ecoc2010 invited paper da and ad converters in sige ... · september 19-23, 2010 – torino, italy...

22
SEPTEMBER 19-23, 2010 – TORINO, ITALY T. Ellermeyer et al.: DA and AD Converters in SiGe Technology. ECOC2010 Invited Paper DA and AD Converters in SiGe Technology: Speed and Resolution for Ultra High Data Rate Applications Tobias Ellermeyer , Rolf Schmid, Anna Bielik, Jörg Rupeter and Michael Möller MICRAM Microelectronic GmbH, Bochum, Germany www.micram.com

Upload: buiduong

Post on 10-Nov-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

SEPTEMBER 19-23, 2010 – TORINO, ITALY T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

ECOC2010 Invited Paper

DA and AD Converters in SiGe Technology:

Speed and Resolution for Ultra High Data Rate Applications

Tobias Ellermeyer, Rolf Schmid, Anna Bielik, Jörg Rupeter and Michael Möller

MICRAM Microelectronic GmbH, Bochum, Germany

www.micram.com

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 2 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

Introduction TX

DA converter needed for: •  Pre-Emphasis

•  Higher Level QAM / DQPSK

•  OFDM

•  Multi-Format / Adaptive Transmitters

RX AD converter needed for: •  Equalization in binary transmission

•  Higher Level QAM / DQPSK

•  OFDM

•  Multi-Format / Adaptive Receivers

DAC

DAC

DSP90°

ADCTIA

ADCTIA

DSP

Simple example w/o PolMux Simple example w/o PolMux / direct detection

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 3 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

State-of-the-Art converters

12 GSa/s 32 GSa/s34 GSa/s

43 GSa/s20 GSa/s 50 GSa/s

DAC

C

AD 1.0 Vfs

8 bit5.7 bit 17 GHz

8 bit

1.0 Vpptr > 30 ps

6 bit

8 bittr > 24 ps

CMOS SiGe HBT/BiCMOS III/V HBT

0.8 Vpp

tr n/a1.0 Vpp

6 bittr = 30ps0.3 Vpp

6 bittr = 12 ps1.6 Vpp

6 bittr n/an/a

20 GSa/s10 GSa/s24 GSa/s

30 GSa/s35 GSa/s

56 GSa/s40 GSa/s

1.0 Vfs10 GHz

2.3 bit 3 bit

1.0 Vfs10 GHz

6 bit

15 GHz

18 GHz

5 bit3.5 bit 4 bit

22 GHz0.28 Vfs

4 bit3.2 bit 8 GHz0.24 Vfs

4 bit3.2 bit

0.5 Vfs

6 bit3.9 bit

1.2 Vfs

Phys. resolutionRise/fa ll time (20/80)Full scale swing

Phys. resolutionENOBf(ENOB) GHzFull scale swing

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 4 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

Technology Choice (ADC)

Bottleneck CMOS SiGe TIA / AGC - External IC (or add. bits instead

AGC) - Integrated on ADC

First T/H Stage -  Bandwidth - Driving of next stages -  Clock jitter

-  Resolution / Droop

-  Clock jitter AD conversion - Slow ADC cores

- Synchronization / calibration - Signal / Clock distribution

-  Fast ADC cores -  No complex logic

100GbE: 28/56 GSa/s; 17 GHz BW

400GbE: 56-224 GSa/s; 28-112 GHz BW

T/H

T/H

T/H

T/H

T/H

T/H

T/H

T/H

T/H

ADC

ADC

ADC

ADC

90°

180°

270°

CLK/4

CLK/n

CLK

fS /4

fS /n

17 GHz (100G)>30 GHz (400G)

>30 GHz (400G)17 GHz (100G)

>4 GHz (100G)>7.5 GHz (400G)

17 GHz (100G)>30 GHz (400G)

ADC

TIA/AGC

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 5 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

Technology Choice (DAC) Interleaving of DA converter cores •  Needs analog multiplexer (AMUX) •  Switching noise visible at output •  AMUX needs

•  High bandwidth •  Good linearity

•  AMUX sensitive to pattern effects (e.g. through self heating)

DACMUX

100G: 17 GS/s

DACMUX

AMUX100G: 17 GS/s

Single core DA converter •  Significantly lower switching noise •  Better accuracy/linearity •  Better device matching

DACMUX

100G: 34 GS/s

SiGe: Goal is to omit modulator driver. Max. output swing of latest SiGe devices is 0.8Vse/1.6Vdiff.

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 6 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

Pros/Cons of SiGe Devices Pro‘s •  Bandwidth >25 GHz possible •  High Gain •  High output swing •  Good device matching •  Include TIA/AGC and MZM driver

Con‘s •  Only medium complexity possible (50k

BJT) => DSP needs CMOS

•  Two chips: Massive bus between CMOS and SiGe required

Two Chip solution

3D Packaging with Through Silicon Vias (TSV)

Ref: Roger Allan in Electronic Design

Additional benefits: •  Always best digital CMOS node •  Any proprietary DSP possible •  DAC / ADC independent of

CMOS

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 7 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

Topologies for High Speed DA-Converter Cores a)  R2R Ladder

J All stages have identical devices K Resistor matching L Output impedance matching L Timing matching L Power (much power dissipated

in internal resistors)

b)  Weighted currents J Common current summing point

=> better impedance matching J less power J smaller area K Timing also critical

(diff. currents in CML stages)

… continued on next slide…

I0

RR

0D

I0I0

D2

2R2R

2D

I0

2R2R

D0 1D D1 3D D3

RR

R

R

R

R

R

R

OUT

OUT

n

p

I0

0D

I0I0

D22D

I0

D0 1D D1 3D D3

RR

OUT

OUT

8 4 2

n

p

Examples: 4-bit cores

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 8 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

Topologies for High Speed DA-Converter Cores

6-bit Binary weighted currents 6-bit Segmented DAC (3 LSB binary weighted / 3 MSB thermometer code)

c)  Segmented DAC (continued) J Strongly reduces glitches J No additional current

for output stage L Additional logic required

RR

K00K 1K K1 2K K2

0K 2K1K

2D 3D

0 0 0 0 00 1 0 0 11 0 0 1 11 1 1 1 1

3 2 2 1 0D D K K K

0D D0 1D D1

2I0 I00I

408

weightedIBinary

0I2 2

currentsEqual

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 9 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

DAC30 Demonstrator Chip

5.07 mm

5.07

mm

•  6 bit segmented DAC

•  Demonstrator with FPGA interface (24 serial lines)

•  34 GSa/s

•  Single core

•  Half rate clock

•  Configuration register

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 10 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

DAC30 Demonstrator Chip Sampling rate dc – 34 GSa/s Resolution 6 bit Rise/Fall (20/80%) 12 ps INL < 0.2 LSB

Full scale swing 800 mV,se 1600 mV,diff

ENOB� 5.27 SFDR� 46.9 dB Total power diss. 12.5 W Converter core power 0.4 W

Die size 5 . 0 7 x 5 . 0 7 mm²

Technology I n f i n e o n b7hf200

Converter core size 0 . 4 0 x 0 . 4 3 mm²

DA core incl. last mux/FF

0 . 8 0 x 1 . 3 0 mm²

�(�†28 GSa/s, 875 MHz sine wave output, measured with spectrum analyser up to Nyquist frequency)

DAC output voltage vs. code

-1000

-750

-500

-250

0

250

500

750

1000

0 8 16 24 32 40 48 56 64Code

Out

put (

diffe

rent

ial)

mV

540mVpp

1060mVpp

1640mVpp

1930mVpp

Integral Nonlinearity vs. Code

-0,2

-0,15

-0,1

-0,05

0

0,05

0,1

0,15

0,2

0 8 16 24 32 40 48 56 64Code

INL

(LSB

)

1250mVpp1600mVpp1900mVpp

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 11 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

DAC30 Output Waveforms l  Measurements performed with

chips mounted in sockets (cf. Slide “Measurement setup“)

l  Driven by Virtex-4 (overclocked to 7 Gb/s)

l  Measured with Tektronix CSA8000 sampling scope (50 GHz bandwidth)

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 12 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

Signal Impairments through Passive Components •  Signal impairments due to passive components

(e.g. traces, cables, connectors, package, etc.)

•  Essential but challenging to maintain high frequency performance and effective resolution.

•  For example: Reflection •  Reflection should be less than 1 LSB:

•  Written in dB:

For 8-bit resolution and |r1|=|r2|: è Return loss < -24 dB over the whole

bandwidth on both ends (6-bit: <-18 dB)

r2 r1

DAC

bits  ofNumber                         =≤⋅ brr b21

21

dBdB21 02.6 rbr

−⋅−≤

Reflections in DAC output signal

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 13 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

Topologies for High Speed AD-Converter Cores a) Massive Parallelization (SAR)

•  ADC cores typically SAR converters J SAR: Slow but simple architecture / binary

output J Bandwidth is determined by first set of T/H L Clock distribution difficult L Lots of calibration

b) Flash ADC J Extremely fast K Only low resolution:

6 bit => 2^(n-1)=63 comparators in parallel L Complex logic (thermometer code to binary) •  Also often used: Half-Flash/Pipeline Flash

c) Interpolation/Folding J Fast flash type converter J Number of comparators reduced to 2^(n-1)/m

by folding m times (typ. m=2) L Complex logic (thermometer code) K Analog stages required

T/H

T/H

ADC

ADCT/H

T/H

ADC

ADCT/H

T/H

T/H

FF

Thermometer -> BinaryDECODE

FFFF FF FF FF FF FF

Massive Parallelization

Flash Converter

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 14 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

Topologies for High Speed AD-Converter Cores

Vin

V3 V0V1V2V4V5

Q1 Q0Q2Q3Q4Q5

CLKQ3Q5 Q4 Q2 Q1 Q0

Vin=V5 V4 V3 V2 V1 V0

d) Serial ripple converter K Little bit slower than flash J Simple architecture (number of amps / flip-flops equal

to resolution) J Direct output of gray coded binary K Highly analog concept K Propagation delay through each stage critical

Integer Binary Gray 0 6‘b000000 6‘b000000 1 6‘b000001 6‘b000001 2 6‘b000010 6‘b000011 … … … 31 6‘b011111 6‘b010000 32 6‘b100000 6‘b110000 33 6‘b100001 6‘b110001 … … … 62 6‘b111110 6‘b100001 63 6‘b111111 6‘b100000

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 15 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

ADC30 Demonstrator Chip

Sampling rate dc – 34 GSa/s

Resolution 6 bit

Full scale input range 282 mV (se or diff)

INL 1.5 LSB

Bandwidth >25 GHz

ENOB (30 GSa/s) 4.7 (fin=7.5 GHz) 3.3 (fin=25 GHz) �

Total power diss. 10 W C o n v e r t e r c o r e power 4 W

Die size 5.07 x 5.07 mm²

Converter size 1.0 x 2.6 mm² �second Nyquist band

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 16 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

•  6 bit serial ripple converter

•  Demonstrator with FPGA interface (24 serial lines)

•  34 GSa/s

•  Four interleaved cores

•  Half rate clock

•  Configuration register

ADC30 Demonstrator Chip

5.07 mm

5.07

mm

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 17 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

ADC30 Measurement Results

Upper: l  Internal memory mode (16 Samples) l  Running at 30 GSa/s (Int. Osc.)

Right: l  Data transferred to FPGA

(512kSamples) l  Running at 10 GSa/s (FPGA driver

issues)

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 18 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

FPGA/DSP Interface

Current demonstrators based on FPGA constraints: •  Use of commercial available FPGA evaluation boards. •  Most commonly used is ML525 (Virtex5): 24 RocketIOs •  6-bit resolution; 4x time multiplex => 24 lanes •  Raw data transfer to avoid protocol overhead •  MGT clock reference is provided by DAC/ADC •  Critical:

•  RocketIOs show reset dependent delay •  Power (50 ohm interfaces)

6.5 Gb/s

26 Gb/s

x6

6x 26 Gb/s

D[5:0]

:20 :26.5 GHzClocks

13 GHzClk

26 GS/s

FPGA DAC

for SR > 26 GS/s FPGA is overclocked

24xRocketIO

REF

MUX DACCore

52xSMA

Cables

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 19 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

FPGA/DSP Interface

Future demonstrators with FPGA interface: •  Make use of higher data rates and higher RocketIO count

•  Virtex 7: 56x 10 Gb/s and/or 72x 13 Gb/s •  Stratix V: 66x 12.5 Gb/s

è Increase Sampling rate and / or number of bits

Next generation: >56 GSa/s / 8 bit

Interface for 3D-packaging with DSP: •  Source synchronous •  Data rate as high as the DSP/CMOS can handle

(to keep I/O count low) •  Free in changing resolution and/or multiplexing

ratio

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 20 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

Measurement Setup

Front: Evaluation Board with DAC module

Back: Xilinx ML424 Board with Virtex4-FX140 (24 RocketIOs)

•  15 GHz clock is fed to the DAC module (blue cable)

•  Reference clock (:40) for FPGA is generated by DAC

•  48 RF-cables for 24 differential SerDes links

VEGA30G Module

SEPTEMBER 19-23, 2010 – TORINO, ITALY

page 21 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

Beyond 100GbE

4-QAM 16-QAM 64-QAM 256-QAM

Bandwidth (GHz)

112 56 37 28

bits/Hz 4 8 12 16

GSa/s 112 56 37 28

ENOB (?) 1 2 3 4

GSa/s 224 112 84 56

ENOB 3.8 4.9 5.7 7.0

DA

C A

DC

Ref: T. Pfau, ECOC‘09

•  Next step will be 400 GbE •  Data rates up to 448 Gb/s including FEC •  Keep WDM grid à higher order modulation formats •  DA-converters become mandatory in TX •  Very high bandwidth/ENOB à AD-converter may become bottleneck again

SEPTEMBER 19-23, 2010 – TORINO, ITALY T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.

Thank you!