dynamiquequantique et non-adiabatique · dynamiquequantique et non-adiabatique...

105
Dynamique Quantique et Non-Adiabatique “Photochimie Théorique” Benjamin LASORNE [email protected] Equipe CTMM – Institut Charles Gerhardt CNRS – Université de Montpellier Ecole Thématique ModPhysChem Octobre 2017

Upload: vongoc

Post on 12-Sep-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Dynamique Quantique

et Non-Adiabatique“Photochimie Théorique”

Benjamin LASORNE

[email protected]

Equipe CTMM – Institut Charles GerhardtCNRS – Université de Montpellier

Ecole ThématiqueModPhysChemOctobre 2017

2

Some selected references…

Ecole Thématique – ModPhysChem – Oct. 2017

• Michl, J. and Bonačić-Koutecký, V., Electronic Aspects of Organic Photochemistry, New York, Wiley, 1990.• Klessinger, M. and Michl, J., Excited States and Photochemistry of Organic Molecules, New York ; Cambridge, VCH, 1995.• Turro, N. J., Ramamurthy, V. and Scaiano, J. C., Principles of Molecular Photochemistry: an Introduction, Sausalito, CA., University Science Books, 2009.• Olivucci, M., Computational Photochemistry, Amsterdam, Elsevier, 2005.• Szabo, A. and Ostlund, N. S., Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Mineola, N.Y, Dover ; London : Constable, 1996, 1989.• Shavitt, I. and Bartlett, R. J., Many-Body Methods in Chemistry and Physics : MBPT and Coupled-Cluster Theory, Cambridge, Cambridge University Press, 2009.• Shaik, S. S. and Hiberty, P. C., A Chemist's Guide to Valence Bond Theory, Hoboken, N.J., Wiley-Interscience ; Chichester : John Wiley, 2008.• Douhal, A. and Santamaria, J., Femtochemistry and Femtobiology: Ultrafast Dynamics in Molecular Science, Singapore, World Scientific, 2002.• Bersuker, I. B., The Jahn-Teller Effect, Cambridge, Cambridge University Press, 2006.• Köppel, H., Yarkony, D. R. and Barentzen, H., The Jahn-Teller Effect: Fundamentals and Implications for Physics and Chemistry, Heidelberg, Springer, 2009.• Baer, M., Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections, Hoboken, N.J., Wiley, 2006.• Domcke, W., Yarkony, D. R. and Köppel, H., Conical Intersections: Electronic Structure, Dynamics & Spectroscopy, Singapore, World Scientific, 2004.• Domcke, W., Yarkony, D. and Köppel, H., Conical Intersections : Theory, Computation and Experiment, Hackensack, N. J., World Scientific, 2011.• Heidrich, D., The Reaction Path in Chemistry: Current Approaches and Perspectives, Dordrecht ; London, Kluwer Academic Publishers, 1995.• Mezey, P. G., Potential Energy Hypersurfaces, Amsterdam ; Oxford, Elsevier, 1987.• Marx, D. and Hutter, J., Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Cambridge, Cambridge University Press, 2009.• Wilson, E. B., Cross, P. C. and Decius, J. C., Molecular Vibrations. The theory of Infrared and Raman Vibrational Spectra, New York, McGraw-Hill Book Co., 1955.• Bunker, P. R. and Jensen, P., Molecular Symmetry and Spectroscopy, Ottawa, NRC Research Press, 1998.• Schinke, R., Photodissociation Dynamics: Spectroscopy and Fragmentation of Small Polyatomic Molecules, Cambridge, Cambridge University Press, 1993.• Tannor, D. J., Introduction to Quantum Mechanics: a Time-Dependent Perspective, Sausalito, CA., University Science Books, 2007.• Meyer, H.-D., Gatti, F. and Worth, G., Multidimensional Quantum Dynamics: MCTDH Theory and Applications, Weinheim, Wiley-VCH, 2009.• Gatti, F., Molecular Quantum Dynamics: From Theory to Applications, Berlin ; Heidelberg, Springer-Verlag, 2014.• Robb, M. A., Garavelli, M., Olivucci, M. and Bernardi, F., "A computational strategy for organic photochemistry", in Reviews in Computational Chemistry, Vol 15, K. B.

Lipkowitz and D. B. Boyd, New York, Wiley-VCH, Vol. 15, 2000, p. 87-146.• Daniel, C., "Electronic spectroscopy and photoreactivity in transition metal complexes", Coordination Chemistry Reviews, Vol.238, 2003, p. 143-166.• Braams, B. J. and Bowman, J. M., "Permutationally invariant potential energy surfaces in high dimensionality", International Reviews in Physical Chemistry, Vol.28 n°4,

2009, p. 577-606.• Lengsfield III, B. H. and Yarkony, D. R., "Nonadiabatic interactions between potential-energy surfaces", Advances in Chemical Physics, Vol.82, 1992, p. 1-71.• Köppel, H., Domcke, W. and Cederbaum, L. S., "Multi-mode molecular dynamics beyond the Born-Oppenheimer approximation", Advances in Chemical Physics, Vol.57,

1984, p. 59-246.• Worth, G. A. and Cederbaum, L. S., "Beyond Born-Oppenheimer: Molecular dynamics through a conical intersection", Annual Review of Physical Chemistry, Vol.55, 2004,

p. 127-158.• Worth, G. A., Meyer, H. D., Köppel, H., Cederbaum, L. S. and Burghardt, I., "Using the MCTDH wavepacket propagation method to describe multimode non-adiabatic

dynamics", International Reviews in Physical Chemistry, Vol.27 n°3, 2008, p. 569-606.• Leforestier, C., Bisseling, R. H., Cerjan, C., Feit, M. D., Friesner, R., Guldberg, A., Hammerich, A., Jolicard, G., Karrlein, W., Meyer, H. D., Lipkin, N., Roncero, O. and

Kosloff, R., "A comparison of different propagation schemes for the time-dependent Schrödinger equation", Journal of Computational Physics, Vol.94 n°1, 1991, p. 59-80.• Gatti, F. and Iung, C., "Exact and constrained kinetic energy operators for polyatomic molecules: The polyspherical approach", Physics Reports-Review Section of Physics

Letters, Vol.484 n°1-2, 2009, p. 1-69.• Lasorne, B., Worth, G. A. and Robb, M. A., " Excited-state dynamics ", WIREs Computational Molecular Science, Vol.1, 2011, p. 460-475.

3

… and a new book

Ecole Thématique – ModPhysChem – Oct. 2017

springer.com/fr/book/9783319539218

E-book ISBN: 978-3-319-53923-2Hardcover ISBN: 978-3-319-53921-8

DOI: 10.1007/978-3-319-53923-2

1. Introduction

2. Beyond the Born-Oppenheimer Approximation

3. Non-Adiabatic Processes

4. Quantum and Semiclassical Dynamics Methods

5. Examples of Application

6. Conclusions and Outlooks

4Ecole Thématique – ModPhysChem – Oct. 2017

1. Introduction

5

R

Reaction coordinate

Po

ten

tia

l en

erg

y

CoIn TS

PP’

S0

S1

P*

R*

TS*

FC

−hν +hν

Adiabatic

photochemical

reaction

Non-adiabatic

photochemical

reaction

Ecole ThématiqueModPhysChemOctobre 2017

6

“Theoretical photochemistry”: a tentative definition

Ecole Thématique – ModPhysChem – Oct. 2017

FieldComputational and theoretical description of molecular processes induced upon UV-visible light absorption and starting in electronic excited states

MethodsQuantum/semiclassical molecular dynamics (time evolution of the molecular geometry governed by potential energy surfaces and non-adiabatic couplings)and electronic structure (set of coupled excited states)� both challenging compared to ground-state simulations

ObjectiveSimulation of time/energy-resolved processes at the molecular level from the promotion to the excited electronic state, if possible to the formation of products or regeneration of reactants back in the electronic ground state

ApplicationsElectronic spectroscopy (photoabsorption, photoionisation)Photochemistry, photophysics, chemiluminescence

Introduction

� Franck-Condon approximation� Electric dipole approximation� Wavepacket evolution (time)� Absorption spectrum (energy)

7

Electronic spectroscopy

S0

S1

Q1

S0

S1

Q1

S0

S1

Q1

Example: ππ* benzene (vibrational progression in mode 1: totally symmetric breathing)

E

Introduction

Ecole Thématique – ModPhysChem – Oct. 2017

� Intramolecular vibrational redistribution� Internal conversion� Photostability vs. photoreactivity

8

Photochemistry

benzene prefulvenoidgeometries

benzvalene

254 nm

S0 (1A1g) → S1 (1B2u)

S0

Reaction coordinate

E

S1

Introduction

Ecole Thématique – ModPhysChem – Oct. 2017

9

Spectroscopic picture (photophysics): Jablonski diagram

0

1

2

3

4

5

6

7

8

9

10

S0

0123456789

10

S1

10

0123456789

T1

AF PIVR

IVR

IVR

IC ISC

Radiative: Absorption, Fluorescence, Phosphorescence

Radiationless: Intramolecular Vibrational Redistribution, Internal Conversion, InterSystem Crossing

Introduction

Ecole Thématique – ModPhysChem – Oct. 2017

10

Molecular theoretical chemistry: role of the geometry

Quantum chemistry Molecular dynamics

Electronic energy(at various positions of the

nuclei)

� Static approach

Nuclear motion(in the mean field of the

electrons)

� Dynamic approach

Potential

energy

surface

Reciprocal influence betweenthe electronic structure and the molecular geometry

Structure (thermodynamics, spectroscopy) and reactivity (mechanism, kinetics)

RP

TSV

Q

Introduction

Ecole Thématique – ModPhysChem – Oct. 2017

11

Interplay between topography and motion

Electronic structure Molecular geometry

Energy landscape

( ) ( )0 0V Q V Q δQ→ +

0 0Q Q δQ→ +0 0Φ; Φ;Q Q δQ→ +

Introduction

Ecole Thématique – ModPhysChem – Oct. 2017

12

Mechanistic picture (photochemistry): reaction path

Adiabatic reaction: radiative deactivation after excited-state product is formed

Non-adiabatic reaction: radiationless decay to ground-state product through conical intersection (CoIn)

R

Reaction coordinate

Po

ten

tia

l en

erg

y

CoIn TS

PP’

S0

S1

P*

R*

TS*

FC

−hν +hν

Adiabatic

photochemical

reaction

Non-adiabatic

photochemical

reaction

Introduction

Ecole Thématique – ModPhysChem – Oct. 2017

13

Photochemistry vs. thermal chemistry

� The system does not start from around an equilibrium geometry

� The slope on S1 creates an initial driving force (skiing rather than hiking)

� The system will develop momentum as it escapes the Franck-Condon region

� The trajectory can easily deviate from the minimum energy path (bottom of the valley connecting R to P through TS)

� molecular dynamics simulations

� State crossings are likely to happen

� non-adiabatic (vibronic) effects

� quantum dynamics

S0

S1

Introduction

Ecole Thématique – ModPhysChem – Oct. 2017

2. Beyond the Born-Oppenheimer

Approximation

14

Ecole ThématiqueModPhysChemOctobre 2017

a. Adiabatic Electronic States

b. Adiabatic Partition of the Molecular Schrödinger Equation

c. Non-Adiabatic Couplings

d. Conical Intersections

e. Diabatic Electronic States

15

Beyond BOA

Ecole Thématique – ModPhysChem – Oct. 2017

16

Formalism: prerequisites

( ) ( ) ( ) ( ) ( )

2

eigenvalues 2

2

2

2

2 2

00 0

02

uv u v u v u v

a c a b a be c

c b

a ba be e c

c

±

+ −

′′ ′′ ′ ′ ′′= + +

+ − → = ± +

− =− − = ⇔ + = ⇔ =

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

17

Common ground: the molecular Hamiltonian

� Non-relativistic

� Electrostatic

� Electronic (r) and nuclear (R) coordinates

� Direct solution extremely expensive and rarely useful

Beyond BOA

2

mol1

2

1 e

21

1 0

21

1 0

2

1 1 0

ˆ2

2

1

4

1

4

1

4

J

j

N

RJ J

n

rj

N NJ K

J K JJ K

n n

j k j j k

N nJ

J jJ j

HM

m

Z Z e

πε R R

e

πε r r

Z e

πε R r

=

=

= >

= >

= =

=− ∆

− ∆

+−

+−

−−

∑∑

∑∑

∑∑

� �

� �

� �

Ecole Thématique – ModPhysChem – Oct. 2017

18

The adiabatic partition: electronic/nuclear separation

� Nuclei at least 1800 heavier than electrons

� Time scale separation

Electronic ~ 0.1 fs

Vibrational ~ 10 fs

� Energy scale separation

Electronic ~ 50 000 cm-1

Vibrational ~ 500 cm-1

�Problem solved in two sequential steps

1) Electronic, relaxed at each geometry (quantum chemistry)

2) Nuclear, in the electronic mean field (molecular dynamics)

Beyond BOA

Ecole Thématique – ModPhysChem – Oct. 2017

19

( ) ( ) ( )

( ) ( ) ( ) ( )

el

el

mo nul

el

cˆ, , ;

ˆ ,

ˆˆ

Φ, ;

,

Φ ;

,

;

q q

q

Q Qq H q

H

Q T Q

Q q q

H

EQ qQ Q Q

= +

∀ =

∂ ∂∂

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

Starting point: Born-Oppenheimer (BO) approximation

20

Starting point: Born-Oppenheimer (BO) approximation

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

nucm el

el el

el

olˆ , ˆ, , ;

ˆ , ; Φ ;,

,

,

Φ ;

ˆQ Qq q

q

Q T Q

Q Q Q Q

q H q

H q q E q Q

Q E Q

H

Q V

= +

=

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

21

Starting point: Born-Oppenheimer (BO) approximation

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

mol

m

el

el el

e

ol,

BO

nuc

22

l

ˆ, , ;

ˆ , ; Φ ; Φ ;

ˆˆ

,

,

2

,

,

q qQ Q

q

Q v v v

Q T Q

Q Q Q Q Q

Q

q H q

Q V Q

V Q φ Q φ

H q q E q

E

H

mE Q

= +

∀ =

∀ ≡

+ =

∂ ∂ ∂∂

−�����������������

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

22

Quantum or classical dynamics: equations of motion

( )�

( ) ( )

( ) ( )( )

potential energy surface

2

local for

2

ce

2

nuclear wavepacket

, ,

nuclear trajector

2

y

Q

Q Q

t

t t

t iV Q ψ Q ψ Qm

tm Q

t

V Q

+− ∂ = ∂

∂ ∂ =−

ℏℏ

�������������

H transfer with tunnelling: non-classical behaviour

X-H…YX…H-Y

X-H…YX…H-Y

X-H…YX…H-Y

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

23

Potential energy surface: explicit function of Q

( )el, samplingQ QE∀ →

Ecole Thématique – ModPhysChem – Oct. 2017

Q

Beyond BOA

24

Potential energy surface: explicit function of Q

( ) ( )el, sampling and fittingQ QE V Q∀ ≡ →

Ecole Thématique – ModPhysChem – Oct. 2017

Q

Beyond BOA

25

Potential energy surface: explicit function of Q

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

0

2

0 0 0

20 0 0 0

22

el

mol,

BO

, sampling and fitting

Example: linear harmonic oscillator

Parameters: , ,

1

2

2

Q Q

Q v v vE

Q Q V Q

V Q V k Q Q

Q V V Q k V Q

V Q φ Q φ Qm

E∀ ≡ →

+ =

= + −

=

= ∂

− ∂������������

�����

Ecole Thématique – ModPhysChem – Oct. 2017

Q

Beyond BOA

26

Potential energy surface: many-(many!)-body expansion

( ) ( )

( ) ( )( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

0

1 3 6 0

3 60 0

1

3 6 3 60 0 0

1 1

3 6 3 6 3 60 0 0 0

1 1 1

, ,

1

2

1

6

N

N

j j jj

N N

jk j j k kj k

N N N

jkl j j k k l lj k l

V Q Q V

V Q Q

V Q Q Q Q

V Q Q Q Q Q Q

=

− −

= =

− − −

= = =

=

+ −

+ − − +

+ − − − +

∑∑

∑∑∑

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

� Unknown form (not 1/r12) � sampling and fitting

� More than two-body terms: multidimensional integrals <ϕ|V|ϕ>, not limited to (µν||λη)

� The very bottleneck in quantum dynamics!

27

Photochemistry often involves radiationless decay

Isomerisation coordinate

Pote

nti

al e

nerg

y

trans

cis

Energy transfer

NH+

2nd step

� Example: first step of the vision process:

retinal photoisomerisation � no fluorescence!

Internal conversion

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

28

Why and where does it happen?

� When the Born-Oppenheimer approximation is no longer valid

� Vibronic coupling between the electronic states and the nuclear motion: non-adiabatic coupling

� Strong effect when the electronic energy separation is small (~ vibrational, so similar time scales)

� Explanation of internal conversion (if same spin)

� NB: intersystem crossing (if different spins) due to spin-orbit coupling (relativistic origin)

Beyond BOA

Ecole Thématique – ModPhysChem – Oct. 2017

29

Beyond Born-Oppenheimer

( ) ( ) ( )

( ) ( ) ( )

( )

mol

mol

el

el

e

nuc

nuc

n

l

uc

Ψ , , , BO approximation

Beyond BO Ψ , , ,

: no longer a single eigenvalue

matrix ( ) of potential energi

Φ ;

Φ ;

ˆ , ;

inde e

ˆ

r x s fo

s ss

q

q q

q q

tQ ψ Q Q

Q

t

t ψ Q Q

Q

t

H q

T

s

Q

= ⇒

⇒ =

�������

��

�������

���� ����� � ��� ���

( ) ( ) ( )2

2 : acts on both , and

non-adiabatic-coupling matr2

ix ( )

Φ ;

index for

s sQ Qt qψ Q Q

m

Qs→

∂ =− ∂ℏ

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

30

Refresher: rotating frame and vector derivative

( )( )

( ) ( )

( ) ( )( ) ( )

( )( ) ( ) ( ) ( )

Example: polar coordinates

cos sin

sin cos

chain rule: r r

r θ r

θ r θ

r x y

θ x y

x y r

rx y r θr

u θ θu θu

u θ θu θu

r xu y u ru θ

r xu y u ru

u θ u θθ

t t θ

u θ θ u θ

u θ u θ

ru θ rθu θθ ru θ

∂ ∂∂=

∂ ∂ ∂=

= +

=− +

=

∂ =

+ =

= + = + = +

� �

� �ɺ ɺ

� � �

� � �

� � � �

� � � �

� �ɺ ɺ�ɺ ɺ ɺɺ ɺ

Ecole Thématique – ModPhysChem – Oct. 2017

θ

r

xu�

yu�

ru�

θu�

Beyond BOA

31

Non-adiabatic coupling (general principle)

{ }

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

fixed orthonormal basis set: s s s

s

s s

s s s ss s

s s s s

u v v u

v u v

v v u v v u

v

x x x x

x xu v v u vx x

=

= ⋅

= =

=

′′ ′′

′′ ⋅ ′⋅ ′=

∑ ∑

� � �

� �

� � � �

� � � �

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

32

Non-adiabatic coupling (general principle)

( ){ }( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

orthonormal basis set (~rotating frame):parametri

2

2 ,

2

c

,

s

s s s ss

s s s s s ss

s s p s p p sp

u

v v u v

x

x x x x x x

x x x x x x x

x x x

u v

uv u v u v

uv u v u v u v

v v u v u v u

u v v v u u vx x u ux x x

′ ′ ′

′′ ′

= = ⋅

= +

= + +′ ′ ′ ′′

′′ ′′ ′ ′ ′= + +

⋅ = + ⋅ + ⋅

′′ ′′ ′ ′ ′′

� � � �

� � � �

� � � � � �( )( )p

p

x∑

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

33

Non-adiabatic coupling (general principle)

{ }( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

Φ ; orthonormal basis set (~rotating frame):

Ψ; Φ ; , Φ ; Ψ;

Ψ

par

; Φ ; 2 Φ ; Φ ; ,

Φ ; Ψ ; 2 Φ ; Φ ; Φ ; Φ ;

ametrics

s s s ss

s s s s s ss

s s s s p s s pp p

x

x x x x xψ ψ

ψ ψ ψ

ψ ψ ψ

x

x x x x x x x

x x x x x x x x x

′′ ′′ ′ ′ ′′

′′ ′′ ′ ′

= =

= + +

= ′′+ +

∑ ∑

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

34

Representation of the wavefunctions

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )( ) ( )

nuc

22

nu

mo

el

el

el e

m

c

l

lΨ , , ,

,

Representation explicit with respect to

but implicit w

Φ ;

ˆ

ith respect to (co

; Φ ; Φ ;

Φ ; Φ ;

uld be

ˆ

,

2

)

ˆ;

Ψ

ˆ

s ss

s s s

Q

s

Q

s

q

Q ψ Q Q

Q Q Q Q Q

Tm

Q

q q

H q q V q

q p k

q

H q

Q Q

t

Q

t

H Q

=

∀ =

∂ =− ∂

=

∑���������

���������

( ) ( )nuc

ol

el

, , Φ ;s s

s

Q ψ Q Qt t=∑��������� �������Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

35

Vibronic non-adiabatic couplings

( ) ( )

( ) ( ) ( )( ) ( )

( ){ }

( )

( )

( ) ( ) ( ) ( )

( )

BO

22

mol

mol mol m

22

ol

mol

l

*

ˆ

2 2

e

2

ˆ

Φ ;

Φ ; Φ ;

Φ ;

ˆ

ˆ Ψ , Ψ ,

Ψ , ,

, ,

Φ ; Φ ; Φ ;Λ̂2

,

2

Λ̂2

s

Q

Q

s ss

s s

q

s s sp p sp

sp s p s

Q

Q Q Q p

t

t

H

H t i t

t

Q Qm

Q Q Q

Q ψ Q Q

Q Q

V Q ψ Q Q ψ Q ψ Qm

Q Q Q Q Qm

t

t

m

dq

t

H

t i

q

= +

= ∂

=

=

+ + = ∂

− ∂

=

− ∂

− ∂ ∂ − ∂

����������

⋯ ⋯

�����

ℏ ℏ

����H

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

36

Non-adiabatic photochemistry: a non-classical field

Radiationless decay mechanisms � the nuclei behave as quantum-mechanically as the electrons (~\E, ~\t)

� Nuclear wavepacket (Q,t) with two (or more) components

� Vibronic non-adiabatic coupling (non-Born-Oppenheimer)

� electronic population transfer

( )( )

( )( )

( )( )

000 01

11

BO0 00

BO1 11 0 11

ˆ, ,0

ˆ, ,0

ˆ ˆ ,Λ Λ

ˆ ˆ ,Λ Λt

ψ Q t ψ Q ti

ψ Q t ψ Q t

ψ Q t

ψ Q t

∂ = +

H

H

Ecole Thématique – ModPhysChem – Oct. 2017

S0

S1

S0

S1

( ) ( ) ( ){ }

2,s

s

Q

P t ψ Q t dQ= ∫

Beyond BOA

37

Matrix Hellmann-Feynman theorem (general principle)

ˆ Φ Φ

ˆ ˆ

ˆΦ Φ

Φ Φ

with respect to anderivative external paramete :r

Φ Φ Φ Φ Φ Φ 0

b b b

a a a

a b ab

a b a b a b

H E

H H

H E

δ

=

′ ′ ′

=

=

=

= + =

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

38

Matrix Hellmann-Feynman theorem (general principle)

( )

ˆΦ Φ

ˆΦ Φ

ˆ ˆ ˆΦ Φ Φ Φ Φ Φ

ˆΦ Φ Φ Φ Φ Φ

ˆΦ Φ Φ Φ

a b ab a

a b

a b a b a b

b a b a a b a b

a b a b a b ab a

H δ E

H

H H H

E E H

E E H δ E

′ ′ ′

=

=

+ + =

+ ′ ′

′ =′

+ =

′− +

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

39

Matrix Hellmann-Feynman theorem (general principle)

ˆ: Φ Φ

ˆΦ Φ: Φ Φ

a a a

a b

a b

b a

a b E H

Ha b

E E

=

′ =

=

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

40

Link with 1st-order perturbation and response theories

�energy correction

wav

0

0 0

efunction response

0 0

0

0 0 0

0 0

0 0

0

0 0

ˆ ˆ ˆ

ˆ Φ Φ

ˆ Φ Φ

Φ Φ Φ Φ Φ

ˆΦ Φ

ˆΦ ΦΦ Φ

s s s

s s s

s s s

s s p p sp

s s s

p s

p s

s p

δx

δx

δ

H H H

H V

H V

V V V

V H

H

x

V V

= +

=

=

= + +

= + +

= ′

′′ =

������������������

HDR viva — Montpellier — 15/01/2016

Beyond BOA

41

Matrix Hellmann-Feynman theorem here

( ) ( )( ) ( ) ( )

( ) ( )

( )( ) ( )

adiabatic gradient

1st-order no

el

e

n-a

l

e

diabatic coupling

l

ˆΦ ; Φ ; Φ ; Φ ;

ˆΦ ; Φ ;

ˆ

:

:Φ ; Φ ;

Φ ; Φ ;

Q Q Q

Q

s p s p s p sp s

s s s

s p

s

Q

Q

p

Q p

s

HV Q V Q

s p

Q Q Q Q Q V Q

V Q Q Q Q

Q Q QQ Q

V V

H

Q

δ

Hs

Qp

− + =

= =

≠ =

∂ ∂ ∂

∂∂

���������

�����������������

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

42

Analytic derivatives

( ) ( ) ( ) ( )( ){ }

( )ext

*el el-nuc

transition density ;

nuc-nuc

ˆΦ ; Φ ; Φ ; Φ ; ;Q Q

Q

s p s p

q v q

sp Q

H q q V q dq

δ

Q Q Q Q Q Q

V Q

→ →

=

+

∂∫ ����������������������������

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

43

Two-state model

Ecole Thématique – ModPhysChem – Oct. 2017

( )

0100

00 0

11

11

11 11

11 11

0

00

0

22

0,10 00

01

0101

01

1 0 20 12

2eigenvalues

2 2

H

H

H H

H

HH H

H

H

H

H

HV

H

H

H

H

− − + = + −

+ − = ± +

Beyond BOA

44

Conical intersection

Adiabaticsurfaces

V1

V0

x(1)

Degeneracy lifted at first order along 2D branching space

- x(1) || gradient of (H11 − H00)/2- x(2) || gradient of H01

Ecole Thématique – ModPhysChem – Oct. 2017

x(2)

( )2

2

01

0

01 0 01

1 0

1

1

1

001

2 2

00

02

V V

V H

HH

V H

H

H − − = + − =− = ⇔ =

Beyond BOA

45

Conical intersections: divergence and cusp

V

�1�2

( ) ( ) ( )( ) ( )( )2 2

1 21 0 0 0

gradient: ill-defined (cusp)

02

V δ V δδ δ

+ − += + ⋅ + ⋅ +

Q Q Q Qx Q x Q ⋯

�����������������������

( )( ) ( )

00

1 0

el 11

ˆΦ ; Φ ;Φ ; Φ ;

V

H

V

∇∇

−= →∞Q

QQ

QQ Q

Q

Q Q

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

46

Non-adiabatic photochemistry around conical intersections

� Adiabatic representation (BO states)

� Divergent non-adiabatic coupling and cusp of the potential energy surfaces at the conical intersection

� Problem for QD: integrals require regular functions of Q

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

47

Molecular symmetry

� Diatom (one coordinate): crossing only if different symmetry (Wigner non-crossing rule)

� Jahn-Teller:

two degenerate electronic

states (E)

� two equivalent vibrations (E)

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

48

Molecular symmetry

� Symmetry-induced conical intersection: allowed crossing between states of different symmetries (ΓA and ΓB), coupling of ΓA ⊗ ΓB symmetry � non-zero when symmetry gets broken (states mix)

� Accidental conical intersection: probable because large number of degrees of freedom (often related to high-symmetry Jahn-Teller prototype)

el el

el el

ˆ ˆ

ˆ ˆ

A H A A H B

B H A B H B

Ecole Thématique – ModPhysChem – Oct. 2017

Beyond BOA

49

Getting rid of singularities: diabatisation

� Unitary transformation minimising the non-adiabatic coupling

� Electronic Hamiltonian matrix no longer diagonal

cos sin

sin cos

φ φ

φ φ

− =

=

U

H UVU

00 01 0 1 1 0

10 11

cos2 sin2

sin2 cos22 2

H H φ φV V V V

H H φ φ

− −+ − = + − 1

0 1Φ ; Φ ;Q

Q Q∂ →∞ 0 1Φ ; Φ ; 0Q

Q Q′ ′∂ ≈

Beyond BOA

Ecole Thématique – ModPhysChem – Oct. 2017

50

Two states: explicit relationships

� Rotation angle

� Condition to make the diabatic derivative coupling zero

� Never fully achieved in practice: various types of quasi-diabatic states, all based on a smoothness condition of the wavefunction or the energy, the dipole moment, etc.

( )

( )

0 1 0 1

0

0 1

Φ ; Φ ; Φ ; Φ ;

Φ ; Φ ;

Q Q Q

Q Q

Q Q Q Q φ Q

φ Q Q Q

′ ′∂ = ∂ −∂

⇒ ∂ ≈− ∂

���������������

( )( )

( ) ( )01

11 00

2tan2

H Qφ Q

H Q H Q=−

Beyond BOA

Ecole Thématique – ModPhysChem – Oct. 2017

51

Why quasi-diabatic states?

0 1

20 1 0 1

20 1 0 1

0

20 1 0 1

0

Φ ; Φ ;

Φ ; Φ ; Φ ; Φ ;

Φ ; Φ ; Φ ; Φ ; Φ ; Φ ;

Φ ; Φ ; Φ ; Φ ; Φ ; Φ ;

Q Q

Q Q Q

Q Q s s Qs

Q Q s s Qs

Q Q

Q Q Q Q

Q Q Q Q Q Q

Q Q Q Q Q Q

=

=

∂ ∂

= ∂ + ∂ ∂

= ∂ + ∂ ∂

= ∂ − ∂ ∂

Beyond BOA

Ecole Thématique – ModPhysChem – Oct. 2017

� Infinite basis set required

(unless isolated Hilbert subspace)

52

Diabatisation a priori or a posteriori

Working space(N configurations)

Target subspace(n adiabatic states)

Model subspace(n diabatic states)

diag

diab

� Configuration contraction wrt. static correlation yielding well-behaved model states equivalent to the target states (n out of N)

� effective Hamiltonian

diab

Beyond BOA

Ecole Thématique – ModPhysChem – Oct. 2017

53

Diabatisation by ansatz: smooth Hamiltonian matrix

� Electronic structure preserved wrt. geometry variation

diabatic

Q

adiabatic

V

Beyond BOA

Ecole Thématique – ModPhysChem – Oct. 2017

54

Consequence: smoother PES with no cusp

Adiabaticsurfaces

Diabaticsurfaces

H00

H11

H11

H00

V1

V02|H01|

x(1)

Diabaticpotential coupling

Degeneracy lifted at first order along 2D branching space

- x(1) || gradient of H11 − H00

- x(2) || gradient of H01

( )2

21 0 11 00012 2

V V H HH

− − = +

x(2)

Beyond BOA

Ecole Thématique – ModPhysChem – Oct. 2017

55

Intuitive chemical interpretation

� Walsh

correlation

diagrams

q

V

Beyond BOA

Ecole Thématique – ModPhysChem – Oct. 2017

56

Photochemistry: ES and GS multiple wells and crossings

Beyond BOA

Ecole Thématique – ModPhysChem – Oct. 2017

57

Thermal chemistry: GS local coupled states

� Marcus theory of electron transfer reactions

� Valence bond: transition barriers as avoided crossings

Beyond BOA

Ecole Thématique – ModPhysChem – Oct. 2017

3. Non-adiabatic Processes

58

S0

S1

S0

S1

Ecole ThématiqueModPhysChemOctobre 2017

a. Non-Adiabatic Quantum Dynamics

b. Radiationless Decay

c. Electronic State Crossings

59

Non-adiabatic processes

Ecole Thématique – ModPhysChem – Oct. 2017

60

Born-Oppenheimer quantum dynamics

� Time-dependent molecular Schrödinger equation within the Born-Oppenheimer approximation

� Nuclear kinetic energy operator

and potential energy surface

� Wavepacket for the nuclear motion (R,t)

� amplitude of probability to be at geometry R at time tExample: H transfer with tunnelling

X-H…YX…H-Y

X-H…YX…H-Y

X-H…YX…H-Y

( ) ( ) ( )( ) ( )

BO

BO adia

ˆ, ,

ˆ ˆ

s

R

s

sR R

i ψ R t H ψ R tt

H T V R

∂=

= +

� �

� �ℏ

Non-adiabatic processes

Ecole Thématique – ModPhysChem – Oct. 2017

61

Non-adiabatic quantum dynamics

� Time-dependent molecular Schrödinger equation for two vibronically coupled singlet electronic states, S0 and S1,

� Two-component wavepacket for the nuclear motion (R,t)

� Non-adiabatic coupling terms (non-Born-Oppenheimer)

� transfer of electronic population

S0

S1

S0

S1

Example: photodissociation with internal conversion

( ) ( )( ) ( )

( ) ( )

( ) ( )

( ) ( )( ) ( )

0 000 01

10 111 1

, ,ˆ ˆ

ˆ ˆ, ,

R R

R R

ψ R t ψ R ti

t ψ R t ψ R t

∂ = ∂

� �

� �

� �

ℏ � �H H

H H

Non-adiabatic processes

Ecole Thématique – ModPhysChem – Oct. 2017

62

Representations of the molecular Hamiltonian

Diabatic electronic states

General form

Zero kineticcoupling (Λ(01))� Easier for quantum

dynamics(no singularity at conical intersection)

Adiabatic electronic states Zeropotentialcoupling (H01)

� Output of quantum chemistry

( ) ( )

( ) ( )

( ) ( )

( ) ( )

00 00

00

01 01

01

10 1010

11 1111

ˆˆˆ Λ

ˆ ˆˆ Λ

0

0

ˆˆ Λ

ˆˆ Λ HT

T

H

H H = + +

H H

H H

( ) ( )

( ) ( )

( ) ( )

( ) ( )

01 01

10 11 1101

0 0

1

0 0

0

ˆ

ˆˆ Λ

ˆˆ Λ

00

00

ˆˆ Λ

ˆ

ˆ

ˆ Λ

VT

VT

= + + H

H

H

H

( ) ( )

( ) ( )

00

0

01

01

11

0

10

1011 ˆˆ

ˆ 0

ˆ

ˆ ˆ

0 HT H

HT H = +

H

H

H

H

NB: diagonal scalar corrections Λ(00), Λ(11) (Born-Huang approximation)

( ) ( ) ( )mol elˆˆ ˆ ˆˆ ; ; Λ ; ;ss ss

ssR R Rs R H s R T δ s R H R s R

′ ′′′ ′= = + +� � �

� � � � �H

Non-adiabatic processes

Ecole Thématique – ModPhysChem – Oct. 2017

63

Electronic population

� Time-resolved population of each electronic state = integral of the density within the electronic state

� Normalisation condition

� Transfer of population due to non-adiabatic coupling

( ) ( ) ( ) ( ){ }

2

,s s

R

P t ψ R t dτ= ∫�

Non-adiabatic processes

( ) ( ) 1s

s

P t =∑

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )conservation term

(Born-Oppenheim creation/dissipation terms(non-adiabatic couplin

er)

)g

ˆ ˆ, , ,sss ss s s

sR R

s

i ψ R t ψ R t ψ R tt

′ ′

′≠

∂= +

∂ ∑� �

� � �ℏ

������������� �����������������

H H

Ecole Thématique – ModPhysChem – Oct. 2017

64

Radiationless decay

� Internal conversion = population transfer between singlet states

� No light emission: vibronic (non-adiabatic) coupling

� Very efficient at or near conical intersections

Non-adiabatic processes

S0

S1

S0

S1

( )( ) ( )

adia adiaeladia adia

adia adia1 0

ˆ0 ; 1 ;0 ; 1 ;

R

R

R H R RR R

V R V R

∇∇ =

� � ��� ��

� �

Ecole Thématique – ModPhysChem – Oct. 2017

65

Photostability vs. photoreactivity

� Internal conversion can regenerate the electronic ground state in the reactant or product regions

S0

Reaction coordinate

E

S1

Ecole Thématique – ModPhysChem – Oct. 2017

Non-adiabatic processes

66

Role of the crossing topography

Non-adiabatic processes

Ecole Thématique – ModPhysChem – Oct. 2017

67

Retinal photoreactivity

Isomerisation coordinate

Pote

nti

al e

nerg

y

trans

cis

Energy transfer

NH+

2nd step

Introduction

Ecole Thématique – ModPhysChem – Oct. 2017

68

DNA photostability

Proton transfer coordinate

Pote

nti

al e

nerg

y

Locally

excited

stateCharge-transfer

state

Ground state

N

N

H

H

N

N

H

H

N

N-

H

N+

N

H

H

H

Introduction

Ecole Thématique – ModPhysChem – Oct. 2017

4. Quantum and semiclassical

methods

69

Ecole ThématiqueModPhysChemOctobre 2017

a. Grid-Based Methods

“Exact” methods

MCTDH

b. Trajectory-Based Methods

Direct Quantum Dynamics

Semiclassical Dynamics

70

Methods

Ecole Thématique – ModPhysChem – Oct. 2017

Grid-based quantum dynamics � electronic spectroscopyVibronic coupling Hamiltonian model (local expansion of the diabatic potential

surfaces and couplings)

� Benchmark: pyrazine: 10 atoms (24D) / 3 coupled electronic states� Valid only for small amplitude motions� Global potential energy surfaces on a large grid: difficult and expensive

Trajectory-based semiclassical dynamics � photochemistrySwarm of classical trajectories + probability of electronic transfer

� Most applications up to date (not accurate but useful for mechanistic purposes)� Approximate treatment of non-adiabatic events� ‘On-the-fly’ calculation of the potential energy or force field

+ A more quantum strategy: direct quantum dynamics� Moving Gaussian functions (centre follows a ‘quantum trajectory’)� Approximate quantum dynamics with ‘on-the-fly’ potential energy surfaces

71

State of the art

Methods

Ecole Thématique – ModPhysChem – Oct. 2017

� Initial condition = initial wavepacket� Electric dipole + Franck-Condon approximation

� Heller picture: sudden projection on S1 of the vibrational ground state in S0

72

First step: initial condition

Methods

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

1 0

0

0

, 0 , 0 ;

, 0

, 0 0

s

s

ψ R t ψ R t s R

ψ R t φ R

ψ R t

= = =

= =

= =

∑� � �

� �

S0

S1

� Possible to include t-dependent laser pulseand R-dependent electric dipole

Ecole Thématique – ModPhysChem – Oct. 2017

� Solution of the time-dependent Schrödinger equation

� The wavepacket evolves in time driven by the molecular Hamiltonian (often in a diabatic representation)

� “Exact” propagator (numerical integration)

� MCTDH (variational convergence)

73

Second step: propagation

Methods

( ) ( )ˆ, ,R

i ψ R t ψ R tt

∂=

∂�

� �ℏ H

( ) ( )ˆ \, \ ,R

it

ψ R t t e ψ R t−

+ =�

ℏ� �H

( ) ( )ˆ, ,R

δψ R t i ψ R tt

∂−

∂�

� �ℏH

( )

,

ˆ ˆ; ;ss

R Rs s

s R s R′

′=∑� �

� �HH

Ecole Thématique – ModPhysChem – Oct. 2017

74

“Exact” propagator

Methods

� Example: split-operator (Fourier transform R-space/K-space)

� Other typical propagator: Chebyshev polynomial expansion

( ) ( )( ) ( )

( )

( )

( )

( )

( )

( )

adia0

adia1

adia0

adia1

†adia dia dia a

1

1

2

1

2

1

adia 0 \

adia 1 \

\

\

\

\

1

2

1

2

dia

, \ 0

, \ 0

0

0

0

0

R K

iV R t

iV R t

iT K t

iT K t

K R

R K K R

iV R t

iV R t

ψ R t t e

ψ R t t e

e

e

e

e

← ←

← ←

← ←

+ ≈ +

U U� �� �

� �� �

F F

F F

( ) ( )( ) ( )

adia 0

adia 1

,

,

ψ R t

ψ R t

( )2

2 J JJ J

T K K KM

= ⋅∑� � �ℏ

Ecole Thématique – ModPhysChem – Oct. 2017

75

MultiConfiguration Time-Dependent Hartree (MCTDH)

Methods

� Nuclear coordinates � f internal degrees of freedom

� Similar to one-state caseHartree product of SPF ~ configurationSPF ~ molecular orbitalexpansion of the SPF in a primitive basis set ~ LCAO

� Extra electronic degree of freedom (s) in the equations of motion

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )1

1

1

,

, ,11 1

SPFcoefficient

Hartree product

, , ;

, ,f

f κ

f

nn fκ

j j j κκj

s

s

s s s

j

ψ t ψ t

ψ t A t φ Q t

s

== =

=

=

∑ ∑ ∏

Q Q Q

Q…

⋯��������������������

�������������

{ }1, ,f

R Q Q→ =Q�

Ecole Thématique – ModPhysChem – Oct. 2017

76

Comparison: 3D example

Methods

� Standard methods (equivalent to full CI expansion)

� Large basis set � N1N2N3 configurations (3D functions) and expansion coefficients

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )31 2

1 2 3 1 2 3

1 2 3

1 2 3

1 2 3 1 2 31 1 1

coefficient configuration

, , ,NN N

j j j j j jj j j

ψ Q Q Q t A t f Q f Q f Q= = =

=∑∑∑������� �����������������������

Ecole Thématique – ModPhysChem – Oct. 2017

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }1 2 3

1 2 31 2 3

1 2 3

1 2 31 1 1

primitive basis set (mathematical functions, equivalent to AOs):N N N

j j jj j j

f Q f Q f Q= = =⊗ ⊗

77

Comparison: 3D example

Methods

� MCTDH method (equivalent to MCSCF)

� Contraction scheme � n1n2n3 << N1N2N3 configurations (3D functions) and expansion A-coefficients, but extra “LCAO” C-coefficients

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )31 2

1 2 3 1 2 3

1 2 3

1 2 3

1 2 3 1 2 31 1 1

coefficient configuration

, , , , , ,nn n

k k k k k kk k k

ψ Q Q Q t A t φ Q t φ Q t φ Q t= = =

=∑∑∑������� �����������������������������

Ecole Thématique – ModPhysChem – Oct. 2017

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }1 2 3

1 2 31 2 3

1 2 3

1 2 31 1 1

single-particle functions (variational, equivalent to MOs):

, , ,n n n

k k kk k k

φ Q t φ Q t φ Q t= = =⊗ ⊗

( ) ( ) ( ) ( ) ( ) ( ),

1

, ; 1,2,3κ

κ

κ κ κ

κ

Nκ κ k κ

k κ j j κj

φ Q t C t f Q κ=

= =∑

78

Comparison: 3D example

Methods

� ML(multilayer)-MCTDH method (hierarchical contraction)

� Smaller vectors but more complicated equations of motion

( ) ( ) ( ) ( ) ( ) ( ){ }{ }

312

12 3 12 3

12 3

12 3

1 2 3 1 2 31 1

coefficient first layer 1,2 3

, , , , , ,nn

k k k kk k

ψ Q Q Q t A t φ Q Q t φ Q t= =

=∑∑������� �����������������������

Ecole Thématique – ModPhysChem – Oct. 2017

( ) ( ){ } ( ) ( ){ }12 3

12 312 3

12 3

1 2 31 1

intermediate correlated functions (groups of coordinates):

, , ,n n

k kk k

φ Q Q t φ Q t= =⊗

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }{ }

1 2

12

12 1 2 1 2

1 2

12 12, 1 2

1 2 1 21 1

coefficient second layer 1 2

, , , ,m m

k

k l l l ll l

φ Q Q t B t ξ Q t ξ Q t= =

=∑∑��������� �������������������

QD: rigorous and accurate but...

PES required as an analytical expression fitted to a grid of data points

� grid-based methods

Representing a multiD function is expensive� Exponential scaling

Fitting procedures are complicated and system-dependent� Constrained optimisation techniques

Much grid space is wasted� High or far regions: seldom explored

� trajectory-based methods

PES calculated on-the-fly as in classical MD

79

Quantum dynamics: the curse of dimensionality

Methods

Ecole Thématique – ModPhysChem – Oct. 2017

� The variational multiconfiguration Gaussian (vMCG) method� Time-dependent Gaussian basis set (local around centres)

� Coupled ‘quantum trajectories’: position, momentum, and phase at centre of Gaussian functions

80

Gaussian-based quantum dynamics

Equations of motion implemented in a development version (QUANTICS, London) of the Heidelberg MCTDH

package

( ) ( ) ( ), ,j j

j

ψ Q t A t g Q t=∑

Methods

Ecole Thématique – ModPhysChem – Oct. 2017

� Diabatic picture for dynamics

� Adiabatic picture for on-the-fly quantum chemistry

� Diabatic transformation (U):

V1

V0

H00

H11

H11

H00

2|H01|

81

Direct dynamics implementation (DD-vMCG)

( ) ( )

( ) ( )

11

01

10

00

0 †dia adia adia dia11

00

1

01

10

ˆ

ˆ

ˆ

0

00ˆ

ˆ

H

H H

H

T

T

V

V← ←

= + U U

���������������������

H H

HH

S0

S1

S0

S1

Methods

Ecole Thématique – ModPhysChem – Oct. 2017

� Approximate rotation angle, φ(1):

first-order expansion of the adiabatic energy difference

82

Diabatic transformation: regularised states

0 †dia adia ad

111ia d

1

0a

0i

0 01 0

0

V

V

H H

H H ← ←

=

U U

( )( )( ) ( )

( ) ( )

( )( ) ( )

( )( ) ( )

( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

1

1

0 1 1 0

2 21 11 2

1 2

2 1

ˆˆ Σ

Σ , 2 2

,

T

V V V V

k X λ Xk X λ X

λ X k X

∆= + +

+ −= ∆ =

− = ∆ = +

Q Q

Q1 Q 1 W Q

Q

Q Q Q QQ Q

Q QW Q Q Q Q

Q Q

H

V1

V0

H00

H11

H11

H00

2|H01|

Methods

Ecole Thématique – ModPhysChem – Oct. 2017

83

Effective Hamiltonian

� Exact eigenvalues (adiabatic data) at any point

� Approximate rotation angle φ(1) and non-adiabatic coupling (first-order contribution inducing the singularity around the conical intersection)

( )( )

( )( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )( )

( )( )

1

1

1 † 1 10

adia dia dia adia11

0

0

0

V

V← ←

−∆ ∆

∆ = + ∆ Q

Q

Q QQ 1 U Q W Q U Q

Q Q �����������������������������

( ) ( )1

0 1Φ ; Φ ;φ∇ ≈− ∇Q Q

Q Q Q

Methods

Ecole Thématique – ModPhysChem – Oct. 2017

84

Potential energyand derivatives

Database

Quantum

Chem

istry

R1R2

LocalHarmonicApproximation

Interface quantum chemistry – quantum dynamics

Quantum

Dynam

ics

Methods

( ) ( )1 2,j j

R t R t

( ){ }( ){ }

,j

j

g R t

A t

( ){ }( ){ }

, \

\

j

j

g R t t

A t t

+

+

Ecole Thématique – ModPhysChem – Oct. 2017

� Non-orthogonal basis set: ambiguous attribution of how much of the density is given by each Gaussian function

� Solution: Mulliken-like population (Cf. atomic orbitals, not orthogonal)

85

Gross Gaussian populations

Methods

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

* *

,

, , ,s s s s s

k j k jk j

ψ R t A t A t g R t g R t=∑� � �

( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( ) ( )

*

*

, ,s s

kj k j

R

s s s

j k j kjk

S t g R t g R t dτ

GGP t A t A t S t

=

= ℜ

� �

( ) ( ) ( ) ( )s s

jj

P t GGP t=∑ ( ) ( ) 1s

js j

GGP t =∑∑Ecole Thématique – ModPhysChem – Oct. 2017

� Similar expansion as vMCG

� Difference: quantum evolution for the coefficients but classical equations of motion for the centres of the Gaussian functions

� Drawback: convergence is slower (classical motion)� Advantage: the basis set can increase (spawning) when

necessary � when the wavepacket reaches a conical intersection

86

Ab initio Multiple Spawning (AIMS)

Methods

( ) ( ) ( ) ( ) ( ), , ;s s

j js j

ψ R t A t g R t s R=∑∑� � �

Ecole Thématique – ModPhysChem – Oct. 2017

� Statistical sampling (positions and velocities) of the initial wavepacket

� Swarm of trajectories driven by Newton’s classical equations of motion far from conical intersection

� Diabatic state-transfer probability when the energy gap becomes small (surface hopping) calculated from approximate quantum equations (e.g., Landau-Zenerformula)

87

Semiclassical trajectories

Methods

( ) ( ) ( ) ( ) ( ){ }, ,k k

kψ R t R t V t→� � �

( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( )

201

1 0

11 00

2exp

k

k

R tk

k

R R t

P tV t H H

= −

⋅∇ −

� �

� �ℏ

Ecole Thématique – ModPhysChem – Oct. 2017

5. Examples of Application

88

Ecole ThématiqueModPhysChemOctobre 2017

a. Pyrazine Absorption Spectrum(Grid-Based Quantum Dynamics)

b. Formaldehyde Photodissociation(Direct Quantum Dynamics)

c. Thymine Photorelaxation(Semiclassical Dynamics)

89

Examples of Application

Ecole Thématique – ModPhysChem – Oct. 2017

� Franck-Condon approximation� Electric dipole approximation� Wavepacket evolution� Absorption spectrum: Fourier transform of the autocorrelation function

90

Electronic spectroscopy: absorption spectrum

Examples of Application

S0

S1

Q

E

ωℏ S0

S1

Q

E

S0

S1

Q

E

( ) ( ) ( ) ( ) ( )0

, where Ψ 0 ΨE

i ω t

C tω e tω t tσ dt C

+∞ +

−∞

= =∝ ∫ ℏ

E0

Ecole Thématique – ModPhysChem – Oct. 2017

� Vibronic (non-adiabatic) coupling between S2 and S1

� Intensity borrowed by dark state from bright state� Benchmark for MCTDH with vibronic coupling Hamiltonian model

10 atoms (24D) / 3 electronic states

91

Example 1: S2 S0 pyrazine absorption spectrum (MCTDH)

Examples of Application

( ) ( )0

σ ω cI ω I e

−= ℓ

Ecole Thématique – ModPhysChem – Oct. 2017

92

Example 1: S2 S0 pyrazine absorption spectrum (MCTDH)

Examples of Application

� Quadratic vibronic coupling Hamiltonian model

� Parameters fitted to ab initio calculations after diagonalisation

� Four groups of coordinates (G1 to G4) depending on irreducible representations in D2h

1 2

3 4

2dia 2

2

,

,

1 0 \ 0ˆ0 1 0 \2

00

0 0

00

0 0

ii

i i

iji

i i ji G i j Gi ij

iji

i i ji G i j Gi ij

ωQ

Q

aaQ Q Q

b b

ccQ Q Q

c c

∈ ∈

∈ ∈

−∂ = − + + ∂ + + + +

∑ ∑

∑ ∑

Q

ℏH

Ecole Thématique – ModPhysChem – Oct. 2017

Using all 24 degrees of freedom� spectrum converged vs. experiment

93

Example 1: S2 S0 pyrazine absorption spectrum (MCTDH)

Examples of Application

Ecole Thématique – ModPhysChem – Oct. 2017

� After S1 photoexcitation (nO,π*CO), formaldehyde dissociates toH + HCO or H2 + CO

� At low energy, Fermi-Golden-Rule decay to S0 (slow decay at large energy gap) followed by ground-state reactivity

� At medium energy, involvement of the triplet T1

� At higher energy, possible to overcome the S1 TS followed by direct decay to S0 products through conical intersection

94

Example 2: S1/S0 formaldehyde photodissociation (DD-vMCG)

Examples of Application

Ecole Thématique – ModPhysChem – Oct. 2017

95

Example 2: S1/S0 formaldehyde photodissociation (DD-vMCG)

Examples of Application

The S1 TS is directly connected to the S1/S0 conical intersection

Ecole Thématique – ModPhysChem – Oct. 2017

96

Example 2: S1/S0 formaldehyde photodissociation (DD-vMCG)

Examples of Application

The probability to access S1 TS from the Franck-Condon region is not zero: let us start from there and check if we can control the H + HCO : H2 + CO branching ratio with the initial momentum of the wavepacket

� parallel to transition vector with varying sign and size

4 Gaussian functions in the wavepacketexpansion

Look at the most representative trajectory

Extrapolated direction of the transition vector

Negative momentum:go back to reactant

Zero momentum:form H2 + CO

Positive momentum:form H + HCO

Ecole Thématique – ModPhysChem – Oct. 2017

97

Example 2: S1/S0 formaldehyde photodissociation (DD-vMCG)

Examples of Application

Better-converged result with 8 Gaussian functions

Ecole Thématique – ModPhysChem – Oct. 2017

98

Example 2: S1/S0 formaldehyde photodissociation (DD-vMCG)

Examples of Application

Distribution of products (final geometry and electronic state)

Ecole Thématique – ModPhysChem – Oct. 2017

� Excitation to the lowest π,π* state � Competition between various pathways� Direct decay from π,π* to ground state through (Eth)X conical intersection� Indirect decay through π,π* minimum, π,π* TS, and π,π*/ n,π* (dark state)

conical intersection

99

Example 3: S2/S1/S0 thymine photorelaxation (semiclassical)

Examples of Application

Ecole Thématique – ModPhysChem – Oct. 2017

100

Example 3: S2/S1/S0 thymine photorelaxation (semiclassical)

Examples of Application

Semiclassical dynamics study� From Franck-Condon: trajectories get trapped in S1 minimum for more

than 500 fs (too long for simulations to be stable + ab initio level possibly too low)

� From S2(π,π*) TS (towards S2(π,π*)/S1(n,π*) conical intersection)

Missed hops at 5 and 16 fs(oscillation around the seam)

Successful hop at 28 fs

Oscillation of C4−O8 bond length (coordinate connecting TS and conical intersection)

Critical value at the conical intersection

Trajectory ending up on S1(n,π*)

Ecole Thématique – ModPhysChem – Oct. 2017

101

Example 3: S2/S1/S0 thymine photorelaxation (semiclassical)

Examples of Application

Trajectories restarted on S1 after S2/S1 hops

C4−O8 now remains ~ 1.2 Å

Coordinates inducing the S1/S0 crossing:C5−C6 stretched up to 2 Å then compressed backMethyl bent out of the plane (100°-120°)

Example from S1(π,π*)

Ecole Thématique – ModPhysChem – Oct. 2017

102

Example 3: S2/S1/S0 thymine photorelaxation (semiclassical)

Examples of Application

� 14 trajectories started from S2(π,π*) TS and restarted on S1

after S2/S1 hops

� 9 end up on S1(π,π*), then decay to S0 within 15-200 fs

� 5 populate the S1(n,π*) dark state, 3 of them decay to S0

within 10-100 fs (the other 2 stay too long for the calculation to be stable)

� The indirect decay pathway seems about as fast as the direct pathway

� The slow decay component may be due to population trapped in the S1(n,π*) dark state

Ecole Thématique – ModPhysChem – Oct. 2017

6. Conclusions and Outlooks

103

Excited-state dynamics is still a growing field of theoretical and physical chemistry (applications to laser-driven control, influence of

the environment in large systems or condensed matter...)

Developments are still required to treat photochemical reactivity with as much accuracy as electronic spectroscopy (cheaper quantum

chemistry methods for excited states, general procedures to produce accurate potential energy surfaces and couplings for large-amplitude

deformations of the geometry...)

Ecole ThématiqueModPhysChemOctobre 2017

Outlooks: attophysics and attochemistry

104

Neutral

State 1

State 2

Attosecondpulse

Cation

Conclusions and Outlooks

Ecole Thématique – ModPhysChem – Oct. 2017

105

Announcement: 16-ICQC (2018) and satellites

Event

Menton, France, 18-23 June, 2018, Palais de l’EuropeWebsite: icqc16.sciencesconf.orgContact: [email protected]

Chair: Odile EisensteinPre-registration is open! (no payment to be made yet)

Ecole Thématique – ModPhysChem – Oct. 2017