eciv 720 a advanced structural mechanics and analysis lecture 13 & 14: quadrilateral...

103
ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force Vectors Modeling Issues

Post on 19-Dec-2015

236 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

ECIV 720 A Advanced Structural

Mechanics and Analysis

Lecture 13 & 14: Quadrilateral Isoparametric ElementsStiffness MatrixNumerical IntegrationForce VectorsModeling Issues

Page 2: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Two Dimensional – Plane StressThin Planar Bodies subjected to in plane loading

Tvuu

Tyx fff

Tyx TTT

tdAdV

Tiyixi PPP

Page 3: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Stress and Strain

Txyyx σ

Txyyx ε

Page 4: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Stress Strain Relationship

T

y

u

y

u

y

v

x

u

ε

Page 5: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

FEM Solution: Area Triangulation

Area is Discretized into Triangular Shapes

Page 6: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Constant Strain Triangle

For Every Triangular Element

•Strain-Displacement Matrix B

122131132332

211332

123123

000

000

2

1

yxyxyx

xxx

yyy

AB

1 2

3q6

q5

q4

q3

q2

q1

vu

Constant strain

11 LN

22 LN

133 LN

Nqu ,

Bqε

Page 7: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

FEM Solution: Quadrilateral Mesh

Area is Discretized into Quadrilateral Shapes

Page 8: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

FEM Solution: Quadrilateral Elements

X

Y

1 (x1,y1) 2 (x2,y2)

4 (x4,y4)

q8

q7

q4

q3

q1

q2

8 Degrees of Freedom

3 (x3,y3)

q6

q5v

uP (x,y)

Page 9: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

FEM Solution: Objective

• Use Finite Elements to Compute Approximate Solution At Nodes

• Interpolate u and v at any point from Nodal values q1,q2,…q8

q8

q7

q4

q3

q1

q2

vu

q6

q5

Page 10: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

To this end…

•Intrinsic Coordinate System•Shape Functions of 4-node quadrilateral

•From 1-D

•Direct •Jacobian of Transformation•Strain-Displacement Matrix•Stiffness Matrix

Page 11: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Intrinsic Coordinate System

12

112

xxxx

Map ElementDefine Transformation

x1x

x2

1=-1 2=1

Recall 1-D

Page 12: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Intrinsic Coordinate System

1 (-1,-1) 2 (1,-1)

4 (-1,1)

Map ElementDefine Transformation

Parent

3 (1,1)

4

1

2

3

Page 13: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Lagrange Shape Functions

1=-1 2=1

12

11N 1

2

12N

For 1-D

N1()N1=1

baN 1

111 N

011 N

Page 14: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

2-D Lagrange Shape Functions

12

11,1f

(1,)(1,1)

1 (-1,-1)

What is the lowest order

polynomial

f1(,) along side =-1

that satisfies

f1(-1,-1) =1 & f1(1,-1)=0?

Page 15: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

2-D Lagrange Shape Functions

12

1,12f

What is the lowest order

polynomial

f2(,) along side =-1

that satisfies

f2(-1,-1) =1 & f2(-1,1)=0?

(1,)(1,1)

1 (-1,-1)

Page 16: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

12

1,12f

f2=0

f2=1

Construction of Lagrange Shape Functions

(1,)(1,1)

1 (-1,-1)

12

11,1f

f1=1

f1=0

What is the lowest order Polynomial F1(,) that satisfiesF1(-1,-1) =1 & F1(1,-1)=F1(1,1)=F1(-1,1)=0?

Bi-Linear Surface

Page 17: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

(1,)(1,1)

Construction of Lagrange Shape Functions

f2(-1,)f1(-1)

PP

PPPP ffNF

114

1

,11,, 2111

PP

P

Page 18: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Construction of Lagrange Shape Functions

114

1,11,, 2111 ffNF

For Every Point ()

(1,1)

1 (-1,-1)F1(,)

Page 19: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Construction of Lagrange Shape Functions

(1,)(1,1)

2 (1,-1)

12

11,1f

Bi-Linear Surface

114

1,11,, 2122 ffNF

12

1,12f

F2(,)

Page 20: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Construction of Lagrange Shape Functions

3 (1,1)

12

11,1f

Bi-Linear Surface

114

1,11,, 2133 ffNF

12

1,12f

F3(,)

Page 21: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

12

1,12f

Construction of Lagrange Shape Functions

4 (-1,1)

Bi-Linear Surface

114

1,11,, 2144 ffNF

F4(,)

12

11,1f

Page 22: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

In Summary

1 (-1,-1) 2 (1,-1)

4 (-1,1) 3 (1,1)

114

14N

114

13N

114

12N

114

11N

Page 23: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Shape Functions in a Direct Way

1 (-1,-1) 2 (1,-1)

4 (-1,1) 3 (1,1)

Assume Bi-Linear

Variation

dcbaN i ,

Complete Polynomial

i=1,2,3,4

With conditions

jiif

jiifN jji 0

1, j=1,2,3,4

Page 24: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Shape Functions in a Direct Way

dcbaN ,1

Each, i, provides 4 Equations with 4 unknowns

e.g. i=1

jiif

jiifN jji 0

1,

11,11 dcbaN

01,11 dcbaN

01,11 dcbaN

01,11 dcbaN 11

4

11N

Page 25: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Field Variables in Discrete Form

114

14N

114

13N

114

12N

114

11N

Geometry

44332211 xNxNxNxNx

44332211 yNyNyNyNy

Displacement

74533211 qNqNqNqNu

84634221 qNqNqNqNv

q8

q7

q4

q3

q1

q2

vu

q6

q5

Page 26: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Field Variables in Discrete Form

4

4

1

1

4321

4321

0000

0000

y

x

y

x

NNNN

NNNN

y

x

Geometry

8

1

4321

4321

0000

0000

q

q

NNNN

NNNN

v

u

Displacement

Page 27: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Intrinsic Coordinate System

1 (-1,-1) 2 (1,-1)

4 (-1,1)

Map Element

Parent

3 (1,1)

4

1

2

3

JDefine Jacobian

Page 28: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Transformation

The Jacobian from (x,y) to (,) may be obtained as:

Consider any function f(x,y)

defined on area of element

1 (-1,-1) 2 (1,-1)

4 (-1,1) 3 (1,1)

y

y

fx

x

ff

y

y

fx

x

ff

Page 29: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Transformation

1 (-1,-1) 2 (1,-1)

4 (-1,1) 3 (1,1)

y

y

fx

x

ff

y

y

fx

x

ff

y

fx

f

yx

yx

f

f

y

fx

f

f

f

J

Page 30: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Jacobian of Transformation

44332211 xNxNxNxNx

44332211 yNyNyNyNy

44

33

22

11

4

1

xN

xN

xN

xN

xNx

ii

i

4

1ii

i xNx

4

1ii

i yNy

4

1ii

i yNy

yx

yx

J

Page 31: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Jacobian of Transformation

iiii

iN

14

111

4

1

iiiiiN

14

111

4

1

Page 32: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Jacobian of Transformation

4321

4

1

4

111

11114

1

14

1

xxxx

xxNx

J ii

iiii

i

4321

4

1

4

121

11114

1

14

1

xxxx

xxNx

J ii

iiii

i

Page 33: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Jacobian of Transformation

4321

4

1

4

121

11114

1

14

1

yyyy

yyNy

J ii

iiii

i

4321

4

1

4

122

11114

1

14

1

yyyy

yyNy

J ii

iiii

i

Page 34: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

In Summary

1 (-1,-1) 2 (1,-1)

4 (-1,1) 3 (1,1)

4

1

2

3

Without Proof

2221

1211

JJ

JJyx

yx

J

ddJdxdydA det

Page 35: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Jacobian of Transformation

4321

4

1

4

111

11114

1

14

1

xxxx

xxNx

J ii

iiii

i

4321

4

1

4

121

11114

1

14

1

xxxx

xxNx

J ii

iiii

i

Page 36: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Jacobian of Transformation

4321

4

1

4

121

11114

1

14

1

yyyy

yyNy

J ii

iiii

i

4321

4

1

4

122

11114

1

14

1

yyyy

yyNy

J ii

iiii

i

Page 37: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

In Summary

Or the inverse

y

fx

f

JJ

JJf

f

2221

1211

f

f

JJ

JJ

Jf

f

JJ

JJ

y

fx

f

1121

1222

1

2221

1211

det

1

Page 38: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

In Summary

114

14N

114

13N

114

12N

114

11N

1 (-1,-1) 2 (1,-1)

4 (-1,1) 3 (1,1)

44332211 xNxNxNxNx

44332211 yNyNyNyNy 74533211 qNqNqNqNu

84634221 qNqNqNqNv

Page 39: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Strain Tensor from Nodal Values of Displacements

x

v

y

uy

vx

u

ε

Page 40: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Strain Tensor from Nodal Values of Displacements

Thus we need to evaluate

and

y

ux

u

y

vx

v

Page 41: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Strain Tensor from Nodal Values of Displacements

Recall that

Consequently,

f

f

JJ

JJ

Jy

fx

f

1121

1222

det

1

f=u

u

u

JJ

JJ

Jy

ux

u

1121

1222

det

1

f=v

v

v

JJ

JJ

Jy

vx

v

1121

1222

det

1

Page 42: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Strain Tensor from Nodal Values of Displacements

v

v

u

u

JJJJ

JJ

JJ

J

x

v

y

uy

vx

u

12221121

1121

1222

00

00

det

A

Page 43: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Strain Tensor from Nodal Values of Displacements

Next we need to evaluate

Nqu

8

1

4321

4321

0000

0000),(

q

q

NNNN

NNNN

v

u

Tvvuu

Page 44: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Strain Tensor from Nodal Values of Displacements

74

53

32

11

4

112 q

Nq

Nq

Nq

Nq

Nu

ii

i

4

112

ii

i qNu

4

12

ii

i qNv

4

12

ii

i qNv

Nqu

8

1

4321

4321

0000

0000),(

q

q

NNNN

NNNN

v

u

Page 45: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Strain Tensor from Nodal Values of Displacements

8

2

1

10101010

10101010

01010101

01010101

4

1

q

q

q

v

v

u

u

8

2

1

q

q

q

v

v

u

u

G

Page 46: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Strain Tensor from Nodal Values of Displacements

= B q

Both A and G are linear functions of and

= AG q

Page 47: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Stresses

xy

y

x

xy

y

xE

2

100

01

01

1 2

Dεσ = B q

DBqσ

Page 48: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Element Stiffness Matrix ke

eV

Te dVU σDε

2

1

= B qe= D B qe

e

A

TTe

el

TTe

e

dAt

tdA

U

e

qDBBq

qDBBq

2

1

2

1

ke

tdAdV

4

1

2

3

8x8 matrix

Page 49: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Element Stiffness Matrix ke

dJdttdAdV det

1

1

1

1

det dJdt

dAt

T

A

Te

DBB

DBBk

Furthermore

and

Numerical

Integration

Page 50: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Integration of Stiffness Matrix

1

1

1

1

det dJdt Te DBBk

B (3x8)

D (3x3)

BT(8x3)

ke (8x8)

Page 51: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Integration of Stiffness Matrix

Each term kij in ke is expressed as

1

1

1

1

1

1

1

1

3

1

3

1

,

,det

ddgt

ddJBDBtkm l

ljmlTimij

Linear Shape Functions is each Direction

Page 52: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

x2

Numerical Integration

Integrals

Indefinite Definite

Cxdxx 32

3

1

2

0

2

3

8dxx

Page 53: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Numerical Integration

Definite integrals can be computed numerically

b

a iii xfwdxxf

Objective:

• Determine points xi

• Determine coefficients wi

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

x2

Page 54: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Numerical Integration

Depending on choice of wi and xi

Midpoint Rule

Trapezoidal Rule

Simpson's

Gaussian Quadratures

etc

Page 55: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Numerical Integration – Upper & Lower Bounds

Lower Sum

L(f;xi)

Upper Sum

U(f;xi)

a=x1 x2 x3 x4 x5 x6 x7=b

a=x1 x2 x3 x4 x5 x6 x7=b

Page 56: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Numerical Integration

ib

a iiii xfUxfwdxxfxfL ;;

It can be shown that

ii

b

a iiii

ixfUxfwdxxfxfL ;lim;lim

Page 57: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Mid-Point Rule

a=x1 x2 x3 x4 x5 x6 x7=b

212

1xx

322

1xx

542

1xx 762

1xx

1

111 2

1n

iiiii

b

a iii xxfxxxfwdxxf

76676 2

1xxfxxA

12121 2

1xxfxxA

Page 58: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Mid Point Rule

1

111 2

1n

iiiii

b

a iii xxfxxxfwdxxf

Simple to comprehend and implement

Large number of intervals is required for accuracy

a=x1

b=xn

Page 59: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Trapezoid Rule

a=x1 x2 x3 x4 x5 x6 x7=b

1

1112

1 n

iiiii

b

a iii xfxfxxxfwdxxf

67676 2

1xfxfxxA

12121 2

1xfxfxxA

Page 60: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Trapezoid Rule

Simple to comprehend and implement

Exact for polynomials f(x) = ax+b

Large number of intervals is required for accuracy

(Less than midpoint rule)

1

1112

1 n

iiiii

b

a iii xfxfxxxfwdxxf

Page 61: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Simpson’s Rule

hafhafafh

dxxfha

a

243

2

Step 1

ha

a

dxxf2

h ha a+2h

Page 62: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

h

xi xi+1xi+1/2

h

Simpson’s Rule

h

xi xi+1xi+1/2

h

i

x

x

Ihafhafafh

dxxfi

i

243

1

Step 2

1

0

n

ii

b

a

Idxxf

Ii

Ii+1…

Page 63: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Quadratures

nn

b

a iii xfwxfwxfwxfwdxxf 2211

Objective

Where do such formulae come from?

Theory of Interpolation….

Let

n

iii xfxlxpxf

1

Recall Shape Functions

li(x): cardinal functions

Page 64: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Quadratures

i

n

ii

b

a

i

n

ii

b

a

b

a

wxfdxxlxfdxxpdxxf

11

It will give correct values for the integral of

every polynomial of degree n-1

Mid-Point Rule is an example of a

quadrature with n=1

Page 65: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Example

Establish coefficients of quadrature for the interval

[-2,2] and nodes –1,0,1

-2 -1 0 1 2

f(x)

ni1 1

n

ijj ji

ji xx

xxxl

Cardinal Functions:

Page 66: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Example

xxxx

xx

xxxl

ijj ji

j

23

11 2

1

11

1

01

0

110

1

10

1 23

12

xxx

xx

xxxl

ijj ji

j

xxxx

xx

xxxl

ijj ji

j

23

13 2

1

01

0

11

1

Cardinal Functions – Lagrange Polynomials:

Page 67: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Example

12

1011

2

1 222 fxxfxfxxxf

ii

iii

i wxfdxxlxfdxxpdxxf

3

1

2

2

3

1

2

2

2

2

xxxl 21 2

1 122 xxl xxxl 2

3 2

1

with

2

2

dxxlw ii

Page 68: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Example

2

2

22

2

22

2

11 3

8

2

1

2

1dxxxdxxxdxxlw

3

41

2

2

22

2

22

dxxdxxlw

3

8

2

1

2

1 2

2

22

2

22

2

33

dxxxdxxxdxxlw

Page 69: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Example

13

80

3

41

3

82

2

fffdxxf

-2 -1 0 1 2

f(x)=x2

3

161

3

80

3

41

3

82

2

2

dxx

Quadrature

3

16

3 2

232

2

2

x

dxx

Exact

Page 70: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Quadratures

So far the placement of nodes has been arbitrary

a=x1 x2 x3 x4 x5 x6 x7=b

They should belong to the interval of integration

Quadrature is accurate for polynomials of degree n-1 (n is the number of nodes)

Page 71: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Gaussian Quadrature

Karl Friedriech Gauss discovered that by a

special placement of nodes the accuracy of the

numerical integration could be greatly increased

Page 72: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Gaussian Quadrature

Theorem on Gaussian nodes

Let q be a polynomial of degree n such that

1-n0,1,...,k 0 dxxxq kb

a

Let x1,x2,…,xn be the roots of q(x). Then

nn

b

a iii xfwxfwxfwxfwdxxf 2211

with xi’s as nodes is exact for all polynomials of

degree 2n-1.

Page 73: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Gaussian Quadrature 2-point

-1 1

f()

311

f()W1=1

312

f()W2=1

3113111

1

ffdxxf

Page 74: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Gauss Points and Weights

Page 75: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Compare

Let f(x)=x2

MidPointMidPoint

1

1

2 32dxx

Use 2-points

X1=-1, X2=0, X3=1

215.0)5.0(1

1

222

dxx

X=-0.5 X=0.5

Page 76: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Compare

Let f(x)=x2

TrapezoidalTrapezoidal

1

1

2 32dxx

Use 2-points

X1=-1, X2=0, X3=1

1)1()0(12

1)0()1(1

2

1 221

1

222

dxx

Page 77: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Compare

Let f(x)=x2

GaussGauss

1

1

2 32dxx

Use 2-points

3231131122

1

1

2

dxx

311 311

1,31 111 wx 1,31 222 wx

Page 78: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

2-Dimensional Integration

Gaussian Quadrature

1

1

1

1

, ddf

n

j

n

ijiij fww

1 1

,

1

1 1

, dfwn

iii

Page 79: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

2-D Integration 2-point formula

311 312

311

312

11 w

12 w

111 ww 112 ww

122 ww121 ww

Page 80: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

2-D Integration 2-point formula

311 312

311

311

1

1

1

1

, ddf

2222212112121111 ,,,, fwwfwwfwwfww

Page 81: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Integration of Stiffness Matrix

1

1

1

1

det dJdt

dAt

T

A

Te

DBB

DBBk

Stiffness Matrix

1 (-1,-1) 2 (1,-1)

4 (-1,1) 3 (1,1)

Integration over

Page 82: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Integration of Stiffness Matrix

12221121

1121

1222

00

00

det

1

JJJJ

JJ

JJ

JA

(3x4)

10101010

10101010

01010101

01010101

4

1G

(4x8)= B q= AG q

B (3x8)

Page 83: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Integration of Stiffness Matrix

1

1

1

1

det dJdt Te DBBk

B (3x8)

D (3x3)

BT(8x3)

ke (8x8)

Page 84: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Integration of Stiffness Matrix

Each term kij in ke is expressed as

1

1

1

1

1

1

1

1

3

1

3

1

,

,det

ddgt

ddJBDBtkm l

ljmlTimij

Linear Shape Functions is each Direction

Gaussian Quadrature is accurate if

We use 2 Points in each direction

Page 85: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Integration of Stiffness Matrix

311 312

311

311

2222212112121111 ,,,, gwwgwwgwwgww

1

1

1

1

, ddgt

11 w

12 w

22211211 ,,,, gggg

Page 86: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Element Body Forces

ii

Ti

el

T

eA

T

eA

T

e

e

e

tdl

tdA

tdA

Pu

Tu

fu

Dεε2

1

ii

Ti

eA

T

eV

T

eV

T

e

e

e

dA

dV

dV

φεσ 0

Total Potential Galerkin

Page 87: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Body Forces

eA

T dAd detfu

Integral of the form

8

1

4321

4321

0000

0000

q

q

NNNN

NNNN

v

u

8

1

4321

4321

0000

0000

NNNN

NNNN

y

x

eA

T dAd detfφ

Page 88: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Body Forces

In both approaches

e

e

e

e

Ay

Ax

Ay

Ax

dAdNf

dAdNf

dAdNf

dAdNf

qqWP

det

det

det

det

4

2

1

1

81

Linear Shape Functions

Use same quadrature as stiffness maitrx

Page 89: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Element Traction

ii

Ti

el

T

eA

T

eA

T

e

e

e

tdl

tdA

tdA

Pu

Tu

fu

Dεε2

1

ii

Ti

eA

T

eV

T

eV

T

e

e

e

dA

dV

dV

φεσ 0

Total Potential Galerkin

Page 90: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Element Traction

Similarly to triangles, traction is applied along sides of element

4

2

3

Tx

Ty

u

v

1

4

0

12

1

12

1

0

4

3

2

1

N

N

N

N

el

TT tdlWP Tu

32

Page 91: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Traction

8

1

32

32

000000

000000

q

q

NN

NN

v

u

0

0

0

0

232

8132

y

x

eT T

Tlt

qqWP

For constant traction along side 2-3

Traction

components

along 2-3

Page 92: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Stresses

311 312

311

311

DBqσ

12221121

1121

1222

00

00

det

1

JJJJ

JJ

JJ

JA

10101010

10101010

01010101

01010101

4

1G

More Accurate at

Integration points

Stresses are calculated at any

Page 93: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Modeling Issues: Nodal Forces

ii

Ti

el

T

eA

T

eA

T

e

e

e

tdl

tdA

tdA

Pu

Tu

fu

Dεε2

1

A node should be

placed at the location

of nodal forces

In view of…

Or virtual potential energy

Page 94: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Modeling Issues: Element Shape

Square : Optimum Shape

Not always possible to use

Rectangles:

Rule of Thumb

Ratio of sides <2

Angular Distortion

Internal Angle < 180o

Larger ratios

may be used

with caution

Page 95: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Modeling Issues: Degenerate Quadrilaterals

Coincident Corner Nodes

1

2

3

4

32

1

4

xx

xx

x

xx

x

Integration Bias

Less accurate

Page 96: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Modeling Issues: Degenerate Quadrilaterals

Three nodes collinear

1

2

3

4

xx

xx

1

2

3

4 x

xx

x

Less accurate

Integration Bias

Page 97: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Modeling Issues: Degenerate Quadrilaterals

Use only as necessary to improve representation of geometry

2 nodes

Do not use in place of triangular elements

Page 98: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

A NoNo Situation

3

4

1 2

x

y

(3,2) (9,2)

(7,9)

(6,4)

Parent

All interior angles < 180

J singular

Page 99: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Another NoNo Situation

x, y

not uniquely

defined

Page 100: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Convergence Considerations

For monotonic convergence of solution

Elements (mesh) must be compatible

Elements must be complete

Requirements

Page 101: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Mesh Compatibility

OK

NO NO!

Page 102: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Mesh compatibility - Refinement

Acceptable Transition

However…Compatibility of displacements OK

Stresses?

Page 103: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 13 & 14: Quadrilateral Isoparametric Elements Stiffness Matrix Numerical Integration Force

Convergence Considerations

We will revisit the issue…