efficient methods for solving the boltzmann …...e cient methods for solving the boltzmann equation...

45
Introduction Introduction II Direct simulation Monte Carlo Variance reduction: killing two birds with one stone LVDSMC BGK model Multiscale Implications VRDSMC Application: Phonon Transport Conclusions Efficient methods for solving the Boltzmann equation for nanoscale transport applications Nicolas G. Hadjiconstantinou Massachusetts Institute of Technology Department of Mechanical Engineering 8 November 2011 Acknowledgements: L. Baker, T. Homolle, H. Al-Mohssen G. Radtke, C. Landon, J-P. Peraud Financial support: Singapore-MIT Alliance NSF/Sandia National Laboratories, MITEI

Upload: others

Post on 21-Jan-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Efficient methods for solving the Boltzmannequation for nanoscale transport applications

    Nicolas G. Hadjiconstantinou

    Massachusetts Institute of TechnologyDepartment of Mechanical Engineering

    8 November 2011

    Acknowledgements: L. Baker, T. Homolle, H. Al-Mohssen

    G. Radtke, C. Landon, J-P. PeraudFinancial support: Singapore-MIT Alliance

    NSF/Sandia National Laboratories, MITEI

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Breakdown of Navier-Stokes description (gases)

    Interest lies in scientific and practical challenges associated withbreakdown of Navier-Stokes description at small scales

    Breakdown of Navier-Stokes 6= breakdown of continuumassumption. Conservation laws, e.g.

    ρDu

    Dt= −∂P

    ∂x+∂τ

    ∂x+ ρf

    can always be written

    Navier-Stokes description fails because collision-dominatedtransport models, i.e. constitutive relations such asτij = µ (∂ui/∂xj + ∂uj/∂xi) , i 6= j failThis failure occurs when the characteristic flow lengthscaleapproaches the fluid “internal scale” λ

    In a gas λ is typically identified with the molecular mean freepath. λair ≈ 0.05µm (atmospheric pressure) ⇒ Kineticphenomena appear in air at micrometer scale.

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Motivation

    Small scale devices (sensors/actuators [Karabacak, 2007],pumps with no moving parts using thermal transpiration [Muntzet al., 1997-2009; Sone et al., 2002],...)

    Processes involving nanoscale transport (Chemical vapordeposition [e.g. Cale, 1991-2004], flight characteristics ofhard-drive read/write head [Alexander et al., 1994],damping/thin films [Park et al., 2004; Breuer, 1999],...)

    Vacuum science/technology: Small-scale fabrication(removal/control of particle contaminants [Gallis et al.,2001&2002],...)

    Similar challenges associated with nanoscale heat transfer in thesolid state (in silicon at T = 300K, λphonon ≈ 0.1µm)[Majumdar (1993), Chen “Nanoscale Energy Transport andConversion” (2005)]

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Outline

    1 Introduction

    2 Introduction II

    3 Direct simulation Monte Carlo

    4 Variance reduction: killing two birds with one stoneLVDSMCBGK modelMultiscale ImplicationsVRDSMC

    5 Application: Phonon Transport

    6 Conclusions

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Introduction II: Knudsen regimes

    Deviation from Navier-Stokes is quantified by Kn = λ/HH is flow characteristic lengthscale

    Flow regimes (conventional wisdom):

    Kn≪ 0.1, Navier-Stokes (Transport collision dominated)

    Kn . 0.1, Slip flow (Navier-Stokes valid in body of flow,slip at the boundaries)

    0.1 . Kn . 10, Transition regime

    Kn & 10, Free molecular flow (Ballistic motion)

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Introduction II: Knudsen regimes

    10.1 10 Kn = λ/L

    1

    0.1

    10

    Ma,∆T/T0,

    etc.

    �Navier Stokes(slip flow) -

    collisionless

    -

    6high-altitudehypersonicflow

    MEMSacceler.

    Frangi, 2007

    Knudsenpump

    Han, 2007

    oscillatingmicrobeam

    Gallis, 2004

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Introduction II: Kinetic description

    Boltzmann Equation: Evolution equation for f(x, c, t)

    ∂f

    ∂t+c·∂f

    ∂x+F·∂f

    ∂c=

    [df

    dt

    ]coll

    =

    ∫ ∫(f∗f∗1−f f1)|cr|σ d2Ω d3c1

    f(x, c, t)d3cd3x = number of particles (at time t) inphase-space volume element d3cd3x located at (x, c)

    F = external force per unit mass

    f1 = f(x, c1, t) f∗1 = f(x, c

    ∗1, t) f

    ∗ = f(x, c∗, t)

    Stars denote post-collision velocities

    |cr| = |c− c1|

    σ = σ(|cr|,Ω) = collision cross-section

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Introduction II: Kinetic description

    Connection to hydrodynamics:

    ρ(x, t) = mn(x, t) =

    ∫mfd3c

    u(x, t) =1

    ρ(x, t)

    ∫mc fd3c

    T (x, t) =1

    3kbn(x, t)

    ∫m (c− u(x, t))2 fd3c

    τij(x, t) =

    ∫m (ci − ui(x, t))(cj − uj(x, t)) fd3c

    (Absolute) Equilibrium (∂f∂t + c ·∂f∂x = 0, [df/dt]coll = 0):

    f0 =n0

    π3/2c3/20

    exp

    (−c

    2

    c20

    ), c0 =

    √2kbT0/m

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Introduction II: Kinetic description

    Local equilibrium (∂f∂t + c ·∂f∂x 6= 0, [df/dt]coll = 0):

    f loc =nloc(x, t)

    π3/2c3/2loc (x, t)

    exp

    (− (c− uloc(x, t))

    2

    c2loc(x, t)

    )

    cloc(x, t) =√

    2kbTloc(x, t)/m

    The BGK (relaxation-time) approximation:∫ ∫(f∗f∗1 − ff1)|vr|σd2Ωd3v1 ≈ −(f − f loc)/τ

    where τ = λ√8kT0/πm

    = “mean time between collisions”

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Introduction II: A useful identity for numericalmethod development

    ∫ ∫(f∗f∗1 − f f1)|cr|σ d2Ω d3c1 =

    1

    2

    ∫ ∫ ∫ (δ′1 + δ

    ′2 − δ1 − δ2

    )f1f2|cr|σd2Ωd3c1d3c2

    where

    δi = δ (c− ci) , δ′i = δ (c− c′i)

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Direct Simulation Monte Carlo

    Smart molecular dynamics: no need to numericallyintegrate essentially straight line trajectories [Bird].

    System state defined by {xi, ci}, i = 1, ...NSolves Boltzmann equation by splitting motion:

    Collisionless advection for ∆t (xi → xi + ci∆t)

    ∂f

    ∂t+ c · ∂f

    ∂x= 0

    Perform collisions for the same period of time ∆t:

    ∂f

    ∂t=

    1

    2

    ∫ ∫ ∫(δ′1 + δ

    ′2 − δ1 − δ2) f1f2|cr|σd2Ωd3c1d3c2

    Collisions performed in cells of linear size ∆x. Collisionpartners picked randomly within cell

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    DSMC discussion

    Significantly faster than MD (for dilute gases)

    In the limit ∆t,∆x→ 0, N →∞, DSMC solves theBoltzmann equation [Wagner, 1992]

    Error in transport coefficients ∝ ∆x2 in the limit ∆t→ 0[Alexander et al,. 1998]

    Error in transport coefficients ∝ ∆t2 in the limit ∆x→ 0[Hadjiconstantinou, 2000]

    DSMC (Boltzmann) 6= Lattice Boltzmann (solves NS)

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    DSMC Advantages

    DSMC has overshadowed numerical discretization approachesfor problems of practical interest. Solution by numericaldiscretization only advantageous when very high accuracy isrequired for special (low-dimensional, simple) problems e.g.[Sone, Aoki & Ohwada (1989-)]

    DSMC Advantages:

    SIMPLICITY

    No need to discretize 6-dimensional phase space

    Unconditionally stable

    Importance sampling∂f∂t =

    12

    ∫ ∫ ∫(δ′1 + δ

    ′2 − δ1 − δ2) f1f2|cr|σd2Ωd3c1d3c2

    Natural treatment of discontinuities∂f∂t + c ·

    ∂f∂x = 0→ ”Move”

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    DSMC Limitations

    Statistical error [Hadjiconstantinou et al., 2003]

    σux|ux,0|

    =1√

    NCNens

    1

    Ma√γ,

    σT∆T

    =1√

    NCNens

    √kB/cV

    ∆T/T0

    Resolution of a Ma = 0.01 flow to 1% uncertaintyrequires ∼ 108 INDEPENDENT samplesStatistical uncertainty affects all molecular simulationmethods

    Multiscale problems ....

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    A problem currently out of reach of DSMC

    Temperature response to alaser pulse (∆T ∼ 1K)

    Challenges:

    Temperature differences toosmall to discern (from noise)

    Domain too large to explicitly simulate

    (Loading)

    movie3D_long.aviMedia File (video/avi)

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Variance reduction: killing two birds with one stone

    0.50.40.30.20.10.070.050-0.05-0.07-0.1-0.2

    0.5

    T − T0∆T

    q

    ρ0c0∆T

    2λ� -LVDSMC DSMC

    Reduces noise by orders of magnitude

    Seamlessly transitions to continuum limit

    with NO APPROXIMATION

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Variance reduction

    Removes the cost associated with molecularmotion that averages to known behavior

    Observation: for low speed flows, the distribution functionis very close to equilibrium (Maxwell Boltzmanndistribution)

    Write f = fMB + fd, where fMB is an arbitrary MaxwellBoltzmann distribution [Baker & Hadjiconstantinou, 2005][df

    dt

    ]coll

    =1

    2

    ∫ ∫ ∫(δ′1 + δ

    ′2 − δ1 − δ2)

    (fMB1 + f

    d1

    )×(

    fMB2 + fd2

    )|cr|σ d2Ω d3c1 d3c2

    =1

    2

    ∫ ∫ ∫(δ′1 + δ

    ′2 − δ1 − δ2)

    (2fMB1 + f

    d1

    )fd2 ×

    |cr|σ d2Ω d3c1 d3c2

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Variance reduction

    What have we done here? Removed∫ ∫ ∫(δ′1 + δ

    ′2 − δ1 − δ2) fMB1 fMB2 |cr|σd2Ωd3c1d3c2 = 0

    from the calculationRecall that

    fMB1 fMB2 � fMB1 fd2 � fd1 fd2

    In other words, we choose to not perform the vast majority ofcollisions that have no effect and thus

    Save a lot of effort

    Not pollute the answer by statistical uncertainty ofevaluating 0.0

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Variance reduction

    This is more generally known as Control Variate Monte Carlointegration: Integral

    ∫f(x)dx can be evaluated with

    significantly smaller uncertainty by writing∫f(x)dx =

    ∫(f(x)− g(x))dx+

    ∫g(x)dx

    where

    g(x) ≈ f(x)∫g(x)dx can be evaluated deterministically

    because f(x)− g(x) is smallThe answer is still EXACT (no approximation)

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Variance reduction

    Relative statistical uncertainty=Standard deviation/ Signalmagnitude

    10−5

    10−4

    10−3

    10−2

    10−1

    10−4

    10−3

    10−2

    10−1

    100

    101

    wall velocity

    rela

    tive

    stat

    istic

    al u

    ncer

    tain

    ty in

    flow

    vel

    ocity direct method, 6400 collision events/timestep

    direct method, 32000 collision events/timesteptypical DSMC

    Computational cost scales with square of relative statisticaluncertainty

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Deviational Particle methods

    Like DSMC BUT simulate the motion of “deviationalparticles” that can be positive or negative

    f = fMB + fd. If fMB 6= fMB(x)

    ∂f/∂t+ c · ∂f/∂x = ∂fd/∂t+ c · ∂fd/∂x→ ”move”

    Case fMB = fMB(x) can also be treated with smallchanges. From now on, focus on collision integral.

    Collide:[df

    dt

    ]coll

    =

    ∫ ∫ ∫(δ′1 + δ

    ′2 − δ1 − δ2) fMB1 fd2 gσd2Ω d3c1 d3c2 +

    1

    2

    ∫ ∫ ∫(δ′1 + δ

    ′2 − δ1 − δ2) fd1 fd2 gσd2Ω d3c1 d3c2

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Deviational Particle methods

    Let us look at the linear term[df

    dt

    ]coll

    =

    ∫ ∫ ∫(δ′1 + δ

    ′2 − δ1 − δ2) fMB1 fd2 gσd2Ω d3c1 d3c2

    In contrast to DSMC (fMB = 0, fd > 0)[df

    dt

    ]coll

    =1

    2

    ∫ ∫ ∫(δ′1 + δ

    ′2 − δ1 − δ2) f1f2gσd2Ω d3c1 d3c2

    i.e. collision process is simply an update δ1, δ2 → δ′1, δ′2

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Deviational Particle methods

    Result:

    For Kn > 1, where wall collisions are dominant, method isvery efficient

    For Kn < 1, where collisions dominate, number ofparticles diverges (after about one collision time)

    Fundamental limitation? [Brownian Dynamics, Wagner &Ottinger, 1996;Chun & Koch, 2005]

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Low variance deviational simulation Monte Carlo(LVDSMC)

    Automatic and EXACT cancellation can be achievedusing the property [Homolle & Hadjiconstantinou, 2007]:∫ ∫ ∫ (

    δ′1 + δ′2 − δ1 − δ2

    )fMB1 f

    d2 gσd

    2Ω d3c1 d3c2 =∫

    [K1(c, c1)−K2(c, c1)]fd(c1)d3c1 − ν(c)fd(c)

    [Hilbert 1912]

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Low variance deviational simulation Monte Carlo(LVDSMC)

    where

    K1(c, c1) =

    √2

    π31

    λ0c20

    1

    |ĉ− ĉ1|exp

    [−|ĉ|2 + (ĉ× ĉ1)

    2

    |ĉ− ĉ1|2

    ]=

    √2

    π31

    λ0c20

    1

    |ĉ− ĉ1|exp

    [− [ĉ · (ĉ− ĉ1)]

    2

    |ĉ− ĉ1|2

    ]K2(c, c1) =

    √1

    2π31

    λ0c20|ĉ− ĉ1| exp

    (−|ĉ|2

    )ν(c) =

    √1

    c0λ0

    [exp

    (−|ĉ|2

    )+

    (2|ĉ|+ 1

    |ĉ|

    )∫ |ĉ|0

    exp(−ξ2

    )dξ

    ]

    and ĉ = c/c0

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Low variance deviational simulation Monte Carlo(LVDSMC)

    Collision integral interpretation:[∂f

    ∂t

    ]coll

    =

    ∫[K2 −K1]fdd3c1︸ ︷︷ ︸particle generation

    −ν(c)fd︸ ︷︷ ︸particle deletion

    Based on this arrangement, the collision algorithm proceeds asfollows:

    Delete deviational particles of velocity c with probabilityproportional to ν(c)∆t.

    Generate deviational particles according to the distribution{∆t

    ∫[K1 −K2] fdd3c1

    }(c)

    Generalized, convergence results [Wagner (2008)]

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    BGK collision model

    [df

    dt

    ]coll

    ≈ −(f − f loc)/τ = νf loc− νf = ν(f loc− fMB)− νfd

    Although “crude” as an approximation, BGK is widelyused in many physics fields, most notably, phonon,electron transport. More to come.

    Similarity between Hilbert’s form and BGK model suggestsBGK may be stable. Indeed it is [Radtke &Hadjiconstantinou, 2009].

    Its simplicity leads to VERY simple, efficient algorithms[Radtke & Hadjiconstantinou, 2009; Hadjiconstantinou,Radtke &Baker, 2010]

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    LVDSMC implementations

    Fixed equilibrium distribution[∂f

    ∂t

    ]coll

    =f loc − f0

    τ︸ ︷︷ ︸generation

    −fd

    τ︸ ︷︷ ︸deletion

    Simple, stable, easy to implement [Hadjiconstantinou, Radtke&Baker, 2010]

    Spatially-variable equilibrium distribution[∂f

    ∂t

    ]coll

    =f loc − fMB

    τ−∆fMB︸ ︷︷ ︸

    part. generation

    +∆fMB︸ ︷︷ ︸change in equilibrium

    −fd

    τ︸ ︷︷ ︸part. deletion

    Stable and efficient

    No particle generation in the linearized regime (Ma→ 0, etc.)[Radtke & Hadjiconstantinou, 2009]

    Highly efficient for continuum limit (Kn→ 0)Multiscale implications....

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Numerical efficiency:BGK LVDSMC methods

    Simulation example:

    BGK, spatially-variable equilibrium distribution

    Transient shear problem

    Details

    Kn = 0.1

    u(±L

    2

    )= ∓U

    U � c0

    CPU time:

    70 sec. (3.0 GHz)

    −0.5 0 0.5−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    u

    U

    x/L

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Numerical efficiency:BGK LVDSMC methods

    Simulation example:

    BGK, spatially-variable equilibrium distribution

    Transient shear problem

    Details

    Kn = 0.1

    u(±L

    2

    )= ∓U

    U � c0

    CPU time:

    70 sec. (3.0 GHz)

    — DSMC (Ma = 0.02)

    — LVDSMC

    −0.5 0 0.5−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    u

    U

    x/L

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Numerical efficiency:BGK LVDSMC methods

    Statistical error in temperature

    LVDSMC vs. DSMC

    10-5

    10-4

    10-3

    10-2

    10-1

    10010

    -3

    10-2

    10-1

    100

    101

    102

    103

    104

    ∆T/T0

    σT

    ∆T

    DSMC

    LVDSMC

    For a single cell in the center of thesimulation containing ≈ 950 particles(all methods)

    LVDSMC: fixed vs.

    spatially-variable equilibrium

    10-1

    100

    101

    10-5

    10-4

    10-3

    σ2T(∆T )2

    k = 2√πKn

    Gray: fixed equilibrium

    Colors: spatially-variable

    equilibrium

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Multiscale Implications

    As we approach Kn→ 0, variable equilibrium methodsbecome more efficient.

    Normally molecular methods become “stiff” in thecontinuum limit (more and more particles, longertimescales)

    Recall Chapman-Enskog expansion:

    f̂ ≈ f̂ loc +Kn ĝ +O(Kn2)

    As Kn→ 0 we need less and less particles to describesystem

    Basis for multiscale methods that seamlessly transitionfrom molecular to continuum [Pareschi et al. 2004].

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    An alternative approach[Al-Mohssen & Hadjiconstantinou (2010)]

    Basic approach

    Auxiliary equilibrium simulation,correlated to non-equilibriumsimulation (DSMC) used forvariance reduction

    Both simulations share initialconditions and random variables

    Use one set of particles to describeboth simulations.

    How?

    Importance weights

    Wi =feq(ci)

    f(ci)

    [Ottinger et al. 1996]

    “A particle at ci in the non-equilibrium simulation,is worth Wi particles in the equilibrium simulation”

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    VRDSMC method[Al-Mohssen & Hadjiconstantinou (2010)]

    Non-equilibrium property (as before)

    〈R〉 =∫R(c)f(c)d3c ' R̄ = 1

    N

    Ncell∑i=1

    R(ci)

    Equilibrium property (from the same particle data + weights)

    〈R〉eq =∫R(c)W (c)f(c)d3c ' Req =

    1

    N

    Ncell∑i=1

    WiR(ci)

    Variance-reduced property

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    VRDSMC method

    σ{u}UW

    UW/c0

    Couette Flow

    Kn = 1

    This method is best suited to the BGK model and thus veryuseful for the applications discussed next ...

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Applications to solid state heat transfer

    A crash course in phonon transport.More details on modeling aspects: [G. Chen (2005)]

    In a large class of materials (broadly speaking non-metals)lattice vibrations are responsible for significant part of theheat transfer from hot to cold (not conduction!)

    The discrete nature of allowed wavemodes and energylevels makes a particle description convenient:phonon=”quantum of lattice vibration modes”

    At the device level (λ ≈ 100nm) phonon behavior may bemodeled by a Boltzmann equation

    ∂f

    ∂t+ vg ·

    ∂f

    ∂x=

    [df

    dt

    ]coll

    where f = f(x,k, t), or assuming isotropic dispersionrelation ω(k) = ω(k), f = f(x, ω, t)

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Applications to solid state heat transfer

    Crash course in phonon-transport continued...

    Equilibrium distribution: Bose-Einstein

    f0(ω) =1

    exp( ~ωkbT0 )− 1

    Scattering (impurity, intrinsic): Relaxation Approximation[df

    dt

    ]coll

    =f loc(ω)− f(ω)

    τ(ω)

    E = V∫ ∑

    p ~ωf(ω)D(ω, p)dω, D(ω, p) = density of states(assumed continuous)

    Tloc determined from [Cercignani, 1988;Hao et al., 2009]:∫ω

    ~ω∑p

    D(ω, p)f loc(ω)− f(ω)

    τ(ω)dω = 0

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Applications to solid state heat transfer

    Governing equation very similar to BGK model discussedabove (with τ = τ(ω) [Holland (1963)])

    DSMC-like simulations have been developed [Mazumder &Majumdar, 2001; Hao et al. 2009] with similar limitations

    Variance reduction needed.

    Use VRDSMC (weights) to illustrate method. Fordeviational method in phonon transport see theses by [C.Landon & J-P. Peraud]

    Present application of our methodology to “state of theart” in Monte Carlo simulations of phonon transport

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Applications to solid state heat transfer

    VRDSMC for phonon transport:

    Primary simulation simulates equilibrium at T0

    Non-equilibrium simulation inferred through weights

    W (ω) =f(ω)

    f0(ω)

    E = V∫ ∑

    p[W (ω)− 1]~ωf0(ω)D(ω, p)dω + E0Weight evolution can determined from[

    df

    dt

    ]coll

    =

    (dW (ω)f0(ω)

    dt

    )coll

    =f loc(ω)− f(ω)

    τ(ω)

    leading to[dW (ω)

    dt

    ]coll

    =1

    τ(ω)

    (f loc(ω)

    f0(ω)−W (ω)

    )

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Applications to solid state heat transfer

    Relative statistical uncertainty=Standard deviation/ Signalmagnitude

    10 2 10 1 10010 3

    10 2

    10 1

    100

    101

    σ∆T

    ∆TT0

    StandardVariance Reduced

    !"#$%%#'()*(+,-#)-./,01+#*2#-34-,"-.#/4#"1#5()6-#6)(.*-+"2##

    Computational cost scales with square of relative statisticaluncertainty

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Applications to solid state heat transfer

    Effective conductivity (Kn ≈ 1) of porous pure silicon.Temperature field in response to an applied temperaturegradient.

    298.5 299 299.5 300 300.5 301 301.5

    !"#$%&'()*$+,*-.)*-+

    %&'()*$+,*-.)*-+

    /+

    0+

    123+#4+ Kn = .97

    Non-variance-reduced simulation needs 60+ years to reachsame level of uncertainty (same computer)

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Applications to solid state heat transfer

    Tuning the effective conductivity of porous pure silicon.

    d

    Ballistic (Kn ≈ 4) shading exploited to reduce effectivethermal conductivity (2D periodic structure)

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Applications to solid state heat transfer

    Thermal conductivity spectroscopy

    Temperature response to alaser pulse (∆T ∼ 1K)Experiment from G. Chen (MIT)

    Speedup: O(109)

    (Loading)

    movie3D_long.aviMedia File (video/avi)

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Conclusions

    Proposed and developed a new class of methodologies fordrastically reducing the statistical uncertainty (cost) of MonteCarlo simulations of kinetic transport phenomena (mostimportantly: resolution of debilitating stability problems [2007])

    Formulation sufficiently general to apply to various kineticmodels

    For typical applications, the speedup is sufficiently large[O(1,000-10,000)], to enable otherwise impossible simulations(gaseous thermal response, kinetic flow through porous media,solid-state heat transfer)

    Formulation able to capture arbitrarily small deviations fromequilibrium (where speedup →∞)Removing the part associated with molecular motion thataverages to known behavior via algebraically decomposing thedistribution function is a very effective approach towardsmultiscale simulation

  • Introduction

    Introduction II

    DirectsimulationMonte Carlo

    Variancereduction:killing twobirds with onestone

    LVDSMC

    BGK model

    MultiscaleImplications

    VRDSMC

    Application:PhononTransport

    Conclusions

    Thanks/Apologies

    Thanks for your attention

    Sorry for talking so fast

    IntroductionIntroduction IIDirect simulation Monte CarloVariance reduction: killing two birds with one stoneLVDSMCBGK modelMultiscale ImplicationsVRDSMC

    Application: Phonon TransportConclusions