ece2262 electric circuits chapter 5: circuit...

96
1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity Superposition Thevenin’s and Norton’s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems

Upload: others

Post on 30-Mar-2020

32 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

1

ECE2262 Electric Circuits

Chapter 5: Circuit Theorems Equivalence

Linearity

Superposition

Thevenin’s and Norton’s Theorems

Maximum Power Transfer

Analysis of Circuits Using Circuit Theorems

Page 2: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

2

5. 1 Equivalence

Two circuits are equivalent if they have the same i-v characteristics at a specified pair of terminals

Our aim is to simplify analysis replacing complicated sub-circuits by simpler equivalent circuits

Page 3: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

3

V1 V2

I1

I2

?

?

Page 4: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

4

Source Transformation A source transformation allows a voltage source in series with a resistor to be replaced by a current source in parallel with the same resistor or vice versa.

a

b

a

b

RL RL!

• The current in RL • The current in RL

iL =vs

R + RL

iL =R

R + RL

is

These circuits are equivalent if these resistor currents are the same

vsR + RL

= RR + RL

is ! is =vsR

vs = Ris

Page 5: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

5

The resistance in parallel with the voltage source

The resistance in series with the current source

These circuits are equivalent with respect to terminals a,b since they produce the same voltage and current in any resistor RL inserted between nodes a,b .

Page 6: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

6

Example Find the power P6V = 6V ! i6V

We could use the node-voltage method with 3 node-voltage equations

Let’s use the source transformation strategy by reducing the circuit in a way that preserves the identity of the branch containing the 6 V source.

!

Page 7: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

7

Step 1

Step 2 20! || 5! = 4! and 4!" 8A = 32V

6 + 4 + 10 = 20! in series with 32 V source ! 32V20!

= 1.6A

Page 8: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

8

Step 3

Step 4 30! || 20! = 12! and 12!"1.6A = 19.2V

The current in the direction of the voltage drop across the 6 V source is

i6V = 19.2 ! 616

= 0.825A ! P6V = 6V ! i6V = 4.95 W (absorbing)

Page 9: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

9

Example Find v0 and P250V , P8A

Remove the resistors 125 ! and 10 ! , they do not influence the formula for

v0 ! equivalent circuit

source transformation

Page 10: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

10

25 ||100 || 20 = 10 !

v0 = 2A!10" = 20V

Page 11: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

11

P250V ! need I250V

I250V = 250125

+ 250 ! v025

= 250125

+ 250 ! 2025

= 11.2

P250V = 250 ! "11.2( ) = - 2800 W (delivering)

Page 12: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

12

P8A ! need V8A

v0 !10 " 8 !V8A = 0 ! V8A = 20 ! 80 = !60V

P8A =V8A ! 8A = "480 W (delivering)

Page 13: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

13

5. 2 Linearity = additivity + homogeneity

v1v2 v3

ix

2ix

2!is

vs

4!

1!

The node-voltage method v1 : v1 = vs

v2 : v2 ! v14

+ 2 ixv1!v32

! + is = 0 ! v2 ! v14

+ 2 v1 ! v32

+ is = 0

v3 : v31+ v3 ! v1

2! is = 0

Page 14: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

14

vs

is

v1

v2v3

LCv1 = vs

v2 = !53vs !

43is

v3 =13vs +

23is

"

#

$$$

%

$$$

x! y • Additivity: If x1! y1 and x2 ! y2 then x1 + x2 ! y1 + y2

• Homogeneity: If x! y then

!x!!y for any number !

Page 15: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

15

• Additivity: If x1! y1 and x2 ! y2 then x1 + x2 ! y1 + y2

• Homogeneity: If x! y then !x!!y for any number ! ! • Linearity: x1! y1 and x2 ! y2 then

!1x1 +! 2x2 !!1y1 +! 2y2

for any numbers !1 , ! 2

Page 16: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

16

Example

• Let I0 = 1mA , find the corresponding I

Page 17: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

17

I2I3

I0 = 1mA

• CD: I0 =66 + 3

I2 =23I2 ! I2 =

32I0 =

32mA

• 3 || 6 + 2 = 4k! ! VI = I2 ! 4 = 6V • I3 =VI4 + 8

= 12

mA

• I = I2 + I3 =32+ 12= 2mA

Hence for the assumed I0 = 1mA we have I = 2mA , then by the linearity if I = 6mA = 3! 2 ! 3!1= 3mA ! I0

Page 18: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

18

Example: Circuits 1 and 2 below are identical except for the voltage sources. Assuming that I1 = 5A then the value of I2 is ?

I2+

Page 19: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

19

5. 3 Superposition

The principle of superposition allows us to reduce a complicated multi-source problem to several simple problems. Each problem contains only a single independent source.

In any linear circuit containing multiple independent sources, the current or voltage at any point in the network may be calculated as the algebraic sum of the individual contributions of each source acting alone.

Page 20: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

20

= 0 = 0

Page 21: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

21

Example

v1v2 v3

ix

2ix

2!is

vs

4!

1!

• If vs = 0 (short circuit) ! v1' = 0 , v2

' = ! 43is , v3

' = 23is

• If is = 0 (open circuit) ! v1'' = vs , v2

'' = ! 53vs , v3

'' = 13vs

• It is clear that v1 = v1' + v1

'' , v2 = v2' + v2

'' , v3 = v3' + v3

''

Page 22: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

22

Example 5.3 Find V0

(a) Inactivate the 3V source

CD: I0 =1+ 21+ 2 + 6

! 2m = 23mA ! V0

' = I0 ! 6k = 4V

Page 23: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

23

(b) Inactivate the 2mA source

V0'' = 6

6 + 2 +1! 3V = 2 V

By the superposition principle: V0 =V0' +V0

'' = 4 + 2 = 6 V.

Page 24: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

24

Example 5.4 Find V0

Page 25: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

25

(a) Inactivate the 2mA source

• 2 + 6( ) || 4 = 8 / 3k ! VD: V1 =8 / 38 / 3+ 2

! 6V = 247V

• VD: V0' = 66 + 2

!V1 = 187V

Page 26: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

26

(b) Inactivate the 6 V source

• 2 || 4 = 4 / 3k ! V0'' = 2 + 4

3!"#

$%& || 6 ' 2m = 30

7V

By the superposition principle: V0 =V0' +V0

'' = 187+ 307

= 487

! 6.86V

Page 27: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

27

Example Find v0 : circuit with dependent sources

(a) Response to the 10 V source

Page 28: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

28

• v!' = "0.4 # v!

'( )#10 ! v!' = 0 ! 0.4 ! v"

' = 0

• v0' = 205 + 20

!10 = 8V

Page 29: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

29

(b) Response to the 5 A source

• KCL at a : v0''

5+ v0

''

20! 0.4 " v#

'' = 0 ! 5v0'' ! 8v"

'' = 0

• KCL at b: 0.4 ! v"'' + vb # 2i"

''

10# 5 = 0

! 4v!

'' + vb " 2i!'' = 50

Page 30: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

30

• Hence we have 5v0

'' ! 8v"'' = 0 and 4v!

'' + vb " 2i!'' = 50

Since vb = 2i!'' + v!

'' ! 5v0

'' ! 8v"'' = 0

4v"'' + v"

'' = 50

#$%&

! v!'' = 10 ! v0

'' = 16V

• By the superposition principle: v0' + v0

'' = 8 +16 = 24 V

Page 31: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

31

Example Superposition Applied to Op-Amp Circuits

Page 32: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

32

• Contribution of V1

This is a basic inverting circuit: V01 = ! R2R1V1

Page 33: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

33

• Contribution of V2

This is a basic non-inverting circuit: V02 = 1+ R2R1

!"#

$%&V2

Principle of Superposition: V0 =V01 +V02 = ! R2R1V1 + 1+ R2

R1

"#$

%&'V2

Page 34: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

34

5. 4 Thevenin’s and Norton’s Theorems

Page 35: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

35

Linear Circuit

A BLOAD

Any Circuit

i

v+!

a

b

!VTh + i " RTh + v = 0

v = VTh ! i "RTh

• the load draws current i and results in voltage v •

Page 36: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

36

Thevenin Equivalent of Circuit A

BLOAD

Any Circuit

i

v+!

a

b

v = VTh ! i "RTh

A

• The values of VTh (Thevenin voltage) and RTh may be either positive or negative

• RTh - the Thevenin resistance is a quantity in a mathematical model - it is not a physical resistor

Page 37: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

37

BLOAD

Any Circuit

i

v+!

a

b

v = VTh ! i "RTh

A

• How to calculate the Thevenin Voltage VTh ?

Assume i = 0 (open circuit circuit - no external load) ! v = VTh

VTh = voc

Page 38: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

38

Norton Equivalent of Circuit A

BLOAD

Any Circuit

i

v+!

a

b

v = VTh ! i "RThIN

IN =VThRTh

ARTh

• How to calculate the Norton Current IN ?

v = VTh ! i "RTh !

vRTh

= VThRThIN!

! i

Assume v = 0 (short circuit) ! IN = isc

Page 39: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

39

RTh - The Thevenin Resistance 1. The most general way in obtaining RTh is to use

RTh =VThIN

,

where • VTh = voc - open circuit voltage

• IN = isc - short circuit current

Page 40: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

40

2. The Thevenin resistance RTh can be determined directly by a source suppression method without finding the Thevenin voltage and Norton current. This applies directly to circuits that contain only independent sources. This is a result of the linearity property of the circuit.

RTh =VThIN

= VTh !"IN !"

The Thevenin resistance remains unchanged even in the limit case when all independent sources are suppressed to zero.

Page 41: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

41

(1) Replace all independent voltage sources in the circuit by short circuits and all independent current sources by open circuits

a

b

Independent SourcesDeactivated

RThA

(2) If the remaining circuit contains no dependent sources, then RTh is the equivalent resistance, which can be determined by using series/parallel resistor combinations.

Page 42: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

42

A. Thevenin and Norton Equivalent for Circuits with Independent Sources

Example Find a Thevenin/Norton Equivalent

1. Open circuit voltage at a ! b : vab = v1 ! the voltage across the 3 A source

KCL : v1 ! 255

+ v120

! 3 = 0 ! v1 = 32V voc = 32V

Page 43: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

43

2. Short circuit current at a ! b :

KCL: v2 ! 255

+ v220

! 3+ v224= 0 ! v2 = 16 V

isc =164

= 4A ! RTh =vocisc

= 324

= 8 !

Page 44: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

44

• The Thevenin Equivalent

• The Norton Equivalent

Page 45: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

45

• The Thevenin resistance

RTh

RTh = 4 + 20 || 5 = 8!

Page 46: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

46

• The circuit with load

24!

24!

V24! = 2424 + 8

" 32 = 24V

I24! = 24V24!

= 1A

Page 47: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

47

Example 5.5

1. Open circuit voltage

Voc = 3+V1 , V1 = 2 !10"3( )! 3k = 6V ! Voc = 9V

Page 48: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

48

2. Short circuit current

Isc = 2m + I1 = 2m + 3V3k

= 2m +1m = 3mA

Page 49: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

49

3. RTh

RTh = 3k! !

Page 50: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

50

4. The circuit with load

V0 =66 + 3

! 9 = 6V

Page 51: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

51

Example 5.6 Find V0

12V

Page 52: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

52

1. Open circuit voltage and RTh

Voc1 =V6k =66 + 3

!12 = 8V

RTh = 2 + 3 || 6 = 4k!

Page 53: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

53

2. Circuit with load

Page 54: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

54

3 Second Iteration

Page 55: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

55

3.1. Open circuit voltage and RTh

Voc2 = 8 + 2m ! 4k = 16V

RTh = 4k!

Page 56: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

56

4. Circuit with load

16V

V0 =8

8 + 4 + 4!16 = 8V

Page 57: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

57

Example 5.7 Find V0

Page 58: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

58

1. Open circuit voltage and RTh

• Mesh-Current Method: !6 + 4k " I1 + 2k " I1 ! I2( ) = 0I2 = 2m

#$%

! I1 = 5 / 3 mA

• KVL: Voc = 4k ! I1 + 2k ! I2 "Voc =203+ 4 = 32

3V

Page 59: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

59

• RTh

RTh = 2 + 2 || 4 =103k!

Note: Isc =VocRTh

= 32 / 310 / 3

= 3.2mA

Page 60: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

60

2. Thevenin Equivalent with Load

Thevenin

V0 =6

6 + 103

! 323

= 487

V = 6.857...V ! 7 V !

Page 61: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

61

B. Thevenin and Norton Equivalent for Circuits with Dependent Sources

Valid and Invalid Partitions

We cannot split the dependent source and its controlling variable when we break the circuit to find the equivalent Thevenin/Norton circuits

Page 62: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

62

B1 Thevenin/Norton Equivalent for Circuits with Only Dependent Sources: Test Source Approach

I0

RTh =1VI0

RTh =V01mA

V0

Page 63: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

63

Example 5.8 Find RTh

I0

RTh =1VI0

• Voc = ?

• Thevenin equivalent ?

Page 64: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

64

• KVL (big loop): !V1 !Vx +1 = 0 ! V1 = 1!Vx

• KCL (at V1 ): V11k

+ V1 ! 2Vx2k

+ V1 !11k

= 0 ! Vx =37V

• I0 = I1 + I2 + I3 ! I1 =Vx1k

= 37mA , I2 =

1! 2Vx1k

= 17mA , I3 =

12k

= 12mA

! I0 =1514

mA ! RTh =1 VI0

= 1415

k!

Page 65: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

65

Example 5. 9 Find RTh

• Voc = ?

• Thevenin equivalent ?

Page 66: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

66

V1

RTh =V2

1 mAV2

• KCL: V1 : V1 ! 2000Ix

2k+ V11k

+ V1 !V23k

= 0 ! Ix =V11k

V2 : V2 !V13k

+ V22k

!1m = 0

! V2 =107V ! RTh =

V2

1 mA= 10

7k!

Page 67: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

67

B2 Thevenin/Norton Equivalent for Circuits with Both Independent and Dependent Sources

Example 5.10 Find V0

Page 68: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

68

supernodeVoc +12

1. Open circuit voltage

• KCL at the supernode: Voc +12( )+ 2000Ix'

1k+ Voc +12

2k+ Voc2kIx'!

= 0

Since Ix' = Voc

2k ! Voc = !6V !VTh

Page 69: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

69

2. Short circuit current and RTh

!

Isc = ! 121|| 2k

= ! 122 / 3k

= !18mA

RTh =VocIsc

= !6V!18mA

= 13k! ! RTh

Page 70: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

70

3. Circuit with Load

Thevenin

Vo =1

1+1+ 13

! "6( ) = "187V = - 2.57…

Page 71: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

71

Example Find Thevenin Equivalent

1. Open circuit voltage VTh = vab = v25! = v

Since ix = 0 ! VTh = !20i( )" 25 = !500i !

i = 5 ! 3v2k

= 5 ! 3VTh2k

! VTh = !5V

Page 72: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

72

2. Short circuit current and RTh

! v = 0 !

isc = !20i , i = 52k

= 2.5mA ! isc = !20 " 2.5 = !50mA

RTh =VThisc

= !5!50m

= 100"

Page 73: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

73

Find the Thevenin Equivalent RTh Using a Test Source The equivalent method is to first deactivate all independent sources and then apply either a test voltage source or a test current source The Thevenin resistance RTh is calculated as

• RTh =VtestI0

• RTh =V0Itest

Page 74: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

74

Example

Deactivate the independent sources and excite the circuit by a test source

Note: Use, e.g., vT = 1V

Page 75: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

75

RTh =vTiT

• iT !vT25

! 20i = 0 ! iT = vT25

+ 20i

• i = !3vT2k

= ! 32vTmA

! • iT = vT25

+ 20 ! " 32vTmA

#$%

&'( = = vT

25! 602000

vT

! • iTvT

= 125

! 6200

= 1100

! RTh =vTiT

= 100!

Page 76: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

76

Page 77: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

77

5. 5 Maximum Power Transfer

• Circuit analysis plays an important role in the analysis of systems designed to transfer power from a source to a load.

• The efficiency of the power transfer: power utility systems are a good example of this type because they are concerned with the generation, transmission, and distribution of large quantities of electric power. If a power utility system is inefficient, a large percentage of the power generated is lost in the transmission and distribution processes, and thus wasted.

•Power transferred: communication and instrumentation systems are good examples because in the transmission of information, or data, via electric signals, the power available at the transmitter or detector is limited. Thus, transmitting as much of this power as possible to the receiver, or load, is desirable. In such applications the amount of power being transferred is small, so the efficiency of transfer is not a primary concern.

Page 78: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

78

• We consider maximum power transfer in systems that can be modeled by a purely resistive circuit.

We wish to determine the value of of RL that permits maximum power delivery to RL

Page 79: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

79

• Represent the Resistive Network by its Thevenin Equivalent

Pload = i2RL =

VThRTh + RL

!"#

$%&

2

RL 'maxRL

Page 80: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

80

Pload =VTh

RTh + RL

!"#

$%&

2

RL

Pload

RL

Page 81: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

81

Maximum is reached at the point where dPloaddRL

= 0 ! Pload =VTh

RTh + RL

"#$

%&'

2

RL

dPloaddRL

=VTh2 ddRL

RL

RTh + RL( )2!"#

$#

%&#

'#

= VTh2 RTh + RL( )2 ! 2RL RTh + RL( )

RTh + RL( )4"

#$$

%

&''

= 0

Page 82: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

82

Condition for Maximum Power Transfer

RL = RTh

The Maximum Power Delivered to RL

Pload =VTh

RTh + RL

!"#

$%&

2

RL !

RL=RTh! Pmax =

VTh2RTh

!"#

$%&

2

RTh

Pmax =

VTh2

4RTh

Page 83: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

83

Example Find RL that results in max. power and the corresponding max. power that can be delivered to RL .

• VTh =150

150 + 30! 360 = 300 V • RTh = 150 || 30 = 25!

Page 84: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

84

• Pload =VTh

RTh + RL

!"#

$%&

2

RL =300

25 + RL

!"#

$%&

2

RL

Pload

RL

! RL = 25! for the maximum power transfer with

Pmax =30025 + 25

!"#

$%&

2

25 = 900W

Page 85: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

85

Example Find RL that results in max. power and the corresponding max. power that can be delivered to RL .

Page 86: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

86

1. RTh

RTh = 4k + 3k || 6k = 6k This is the resistance for maximum power transfer

If must find the value of the power that can be transferred then we need the Thevenin voltage !

Page 87: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

87

2. Voc

* loop 1: I1 = 2mA * loop 2: 3k I2 ! I1( )+ 6kI2 + 3V = 0 ! I2 =13mA

* KVL: Voc ! 6kI2 ! 4kI1 = 0 ! Voc1 = 10V

* Pmax =VTh2

4RTh =

102

4 ! 6k= 256mW

Page 88: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

88

Example Find RL that results in max. power and the corresponding max. power that can be delivered to RL .

Page 89: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

89

1. Open circuit voltage Voc

Voc ! 2000Ix'

• KCL at the supernode:

Voc ! 2000Ix

'

3k +1k+ Voc2k

! 4m = 0 and Ix' = Voc

2k ! Voc = 8V

Page 90: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

90

2. Short circuit current Isc and RTh

• Ix

'' = 0 ! dependent source is zero ! Isc = 4mA

• RTh =8V4mA

= 2k!

Page 91: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

91

3. Circuit with Load

6

• Pload ==8V

6k + RL

!"#

$%&

2

RL is maximized by RL = 6k!

• The maximum power transfer: Pmax =8V

6k + 6k!"#

$%&

2

6k = 83mW

Page 92: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

92

Example Plot Vout , I , Pin , Pout and Pout / Pin as a function of R2

Page 93: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

93

* Vout =R2

R1 + R2Vin ; * I = Vin

R1 + R2

* Pin = I !Vin = Vin2

R1 + R2 * Pout = I !Vout =

VinR1 + R2

!"#

$%&

2

R2

* efficiency = PoutPin

= R2

R1 + R2 =

11+ R1 / R2

Page 94: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

94

10.5

Page 95: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

95

* As R2! then Vout ! Vin = 5 V * As R2! then I!

* small R2 ! Vout is small , large R2 ! I is small ! * maximum power transfer (R2 / R1 = 1) does not correspond to max. efficiency

* At R2 / R1 = 1 ! efficiency = PoutPin

= 0.5 (50%)

* The fact that the eff. is higher for R2 > R1 is due to the fact that a higher percentage of the source power is transferred to the load (more $ for MH), but the value of the load power is lower since the total circuit resistance goes up maximum power transfer! 2R1 < R1 + R2

Page 96: ECE2262 Electric Circuits Chapter 5: Circuit …ece.eng.umanitoba.ca/.../Course_notes_files/Chapter5-017.pdf1 ECE2262 Electric Circuits Chapter 5: Circuit Theorems Equivalence Linearity

96