e

• •

~ ] A R C M o d e l O r . ~ 0 . 1 9 6 1 N 1

| 0 • E x p e r i m e n t =

0 0 . 1 0 . 2 0 3 ~ M P a G )

Fig. 3. FM A compliance.

C h a rn b e r l C h a m b e r

~ ~

' x

Fig. 1. FMA structure.

10

S

A ,

0 1

0 2 P iE v

Fig. 2. Bending characteristics of FMAs of various sizes.

t h e d i r e c t i o n o p p o s i t e t o t h e p r e s s u r i z e d c h a m b e r . I t

c a n b e b e n t i n a n y d i r e c ti o n t h r o u g h a p p r o p r i a t e p r e s -

s u r e c o n t r o l i n e a c h c h a m b e r , a n d c a n b e s t r e t c h e d i n

t h e a x i a l d i r e c t i o n w h e n t h e p r e s s u r e i s i n c r e a s e d i n

a l l t h r e e c h a m b e r s .

I t i s a s s u m e d t h a t t h e F M A d e f o r m a t i o n i s s m a l l

a n d t h a t it t a k e s t h e f o r m o f a n a r c a s s h o w n i n F i g . 1 .

T h e n , t h e d e f o r m a t i o n c a n b e d e s c r i b e d u s i n g t he t h r e e

p a r a m e t e r s 0 , R , a n d Z : 0 r e p r e s e n t s t h e b e n d i n g d i -

r e c t i o n a n g l e , w h i c h i s d e f i n e d a s t h e a n g l e b e t w e e n

t h e x - a x i s a n d t h e t - a x i s , t h e p r o j e c t i o n o f t h e c e n -

t e r a x is o n t o t h e x y - p l a n e ; R i s t he c u r v a t u r e o f t h e

c e n t e r a x i s ; Z i s t h e a n g l e b e t w e e n t h e z - a x i s a n d t h e

t i p d i r e c t i o n o f t h e F M A . B y a p p l y i n g t h e i n f i n i t e s i -

m a l d e f o r m a t i o n t h e o r y , 0 , R , a n d ,~ c a n b e d e r i v e d a s

f o l l o w s :

2P j - P2 - P3

t a n

0 = I )

~ P 2 - - P3)

Etl

R = , (2)

a p 6 ) - ~ = I

P i

s in 0 / )

3

L - - A p L o Z P i + L o ,

(3 )

3 A o E t i + I

Z = L / R ,

(4 )

w h e r e

P i

d e s c r i b e s t h e i n t e r n a l p r e s s u r e i n t h e i t h

c h a m b e r ( i = 1 , 2 , 3 ), E t i s Y o u n g s m o d u l u s f o r th e

f i b e r - r e i n f o r c e d r u b b e r i n t h e t r a n s v e r s e d i r e c t i o n , L 0

i s t h e n o r m a l F M A l e n g t h , a n d L i s t h e c u r r e n t F M A

l e n g th . 1 is th e m o m e n t o f i n e r t i a f o r th e F M A c r o s s -

s e c t i o n a r e a , A p i s t h e p r e s s u r i z e d a r e a , A 0 i s t h e a r e a

o f t h e r u b b e r , a n d ,~ i s t h e d i s t a n c e b e t w e e n t h e F M A

c e n t e r a n d t h e c e n t e r o f e a c h f a n - s h a p e d a r e a .

F i g . 2 s h o w s s t a t i c c h a r a c t e r i s t i c s o f v a r i o u s F M A s

w i t h d i f f e r e n t s i z e s . F i g . 3 s h o w s c o m p l i a n c e a t t he t i p

o f an F M A w h i c h i s 1 2 m m i n d i a m e t e r a n d 5 0 m m

in l eng th .

Page 3: Elastic_materials_for_robots Flexible Human Like Hand

8/9/2019 Elastic_materials_for_robots Flexible Human Like Hand

http://slidepdf.com/reader/full/elasticmaterialsforrobots-flexible-human-like-hand 3/6

K. Suzumori/Robotics and Autonomous Systems 18 1996) 135-140 137

3 A p p l i c a t io n s t o c o m p l i a n t r o b o t m e c h a n i s m s

3.1. Robot arm

B y c o n n e c t i n g F M A s s e r i a l l y , a n a r m i s o b t a i n e d

w i t h m a n y d e g r e e s o f fr e e d o m a n d s n a k e - li k e m o v e -

m e n t s . F i g. 4 s h o w s a p r o t o t y p e m a d e o f t w o F M A s

a n d a m i n i - g r ip p e r , w h i c h i s a l s o m a d e o f f i b e r r e -

i n f o r c e d r u b b e r [ 4 ] . It h a s s e v e n d e g r e e s o f f r e e d o m

i n c l u d i n g t h e g r i p p e r m o t i o n . P n e u m a t i c t u b e s c o n -

n e c t e d t o t h e u p p e r F M A a n d t h e g r i p p e r p a s s t h r o u g h

t h e c h a m b e r s i n t h e l o w e r F M A .

F i g . 5 s h o w s t h e e x p e r i m e n t a l c o m p l i a n c e c o n t r o l

r e su l ts . T h e a r m m o v e m e n t i s d e t e c t e d o p t i c a l l y u s i n g

a n L E D a t t a c h e d t o th e t ip o f t h e a r m a n d a p o s i t i o n

s e n s i n g d e v i c e . M e a s u r e d d a t a r e g a r d i n g t h e L E D p o -

s i t i o n s a r e f e d t o a c o m p u t e r , a n d a c l o s e d l o o p w i t h

p r o p o r t i o n a l c o n t r o l i s c o n s t r u c t e d . I t i n d i c a t e s t h a t t h e

F M A a r m c o m p l i a n c e c a n b e c o n t r o l l e d b y a d j u s t i n g

f e e d b a c k g a i n K f . I n th i s e x p e r im e n t , r e f e r e n c e i n p u t s

w e r e k e p t c o n s t a n t . T h e s a m p l i n g p e r i o d f o r t h e c o n -

t r o l s y s t e m w a s 5 0 m s .

I t i n d i c a t e d t h a t c o m p l i a n c e c o n t r o l c o u l d b e

a c h i e v e d a l s o w i t h r o b o t s m a d e o f s o f t m a t er i al s .

W h i l e t h e c o m p l i a n c e c o n t ro l o f a co n v e n t i o n a l r o b o t

m a d e o f ri g i d l in k s i s u s ed t o i n c r e a s e c o m p l i a n c e , t h e

c o m p l i a n c e c o n t r o l o f a r o b o t m a d e o f s o f t m a t e r i a l s

i s u s e d t o i n c r e a s e s t i f f n e s s .

3.2. Mult i-finger ed robot hand

Fig. 4. Robot arm, 4 mm in diameter.

5

0 5

1 5 C a l c u l a t i o n

T h e h a n d , s h o w n i n F i g . 6 , c o n s i st s o f f o u r F M A s ,

e a c h 1 6 m m i n d i a m e t e r . I t s l o a d c a p a c i t y i s a b o u t

5 0 0 g f . I n c o m p a r i n g t h e F M A h a n d s t o c o n v e n t i o n a l

r o b o t h a n d s c o n s i s t i n g o f r i g i d l in k s , t w o o b s e r v a t i o n s

c a n b e m a d e : 1 ) F M A h a n d s c a n h a n d l e fr a g i l e o b j e c t s

Fig. 5. Com pliance control of robot arm. Fig. 6. Robot hand.

Page 4: Elastic_materials_for_robots Flexible Human Like Hand

8/9/2019 Elastic_materials_for_robots Flexible Human Like Hand

http://slidepdf.com/reader/full/elasticmaterialsforrobots-flexible-human-like-hand 4/6

  38

K. Suzumori /Rob otic s and Autonomous Systems 18 1996) 135-140

1

2

f

/

9 9

/

~ o / 0

/ /

o o z~

~ / 0 I

\ 0 1 0 2

\ o

/

\ o ~ /

\ o I

/

I

o ,~/o n0n-sl ip imi l

I A Slabi l i ty imff

t~ / 2 r = 3 1 . 5 m m

Fig. 8. H uman-like hand grasping grape.

Fig. 7. W eight holding capacity and stable region of the hand

shown in F ig. 6.

s u c h a s th o s e m a d e o f g l a s s , o r e v e n a n e g g , w i t h m o r e

c a r e t h a n p e r h a p s a r o b o t c o n s i s t i n g o f r i g i d l in k s . ( 2 )

E a c h f i n g e r c a n a l s o d e f o r m t o s u i t th e s h a p e o f th e

o b j e c t s h a n d l e d .

F i g . 7 s h o w s a r e g i o n o f h o l d i n g s t a b i l it y o f th i s

h a n d , w h e r e t h e c r it i c a l f o r c e , Q z f o r s t a b i li t y a n d t h e

w e i g h t h a n d l i n g c a p a c i t y a re s h o w n f o r e a c h p r es s u r e

P I . W h e n t h e w o r k i n g f l u id p re s s u re r e a c h e s s o m e

l im i t, a n u n s t a b le p h e n o m e n o n o c c u r s w h e r e t h e o b j e c t

a n d F M A s t u r n u n s t a b l y a r o u n d t h e c e n t e r a x i s o f

t h e h a n d . T h i s i s j u s t l i k e th e p h e n o m e n o n w h i c h i s

o f t e n e x p e r i e n c e d w h e n g r a s p i n g a s m a l l b e a n w i t h

c h o p s t ic k s . I t c o m e s f r o m t h e f a c t th a t F M A s h a v e

c o m p l i a n c e n o t o n l y i n t h e g r a s p i n g d i r e c t i o n b u t a l s o

i n t h e l a t e r a l d i r e c t i o n .

F i g . 8 sh o w s a h u m a n - l i k e h a n d f o r re s e a r c h p u r -

p o s e s , m i m i c k i n g h u m a n h a n d m o t i o n s o b s e r v e d i n

e v e r y d a y l i f e, s u c h a s g r a s p i n g a g l a s s c u p , u s i n g s c is -

s o r s , c o u n t i n g , e t c .

3.3. W alking robots

A n F M A c a n e a s il y s i m u l a te a l e g m o t i o n w h i c h i s

a c h i e v e d b y a s e ri a l m o t i o n c o n t r o l o f k i c k a n d r e t u r n

a c t i o n .

Fig. 9. M iniature walking robot w ith straight legs.

F i g s . 9 a n d 1 0 s h o w t w o t y p e s o f w a l k i n g r o b o t s .

O n e is a s t r a i g h t l e g r o b o t w h i c h k e e p s i ts f e e t u n d e r

t h e b o d y li k e m a m m a l s , a n d th e o t h e r i s a n o v e r h a n g

l e g r o b o t w h i c h k e e p s i t s f e e t w e l l o u t t o t h e si d e o f

t h e b o d y l i k e r e p t i l e s . T h e r o b o t s h o w n i n F i g . 9 i s

a b o u t 1 g i n w e i g h t a n d 1 5 m m i n le n g t h . T h e r o b o t

s h o w n i n F ig . 1 0 i s 1 0 k g i n w e i g h t a n d 7 0 0 m m i n

l e n g th . A i r is s u p p l i e d t h r o u g h 1 8 p n e u m a t i c t u b e s . I t

Page 5: Elastic_materials_for_robots Flexible Human Like Hand

8/9/2019 Elastic_materials_for_robots Flexible Human Like Hand

http://slidepdf.com/reader/full/elasticmaterialsforrobots-flexible-human-like-hand 5/6

K . S u z u m o r i / R o b o t i c s a n d A u to n o m o u s S y s t e m s 1 8 1 9 9 6 ) 1 3 5 - 1 4 0

139

Fig. 10. W alking robot w ith overhang legs.

Fig. 11. Pipeline mobile robot designed for 2 in. pipe.

i s n o t n e c e s s a r y t o d r i v e t h e s i x FMA s i n d e p e n d e n t l y

a n d o n l y 1 2 t u b e s a r e s u f f i c i e n t f o r o mn i - d i r e c t i o n a l

w a l k i n g .

T h e a l t e r n a t i n g t r ip o d a l g o r i t h m h a s b e e n a p p l i e d t o

t h e r o b o t s . T h e s t r a i g h t l e g r o b o t a c c o mp l i s h e s o mn i -

d i r e c t i o n a l w a l k i n g a n d t u rn i n g w h i l e th e o v e r h a n g

l e g r o b o t a c c o m p l i s h e s f o r w a r d / b a c k w a r d w a l k i n g

a n d t u r n i n g . T h e w a l k i n g s p e e d i s a b o u t 2 0 c m / m i n

a n d t h e l o a d c a p a c i t y i s a b o u t 3 0 0 mg f f o r t h e r o b o t

shown in F ig . 9 .

A n a d v a n t a g e o f th e FM A w a l k i n g r o b o t s i s s a f e ty

b e c a u s e o f t h e ir l ig h t n e s s a n d c o m p l i a n c e . E v e n i f th e

r o b o t f a l l s d o w n s t a i r s t h e r e w i ll b e l e s s d a n g e r t o t h e

r o b o t a n d t o t he s u r r o u n d i n g s .

Page 6: Elastic_materials_for_robots Flexible Human Like Hand

8/9/2019 Elastic_materials_for_robots Flexible Human Like Hand

http://slidepdf.com/reader/full/elasticmaterialsforrobots-flexible-human-like-hand 6/6

140 K . S u z u m o r i / R o b o t i c s a n d A u to n o m o u s S y s t e m s 1 8 1 9 9 6 ) 1 3 5 - 1 4 0

3 4 Pipe l ine in ter ior robo t

T h e n e e d f o r i n s p e c t i o n s i n s i d e s ma l l p i p e l i n e s h a s

g r o w n i n t h e f ie l d o f p l a n t ma i n t e n a n c e e s p e c i a l l y i n

n u c l e a r p l a n t s a n d c h e mi c a l p l a n t s .

F i g . 1 1 sh o w s a p r o t o t y p e d e s i g n e d f o r a 2 in .

p i p e l i n e . I t i s d r i v e n f o r w a r d o r b a c k w a r d b y w h e e l e d

u n i ts a n d a n FM A i s u s e d to s t e e r t h r o u g h p i p e l i n e

b r a n c h e s a n d e l b o w s .

T h e c o m p l i a n c e o f t h e F M A g i v e s t h e r o b o t t w o

a d v a n t a g e s . O n e i s a d a p t a b i l i t y f o r c h a n g e s i n t h e i n -

t e r n a l d i a me t e r o f t h e p i p e . E v e n i f t h e r e i s p l e n t y o f

e n c r u s t a t i o n a n d r u s t o n t h e p i p e w a ll t h e r o b o t c a n

p a s s o v e r t h e m b e c a u s e o f t h e f l e x i b il i ty o f th e FM A .

T h e o t h e r a d v a n t a g e i s t h a t r o u g h c o n t r o l o f t h e FMA

i s a d e q u a t e f o r s t e e r in g b e c a u s e th e FM A c a n b e b e n t

p a s s i v e l y t o f o l l o w t h e p i p e l i n e c u r v e s .

4 . Conclus ions

A m a j o r p r o b l e m i n a p p l y i n g c o n v e n t i o n a l r o b o t s

t o h u ma n - f r i e n d l y t a s k s i s t h a t t h e y h a v e r i g i d a n d

h e a v y b o d i e s . T h e y a r e a l so s o m e t i m e s d a n g e r o u s a n d

w i t h o u t v e r y r e l i a b l e c o n t r o l s .

M o s t o f t h e r e s e a r c h e r s i n t h e r o b o t i c s f ie l d s e e m t o

b e i n t e r e s t e d i n u s i n g c o n t r o l s t o a c h i e v e c o mp l i a n c e

w h i l e o n l y a f e w r e s e a r c h e r s h a v e b e e n i n t e r e s t e d i n

t h e u s e o f s o f t ma t e r i a l s . T h e a u t h o r b e l i e v e s t h a t m o r e

r e s e a r c h o n s o f t ma t e r i a l s f o r h u ma n - f r i e n d l y r o b o t s

s h o u l d b e e n c o u r a g e d b e c a u s e th e r e i s g r e a t p o t e n t i a l

f o r d e v e l o p i n g c o mp l i a n t r o b o t s w h i c h a r e c h e a p a n d

re l i ab le .

cknowledgements

T h e a u t h o r w o u l d l i k e t o t h a n k P r o f . H i r o h i s a

T a n a k a o f Y o k o h a ma N a t i o n a l U n i v e r s i t y f o r h i s u s e -

f u l a d v i c e a n d e n c o u r a g e m e n t . T h e a u t h o r a l s o t h a n k s

M r . S a d a o S e k ig u c h i a n d M s . F u m i k a K o n d o b o t h

o f T o s h i b a Co r p o r a t i o n f o r t h e ir a s s is t a n c e i n t h e

d e v i c e f a b r i c a t i o n a n d e x p e r i me n t s .

References

[ 1] H . E Shu l t e , J r. , The c ha r a c t e r i s ti c s o f t he M c Ki b be n

ar t i f ic ia l muscle , The App l i c a t i on o f Ex t e r na l Powe r i n

Pr os t he t i c s and Or t he t i c s 1960) 94 - l 15.

121 K. Suzumori and A. Abe, App l y i ng F l e x i b l e Mi c r oac t ua t o r s

t o P i pe l i ne I n s pe c t i on Robo t s , Robo t i c s , Me c ha t r on i c s and

M a n u f a c t u r i n g S y s t e m s Nor t h - Ho l l a nd , Ams t e r da m , 1993 )

5 1 5 - 5 2 0 .

[ 3 ] K . Suz umor i , E Kondo a nd H . Ta na ka , Mi c r o - w a l k i ng

r obo t d r i ve n by f l e x i b le mi c r oa c t ua t o r , J o u r n a l R o b o t i c s a n d

Me c ha t r on i c s 5 6 ) 1993 ) 537 - 54 1 .

[41 K. S uzum ori , S Liku ra an d H . T anaka , Fle xible

mi c r oa c t ua t o r f o r mi n i a t u r e r obo t s , Proc. Micro Elec tro

M e c h a n i c a l S y s t e m s 1991 ) 2 04 - 209 .

[ 51 K . S uz umor i , S . L i ku r a a n d H . T a na ka , De v e l opme n t

o f f l e x i b l e mi c r o a c t ua t o r a nd i t s a pp l i c a t i on , Robo t i c

m e c h a n i s m s , Proc. 1991 IEE E Int . Conf . on Rob ot ics and

A u t o m a t i o n 1991 ) 1622 -1627 .