dual output, two-phase synchronous buck dc/dc controller ...these two modes, along with...

26
TPS5120ĆQ1 DUAL OUTPUT, TWOĆPHASE SYNCHRONOUS BUCK DC/DC CONTROLLER SGLS225B - JANUARY 2004 - REVISED APRIL 2008 1 POST OFFICE BOX 655303 DALLAS, TEXAS 75265 D Qualified for Automotive Applications D Independent Dual-Outputs Operate 180° Out of Phase D Wide Input Voltage Range: 4.5-V - 28-V D Adjustable Output Voltage Down to 0.9 V D Pin-Selectable PWM/SKIP Mode for High Efficiency Under Light Loads D Synchronous Buck Operation Allows up to 95% Efficiency D Separate Standby Control and Overcurrent Protection For Each Channel D Programmable Short-Circuit Protection D Low Supply (1 mA) and Shutdown (1 nA) Current D Power Good Output D High-Speed Error Amplifiers D Sequencing Easily Achieved by Selecting Softstart Capacitor Values. D 5-V Linear Regulator Power Internal IC Circuitry D 30-Pin TSSOP Packaging D Gate Leakage Test Passing Level is 50 V description The TPS5120 is a dual channel, high-efficiency synchronous buck controller where the outputs run 180 degrees out of phase, which lowers the input current ripple, thereby reducing the input capacitance cost. The PWM/SKIP pin allows the operating mode to switch from PWM mode to skip mode under light load conditions. The skip mode enables a lower operating frequency and shortens the pulse width to the low-side MOSFET, increasing the efficiency under light load conditions. These two modes, along with synchronous-rectifier drivers, dead time, and very low quiescent current, allow power to be conserved and the battery life to be extended under all load conditions. The 1.5 A (typical) high-side and low-side MOSFET drivers on-chip are designed to drive less expensive N-channel MOSFETs. The resistorless current protection and fixed high-side driver voltage simplify the power supply design and reduce the external parts count. Each channel is independent, offering a separate controller, overcurrent protection, and standby control. Sequencing is flexible and can be tailored by choosing different softstart capacitor values. Other features, such as undervoltage lockout, power good, overvoltage, undervoltage, and programmable short-circuit protection promote system reliability. ORDERING INFORMATION{ PACKAGE} T A TSSOP (DBT) -40°C to 125°C TPS5120QDBTRQ1 For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com. Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging. Copyright 2008 Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 INV1 FB1 SOFTSTART1 PWM/SKIP CT 5V_STBY GND REF STBY1 STBY2 FLT POWERGOOD SOFTSTART2 FB2 INV2 LH1 OUT1_u LL1 OUT1_d OUTGND1 TRIP1 V CC TRIP2 VREF5 REG5V_IN OUTGND2 OUT2_d LL2 OUT2_u LH2 DBT PACKAGE (TOP VIEW)

Upload: others

Post on 03-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    1POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    � Qualified for Automotive Applications

    � Independent Dual-Outputs Operate 180 °Out of Phase

    � Wide Input Voltage Range: 4.5-V − 28-V

    � Adjustable Output Voltage Down to 0.9 V

    � Pin-Selectable PWM/SKIP Mode for HighEfficiency Under Light Loads

    � Synchronous Buck Operation Allows up to95% Efficiency

    � Separate Standby Control and OvercurrentProtection For Each Channel

    � Programmable Short-Circuit Protection

    � Low Supply (1 mA) and Shutdown (1 nA)Current

    � Power Good Output

    � High-Speed Error Amplifiers

    � Sequencing Easily Achieved by SelectingSoftstart Capacitor Values.

    � 5-V Linear Regulator Power Internal ICCircuitry

    � 30-Pin TSSOP Packaging

    � Gate Leakage Test Passing Level is 50 V

    description

    The TPS5120 is a dual channel, high-efficiencysynchronous buck controller where the outputsrun 180 degrees out of phase, which lowers theinput current ripple, thereby reducing the input capacitance cost. The PWM/SKIP pin allows the operating modeto switch from PWM mode to skip mode under light load conditions. The skip mode enables a lower operatingfrequency and shortens the pulse width to the low-side MOSFET, increasing the efficiency under light loadconditions. These two modes, along with synchronous-rectifier drivers, dead time, and very low quiescentcurrent, allow power to be conserved and the battery life to be extended under all load conditions. The 1.5 A(typical) high-side and low-side MOSFET drivers on-chip are designed to drive less expensive N-channelMOSFETs. The resistorless current protection and fixed high-side driver voltage simplify the power supplydesign and reduce the external parts count. Each channel is independent, offering a separate controller,overcurrent protection, and standby control. Sequencing is flexible and can be tailored by choosing differentsoftstart capacitor values. Other features, such as undervoltage lockout, power good, overvoltage,undervoltage, and programmable short-circuit protection promote system reliability.

    ORDERING INFORMATION�

    PACKAGE�

    TA TSSOP(DBT)

    −40°C to 125°C TPS5120QDBTRQ1† For the most current package and ordering

    information, see the Package OptionAddendum at the end of this document, orsee the TI web site at http://www.ti.com.

    ‡ Package drawings, thermal data, andsymbolization are available athttp://www.ti.com/packaging.

    Copyright 2008 Texas Instruments Incorporated��������� ��� �����!"#��� �$ %&��'�# "$ �� (&)*�%"#��� +"#',���+&%#$ %�����! #� $('%���%"#���$ ('� #-' #'�!$ �� �'."$ ��$#�&!'�#$$#"�+"�+ /"��"�#0, ���+&%#��� (��%'$$��1 +�'$ ��# �'%'$$"��*0 ��%*&+'#'$#��1 �� "** ("�"!'#'�$,

    Please be aware that an important notice concerning availability, standard warranty, and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

    1

    2

    3

    4

    5

    6

    78

    9

    10

    11

    12

    13

    14

    15

    30

    29

    28

    27

    26

    25

    2423

    22

    21

    20

    19

    18

    17

    16

    INV1FB1

    SOFTSTART1PWM/SKIP

    CT5V_STBY

    GNDREF

    STBY1STBY2

    FLTPOWERGOODSOFTSTART2

    FB2INV2

    LH1OUT1_uLL1OUT1_dOUTGND1TRIP1VCCTRIP2VREF5REG5V_INOUTGND2OUT2_dLL2OUT2_uLH2

    DBT PACKAGE(TOP VIEW)

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    typical design

    22

    GND L1

    L2

    Q1

    Q2

    Q3

    Q4

    D1

    D2

    C1

    C3

    C4

    C5

    C6

    C7

    C8

    C10

    C11

    C12

    C13

    C14

    R1 R2

    R3

    R4

    R5 R6

    R7

    R8R9

    R10

    C15

    U1TPS5120DBT

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    30

    29

    28

    27

    26

    25

    24

    23

    21

    20

    19

    18

    17

    16

    INV1

    FB1

    SOFTSTART1

    PWM/SKIP

    CT

    5V_STBY

    GND

    REF

    STBY1

    STBY2

    FLT

    POWERGOOD

    SOFTSTART2

    FB2

    INV2

    LH1

    OUT1_u

    LL1

    OUT1_d

    OUTGND1

    TRIP1

    Vcc

    TRIP2

    VREF5

    REG5V_IN

    OUTGND2

    OUT2_d

    LL2

    OUT2_u

    LH2

    VO1

    VI

    VO2

    C15

    C16

    Figure 1. EVM Typical Design

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    3POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    functional block diagram

    SOFTSTART1

    DLY

    DLY

    OSC

    Timer

    SOFTSTART2

    DLY

    DLY

    Phase

    V 5 VREG

    CurrentProtection

    Trigger

    Skip Comp.

    PWM Comp.

    Err Amp.

    0.85 V

    STBY1UVLO

    SIGNAL

    STBY2

    OVP1

    OVP2

    UVP1

    UVP2

    0.85 V+12%

    Err Amp.

    Skip Comp.

    0.85 V UVLOSIGNAL

    UVLOComp.

    0.85 V

    INV2INV1

    PGcomp4PGcomp3

    INV2

    PGcomp2

    INV1

    0.85 V−7% PGcomp1

    4.5 V

    5.0 V

    PWM Comp.

    Current Comp.

    VCC

    SOFTSTART1

    FB1

    INV1

    CT

    FLT

    FB2

    INV2

    PWM/SKIP

    SOFTSTART2

    STBY1

    STBY2REF

    5V_STBY

    GND

    POWERGOOD

    REG5V_IN

    VREF5

    LH2

    OUT2_u

    LL2

    OUT2_d

    OUTGND2

    TRIP2

    TRIP1

    V

    OUTGND1

    OUT1_d

    LL1

    OUT1_u

    LH1

    SFT1 SFT2

    Inverter

    0.85 V+12%

    0.85 V −19.4%

    0.85 V −19.4%

    ref

    0.85 V −7%

    0.85 V +7%0.85 V +7%

    CC

    _+

    _

    +

    _

    +

    _

    +

    _

    +

    _+

    _

    ++

    _+

    _

    ++

    _

    +

    _

    +

    _

    +

    _

    +

    _+

    _

    +

    _

    +

    _+

    _

    +

    _

    +

    −(VCC

    − VTRIP1VCC

    LSD Trip

    HSD Trip

    _

    +

    HSD Trip

    LSD Trip

    − VTRIP1)

    − VTRIP2VCC

    −(VCC − VTRIP2)

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    Terminal Functions

    TERMINALI/O DESCRIPTION

    NAME NO.I/O DESCRIPTION

    CT 5 I/O External capacitor from CT to GND for adjusting the triangle oscillator

    FB1 2 O Feedback output of CH1 error amplifier

    FB2 14 O Feedback output of CH2 error amplifier

    GND 7 Control GND

    INV1 1 I Inverting input of the CH1 error amplifier, skip comparator, and OVP1/UVP1 comparator

    INV2 15 I Inverting input of the CH2 error amplifier, skip comparator, and OVP2/UVP2 comparator

    LH1 30 I/O Bootstrap capacitor connection for CH1 high-side gate drive

    LH2 16 I/O Bootstrap capacitor connection for CH2 high-side gate drive

    LL1 28 I/O Bootstrap this pin low for CH1 high-side gate driving return and output current protection. Connect this pin tothe junction of the high-side and low-side FETs for a floating drive configuration.

    LL2 18 I/O Bootstrap this pin low for CH2 high-side gate driving return and output current protection. Connect this pin tothe junction of the high-side and low-side FETs for a floating drive configuration.

    OUT1_d 27 O Gate drive output for CH1 low-side gate drive

    OUT2_d 19 O Gate drive output for CH2 low-side gate drive

    OUT1_u 29 O Gate drive output for CH1 high-side switching FETs

    OUT2_u 17 O Gate drive output for CH2 high-side switching FETs

    OUTGND1 26 Ground for CH1 FET drivers

    OUTGND2 20 Ground for CH2 FET drivers

    POWERGOOD 12 O Power good open-drain output. When low, POWERGOOD reports an output fail condition. PG comparatorsmonitor both SMPS’s over voltage and UVLO of VREF5. The threshold is ±7%. When the SMPS starts up, thePOWERGOOD pin’s output goes high. POWERGOOD also monitors VREF5’s UVLO output.

    PWM/SKIP 4 I PWM/SKIP mode select pin. The PWM/SKIP pin is used to change the output’s operating mode. If this terminalis lower than 0.5 V, it works in PWM mode. When a minimum voltage of 2 V is applied, the device operates inskip mode. In light load condition (< 0.2 A), the skip mode gives a short pulse to the low-side FETs instead of afull pulse. With this control, switching frequency is lowered and switching loss is reduced. Also, the outputcapacitor energy discharging through the output inductor and low-side FETs is stopped. Therefore, TPS5120achieves a higher efficiency in light load conditions.

    REF 8 O 0.85-V reference voltage output. The 0.85-V reference voltage is used for setting the output voltage and thevoltage protection. This reference voltage is dropped down from a 5-V regulator.

    REG5V_IN 21 I External 5-V input

    FLT 11 I/O Fault latch timer pin. An external capacitor is connected between FLT and GND to set the FLT enable time up.

    SOFTSTART1 3 I/O External capacitor from SOFTSTART1 to GND for CH1 softstart control. Separate soft-start terminals make itpossible to set the start-up time of each output independently.

    SOFTSTART2 13 I/O External capacitor from SOFTSTART2 to GND for CH2 softstart control. Separate soft-start terminals make itpossible to set the start-up time of each output independently.

    STBY1 9 I Standby control for CH1. SMPS1 can be switched into standby mode separately by grounding the STBY1 pin.

    STBY2 10 I Standby control for CH2. SMPS2 can be switched into standby mode separately by grounding the STBY2 pin.

    TRIP1 25 I External resistor connection for CH1 output current control

    TRIP2 23 I External resistor connection for CH2 output current control

    VCC 24 Supply voltage input

    VREF5 22 O 5-V internal regulator output

    5V_STBY 6 I 5-V linear regulator control

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    5POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    detailed description

    switching-mode power supply (SMPS) 1, 2

    The TPS5120 includes dual SMPS controllers that operate 180° out of phase and at the same frequency. Bothchannels have standby and softstart.

    5-V regulator

    An internal linear voltage regulator is used for the high-side driver bootstrap voltage and source of VREF(0.85 V). When the 5-V regulator is disconnected from the MOSFET drivers, it is only used for the source ofVREF. Since the input voltage range is from 4.5 V to 28 V, this feature offers a fixed voltage for the bootstrapvoltage so that the drive design is much easier. It is also used for powering the low-side driver. The toleranceis 4%. The 5-V regulator is disabled when STBY1, STBY2, and 5V_STBY are all set low.

    5-V switch

    If the internal 5-V switch senses the 5-V input from the REG5V_IN pin, the internal 5-V linear regulator isdisconnected from the MOSFET drivers. The external 5 V is then used for both the low-side driver and thehigh-side bootstrap, thus, increasing the efficiency.

    error amplifier

    Each channel has its own error amplifier to regulate the output voltage of the synchronous buck converter. Itis used in the PWM mode for the high output current condition (> 0.2 A). The unity gain bandwidth is 2.5 MHz.This decreases the amplifier delay during fast load transients and contributes to a fast transient response.

    skip comparator

    In skip mode, each channel has its own hysteretic comparator to regulate the output voltage of the synchronousbuck converter. The hysteresis is set internally and is typically set at 9 mV. The delay from the comparator inputto the driver output is typically 1.2 µs.

    low-side driver

    The low-side driver is designed to drive low rds(on) N-channel MOSFETs. The maximum drive voltage is 5 V fromVREF5. The current rating of the driver is typically 1.5 A at source and sink.

    high-side driver

    The high-side driver is designed to drive low rds(on) N-channel MOSFETs. The current rating of the driver is 1.2 Aat source and sink. When configured as a floating driver, the bias voltage to the driver is developed from VREF5,limiting the maximum drive voltage between OUTx_u and LLx to 5 V. The maximum voltage that can be appliedbetween LHx and OUTGND is 33 V.

    deadtime

    Deadtime prevents shoot through current from flowing through the main power FETs during switching transitionsby actively controlling the turnon time of the MOSFETs drivers.

    current protection

    Overcurrent protection is achieved by comparing the drain-to-source voltage of the high-side and low-sideMOSFET devices to a set-point voltage. This voltage is set using an external resistor between VCC and theTRIP1 or TRIP2 terminals. If the drain-to-source voltage up exceeds the set-point voltage during high-sideconduction, the current limit circuit terminates the high-side driver pulse. If the set-point voltage is exceededduring low-side conduction, the low-side pulse is extended through the next cycle. Together this action has theeffect of decreasing the output voltage until the undervoltage protection circuit is activated and the fault latchis set and both the high and low-side MOSFET drivers are shut off.

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    detailed description (continued)

    overvoltage protection

    For overvoltage protection (OVP), the TPS5120 monitors INV pin voltage. When the INV voltage is higher than0.95 V (+12%), the OVP comparator output goes high and the FLT timer starts to charge an external capacitorconnected to FLT. After a set time, the FLT circuit latches the MOSFET drivers off.

    undervoltage protection

    For undervoltage protection (UVP), the TPS5120 monitors INV pin voltage. When the INV voltage is lower than0.68 V (−19.4%), the OVP comparator output goes high, and the FLT timer starts to charge an external capacitorconnected to FLT. Also, when the current comparator triggers the OCP, the UVP comparator detects the undervoltage output and starts the FLT capacitor charge. After a set time, the FLT circuit latches off all of the MOSFETdrivers.

    FLT

    When an OVP or UVP comparator output goes high, the FLT circuit starts to charge the FLT capacitor. If theFLT pin voltage goes beyond a constant level, the TPS5120 latches the MOSFET drivers. At this time, the stateof MOSFET is different depending on the OVP alert and the UVP alert. Also, the enable time used to latch theMOSFET driver is decided by the capacity of the FLT capacitor. The charging constant current value is alsodifferent depending on whether it is an OVP alert or a UVP alert. The difference is shown in the followingequation:

    FLT source current (OVP) = FLT source current (UVP) × 5

    shutdown

    The TPS5120 can be shut down by grounding STBY1, STBY2, and 5V_STBY. The shutdown current is as lowas 1 µA.

    UVLO

    When the input voltage goes up to about 4 V, the TPS5120 is operational. When the input voltage is lower thanthe turnon value, the device is turned off. The typical hysteresis voltage is 40 mV.

    phase Inverter

    Phase inverter controls the phase of SMPS1 and SMPS 2. SMPS1 operates in phase with the OSC. SMPS2operates 180° out of phase from SMPS1. This allows smaller input capacitors to be used.

    oscillator

    The TPS5120 has a triangle oscillator generator internal to the IC. The oscillation frequency is set by the sizeof the capacitor connected to the CT pin. The voltage amplitude is 0.43 V ~ 1.17 V.

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    7POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    Table 1. Logic Chart

    5V_STBY STBY1 STBY2 SMPS1 SMPS2 5 V REGULATOR POWERGOOD

    L L L Disable Disable Disable Disable

    L L H Disable Enable Enable Active†

    L H L Enable Disable Enable Active†

    L H H Enable Enable Enable Active

    H L L Disable Disable Enable L

    H L H Disable Enable Enable Active†

    H H L Enable Disable Enable Active†

    H H H Enable Enable Enable Active† PG is set high during a softstart.

    POWERGOOD timing sequence

    POWERGOOD

    STBY1

    STBY2

    INV1

    INV2

    H

    L

    H

    L

    H

    L

    0.91 V0.85 V0.78 V

    0 V

    0.91 V

    0.85 V0.78 V

    0 V

    TSS

    During a softstart, this channel’s powergood comparator output is fixed low (POWERGOOD output is high).

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    absolute maximum ratings over operating free-air temperature (unless otherwise noted) †

    Supply voltage, VCC (see Note 1) −0.3 V to 30 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input voltage: INV1, INV2, CT, PWM/SKIP, REG5V_IN, SOFTSTART1, SOFTSTART2, −0.3 V to 7 V. . . . .

    FLT, POWERGOOD −0.3 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STBY1, STBY2, 5V_STBY, TRIP1, TRIP2 −0.3 V to 30 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Output voltage: LL1, LL2 −1.0 V to 30 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUT1_u, OUT2_u −1.0 V to 35 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LH1, LH2 −0.3 V to 35 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUT1_d, OUT2_d, 5V_OUT, FB1, FB2 −0.3 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF −0.3 V to 3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUT1_u, LH1 to LL1 −0.3 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUT2_u, LH2 to LL2 −0.3 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Power dissipation (TA ≤ 25°C), PD 874 mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gate Leakage Test Results ±50 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating junction temperature range, TJ −40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Storage temperature range, Tstg −55°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, andfunctional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is notimplied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

    NOTES: 1. All voltage values are with respect to the network ground terminal unless otherwise noted.2. This rating is specified at duty = 10% on output rise and fall each pulse. Each pulse width (rise and fall) for the peak current should

    not exceed 2 µs.3. See Dissipation Rating Table for free-air temperature range above 25°C.

    DISSIPATION RATING TABLE

    PACKAGETA ≤ 25°C

    POWER RATINGDERATING FACTORABOVE TA = 25°C

    POWER DISSIPATIONTA = 85°C

    DBT 874 mW 6.993 mW/°C 454 mW

    recommended operating conditions

    MIN NOM MAX UNIT

    Supply voltage, VCC 4.5 28 V

    INV1, INV2, CT, PWM/SKIP, SOFTSTART1, SOFTSTART2, FLT 6

    REG5V_IN, POWERGOOD −0.1 5.5

    Input voltage, VI STBY1, STBY2, 5V_STBY 28 VInput voltage, VIOUT1_u, OUT2_u, LH1, LH2 33

    V

    TRIP1, TRIP2 −0.1 28

    Oscillator frequency, fosc 300 500 kHz

    Operating junction temperature range, TJ −40 125 °C

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    9POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    electrical characteristics over recommended free-air temperature range, V CC = 7 V (unlessotherwise noted)

    reference voltagePARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    Vref Reference voltage 0.85 V

    TA = 25°C, I = 50 µA −1% 1%

    Vref(tol) Reference voltage tolerance TJ = −20°C to 125°C, I = 50 µA −1.5% 1.5%Vref(tol) Reference voltage toleranceTJ = −40°C to 125°C, I = 50 µA −2% 2%

    R(egin) Line regulation VCC = 4.5 V to 28 V, I = 50 µA 0.05 3 mV

    R(egl) Load regulation I = 0.1 µA to 1 mA 0.15 5 mV

    oscillatorPARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    fosc Frequency PWM mode, CT = 44 pF, TA = 25 °C 300 kHz

    VOH High level output voltageDC 1 1.1 1.2

    VVOH High level output voltage fosc = 300 kHz 1.17V

    VOL Low level output voltageDC 0.4 0.5 0.6

    VVOL Low level output voltage fosc = 300 kHz 0.43V

    error amplifierPARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    VIO Input offset voltage TA = 25°C 2 10 mV

    Open-loop voltage gain 50 dB

    Unity-gain bandwidth 2.5 MHz

    I(snk) Output sink current VO = 1 V 0.3 0.7 mA

    I(src) Output source current VO = 1 V 0.2 0.9 mA

    skip comparatorPARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    Vhys Hysteresis window SKIP mode 9 mV

    duty controlPARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    DUTY Maximum duty cycle 300 kHz, VI = 0 V 83%

    controlPARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    VIH High-level input voltageSTBY1, STBY2 2.2

    VVIH High-level input voltage PWM/SKIP, 5V_STBY 2.2V

    VIL Low-level input voltageSTBY1, STBY2 0.3

    VVIL Low-level input voltage PWM/SKIP, 5V_STBY 0.3V

    5-V internal switchPARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    V(TO_H)Threshold

    4.2 4.8V

    V(TO_L)Threshold

    4.1 4.7V

    Vhys Hysteresis 30 200 mV

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    electrical characteristics over recommended free-air temperature range, V CC = 7 V (unlessotherwise noted) (continued)

    5-V regulatorPARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    VO Output voltageIO = 0 mA to 50 mA,TA = 25°C

    VCC = 5.5 V to 28 V, 4.8 5.2 V

    R(egin) Line regulation VCC = 5.5 V to 28 V, I =10 mA 20 mV

    R(egl) Load regulation I = 1 mA to 10 mA, VCC = 5.5 V 40 mV

    IOS Short circuit output current 5VREG = 0 V, TA = 25°C 65 mA

    V(TO_H)UVLO threshold voltage 5V_OUT voltage

    3.6 4.2V

    V(TO_L)UVLO threshold voltage 5V_OUT voltage

    3.5 4.1V

    Vhys Hysteresis 5V_OUT voltage 20 150 mV

    output driversPARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    OUT_u sink current VO = 3 V 1.2 A

    OUT_u source current VO = 2 V −1.5 A

    OUT_d sink current VO = 3 V 1.5 A

    OUT_d source current VO = 2 V −1.5 A

    I(TRIP) TRIP pin current TA = 25°C 11.5 13 14.5 µA

    soft startPARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    I(SOFT) Soft start current 1.6 2.3 2.9 µA

    V(TO_H)Threshold voltage (SKIP mode)

    3.7V

    V(TO_L)Threshold voltage (SKIP mode)

    2.5V

    output voltage monitorPARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    OVP comparator threshold 0.91 0.95 0.99 V

    UVP comparator threshold 0.64 0.68 0.72 V

    PG comparator 1, 2 threshold 0.75 0.78 0.81 V

    PG comparator 3, 4 threshold 0.88 0.91 0.94 V

    PG propagation delay from INV to POWERGOODTurnon 13

    sPG propagation delay from INV to POWERGOODTurnoff 1.2

    µs

    Timer latch current sourceUVP protection 1.5 2.3 3.1

    ATimer latch current sourceOVP protection 8 11.5 15

    µA

    supply currentPARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    ICC Supply current TA = 25°C, CT = 0 V, INV = 0 V 1.1 1.5 mA

    ICC(S) Shutdown current STBY 1, STBY2, 5V_STBY = 0 V 0.001 10 µA

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    11POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    TYPICAL CHARACTERISTICS

    Figure 2

    TJ − Junction Temperature − °C

    QUIESCENT CURRENTvs

    JUNCTION TEMPERATURE

    1.05

    1.10

    1.15

    1.20

    1.25

    1.30

    −50 0 50 100 150

    Icc

    − Q

    uies

    cent

    Cur

    rent

    − m

    A

    VCC = 28 V

    VCC = 7 VVCC = 4.5 V

    QUIESCENT CURRENT (SHUTDOWN)vs

    JUNCTION TEMPERATURE

    0

    200

    400

    600

    800

    1000

    1200

    −50 0 50 100 150

    Icc(

    s) −

    Qui

    esce

    nt C

    urre

    nt −

    nA VCC = 28 V

    VCC = 7 V

    VCC = 4.5 V

    TJ − Junction Temperature − °CFigure 3

    Figure 4

    DRIVE OUTPUT CURRENT (OUT_u)vs

    DRIVE OUTPUT VOLTAGE−1.80

    −1.70

    −1.60

    −1.50

    −1.40

    −1.30

    −1.20

    −1.10

    −1.00

    −0.90

    −0.800.5 1 1.5 2 2.5 3 3.5

    I O(S

    OU

    RC

    E) −

    Driv

    e O

    utpu

    t Cur

    rent

    (O

    UT

    _u)

    − A

    TJ = −40 °C

    TJ = −20 °C

    TJ = 25 °C

    TJ = 85 °C

    TJ = 125 °C

    VO − Drive Output Voltage (OUT_u) − VFigure 5

    vsDRIVE OUTPUT VOLTAGE

    0.60

    0.70

    0.80

    0.90

    1.00

    1.10

    1.20

    1.30

    1.40

    1.50

    1.5 2 2.5 3 3.5 4 4.5

    I O(S

    INK

    )

    TJ = −40 °C

    TJ = 25 °CTJ = −20 °C

    TJ = 85 °C

    TJ = 125 °C

    VO − Drive Output Voltage (OUT_u) − V

    DRIVE OUTPUT CURRENT (OUT_u)

    − D

    rive

    Out

    put C

    urre

    nt (

    OU

    T_u

    ) −

    A

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    TYPICAL CHARACTERISTICS

    Figure 6

    DRIVE OUTPUT CURRENT (OUT_d)vs

    DRIVE OUTPUT VOLTAGE−2.00

    −1.80

    −1.60

    −1.40

    −1.20

    −1.00

    −0.800.5 1 1.5 2 2.5 3 3.5

    VO − Drive Output Voltage (OUT_d) − V

    I O(S

    OU

    RC

    E)−

    Driv

    e O

    utpu

    t Cur

    rent

    (O

    UT

    _d)

    − A

    TJ = −40 °C TJ = −20 °C

    TJ = 25 °C

    TJ = 85 °C TJ = 125 °C

    Figure 7

    vsDRIVE OUTPUT VOLTAGE

    0.80

    0.90

    1.00

    1.10

    1.20

    1.30

    1.40

    1.50

    1.60

    1.70

    1.80

    1.5 2 2.5 3 3.5 4 4.5

    TJ = −40 °C TJ = −20 °C

    TJ = 25 °C

    TJ = 85 °C

    TJ = 125 °CI O

    (SIN

    K)

    DRIVE OUTPUT CURRENT (OUT_d)

    − D

    rive

    Out

    put C

    urre

    nt (

    OU

    T_d

    ) −

    A

    VO − Drive Output Voltage (OUT_d) − V

    Figure 8

    OSCILLATOR OUTPUT VOLTAGEvs

    JUNCTION TEMPERATURE

    1.00

    1.02

    1.04

    1.06

    1.08

    1.10

    1.12

    1.14

    1.16

    1.18

    1.20

    −50 0 50 100 150

    V (O

    SC

    H)

    − O

    scill

    ator

    Out

    put V

    olta

    ge −

    V

    VCC = 4.5 V,VCC = 7 V,VCC = 28 V

    TJ − Junction Temperature − °C

    Figure 9

    OSCILLATOR OUTPUT VOLTAGEvs

    JUNCTION TEMPERATURE

    480

    485

    490

    495

    500

    −50 0 50 100 150

    V (O

    SC

    L) −

    Osc

    illat

    or O

    utpu

    t Vol

    tage

    − m

    V

    TJ − Junction Temperature − °C

    VCC = 4.5 V,VCC = 7 V,VCC = 28 V

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    13POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    TYPICAL CHARACTERISTICS

    Figure 10

    ERROR AMPLIFIER INPUT OFFSET VOLTAGEvs

    JUNCTION TEMPERATURE

    2.20

    2.25

    2.30

    2.35

    2.40

    2.45

    2.50

    2.55

    −50 0 50 100 150

    VIO

    − E

    rror

    Am

    plifi

    er In

    put O

    ffset

    Vol

    tage

    − m

    V

    VCC = 28 V

    TJ − Junction Temperature − °C

    VCC = 4.5 V,VCC = 7 V

    Figure 11

    ERROR AMPLIFIER OUTPUT VOLTAGE vs

    JUNCTION TEMPERATURE

    1.50

    1.75

    2.00

    2.25

    2.50

    2.75

    3.00

    −50 0 50 100 150V O

    + −

    Pos

    itive

    Err

    or A

    mpl

    ifier

    Out

    put V

    olta

    ge −

    V

    VCC = 4.5 V,VCC = 7 V,VCC = 28 V

    TJ − Junction Temperature − °C

    Figure 12

    ERROR AMPLIFIER OUTPUT VOLTAGEvs

    JUNCTION TEMPERATURE

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

    8.0

    −50 0 50 100 150

    VO

    −−

    Neg

    ativ

    e E

    rror

    Am

    plifi

    er O

    utpu

    t Vol

    tage

    − m

    V

    TJ − Junction Temperature − °C

    VCC = 4.5 V,VCC = 7 V,VCC = 28 V

    Figure 13

    SKIP COMPARATOR HYSTERESIS VOLTAGEvs

    JUNCTION TEMPERATURE

    7.0

    7.2

    7.4

    7.6

    7.8

    8.0

    8.2

    8.4

    8.6

    8.8

    9.0

    −50 0 50 100 150

    Vhy

    s −

    Ski

    p C

    ompa

    rato

    r H

    yste

    resi

    sV

    olta

    ge −

    mV

    VCC = 4.5 V

    VCC = 7 VVCC = 28 V

    TJ − Junction Temperature − °C

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    TYPICAL CHARACTERISTICS

    Figure 14

    VREF5 OUTPUT VOLTAGEvs

    OUTPUT CURRENT

    4.50

    4.60

    4.70

    4.80

    4.90

    5.00

    5.10

    5.20

    −60−50−40−30−20−100IO − Output Current − mA

    TJ = −40 °CTJ = −20 °C

    TJ = 25 °C

    TJ = 85 °C

    TJ = 125 °C

    V O −

    VR

    EF

    5 O

    utpu

    t Vol

    tage

    − V

    Figure 15

    VREF5 SHORT-CIRCUIT OUTPUT CURRENTvs

    JUNCTION TEMPERATURE−120

    −100

    −80

    −60

    −40

    −20

    0−50 0 50 100 150

    I OS

    − V

    RE

    F5

    Sho

    rt−C

    ircui

    t Out

    put C

    urre

    nt −

    mA

    VCC = 4.5 V

    VCC = 7 V

    VCC = 28 V

    TJ − Junction Temperature − °C

    Figure 16

    UVLO THRESHOLD VOLTAGEvs

    JUNCTION TEMPERATURE

    3.50

    3.60

    3.70

    3.80

    3.90

    4.00

    −50 0 50 100 150

    V (TO

    ) −

    UV

    LO T

    hres

    hold

    Vol

    tage

    − V

    V(TO_H)

    V(TO_L)

    TJ − Junction Temperature − °C

    Figure 17

    UVLO HYSTERESIS VOLTAGEvs

    JUNCTION TEMPERATURE

    0

    20

    40

    60

    80

    100

    120

    140

    −50 0 50 100 150

    V hys

    − U

    VLO

    Hys

    tere

    sis

    Volta

    ge −

    mV

    TJ − Junction Temperature − °C

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    15POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    TYPICAL CHARACTERISTICS

    Figure 18

    REG5V_IN THRESHOLD VOLTAGEvs

    JUNCTION TEMPERATURE

    4.4

    4.5

    4.5

    4.6

    4.6

    4.7

    4.7

    −50 0 50 100 150

    V (TO

    )− R

    EG

    5V_I

    N T

    hres

    hold

    Vol

    tage

    − V

    V(TO_L)

    V(TO_H)

    TJ − Junction Temperature − °C

    Figure 19

    REG5V_IN HYSTERESIS VOLTAGEvs

    JUNCTION TEMPERATURE

    0

    20

    40

    60

    80

    100

    120

    140

    −50 0 50 100 150

    V hys

    − R

    EG

    5V_I

    N H

    yste

    resi

    s Vo

    ltage

    − m

    V

    TJ − Junction Temperature − °C

    Figure 20

    −50 0 50 100 150

    SOFTSTART CURRENTvs

    JUNCTION TEMPERATURE−2.30

    −2.28

    −2.26

    −2.24

    −2.22

    −2.20

    −2.18

    −2.16

    −2.14

    −2.12

    −2.10

    Sof

    tsta

    rt C

    urre

    nt −

    A

    VCC = 4.5 V

    µ

    TJ − Junction Temperature − °C

    VCC = 7 V,VCC = 28 V

    Figure 21

    OVP THRESHOLD VOLTAGEvs

    JUNCTION TEMPERATURE

    944

    946

    948

    950

    952

    954

    956

    −50 0 50 100 150

    V (TO

    ) − O

    VP

    Thr

    esho

    ld V

    olta

    ge −

    mV

    VCC = 4.5 V

    TJ − Junction Temperature − °C

    VCC = 7 V,VCC = 28 V

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    TYPICAL CHARACTERISTICS

    Figure 22

    POWERGOOD THRESHOLD VOLTAGEvs

    JUNCTION TEMPERATURE

    750

    775

    800

    825

    850

    875

    900

    925

    950

    −50 0 50 100 150

    V (TO

    )− P

    ower

    good

    Thr

    esho

    ld V

    olta

    ge −

    mV V(TO_H)

    V(TO_L)

    TJ − Junction Temperature − °C

    VCC = 4.5 V,VCC = 7 V,VCC = 28 V

    VCC = 4.5 V,VCC = 7 V,VCC = 28 V

    Figure 23

    SCP (OVP) SOURCE CURRENTvs

    JUNCTION TEMPERATURE−12.0

    −11.9

    −11.8

    −11.7

    −11.6

    −11.5

    −11.4

    −11.3

    −11.2

    −11.1

    −11.0−50 0 50 100 150

    SC

    P (

    OV

    P)

    Sou

    rce

    Cur

    rent

    VCC = 4.5 V

    TJ − Junction Temperature − °C

    VCC = 7 V,VCC = 28 V

    Figure 24

    SCP (OVP) SOURCE CURRENTvs

    JUNCTION TEMPERATURE−2.40

    −2.38

    −2.35

    −2.33

    −2.30

    −2.28

    −2.25

    −2.23

    −2.20−50 0 50 100 150

    I (SO

    UR

    CE

    ) −

    VCC = 4.5 VSC

    P (

    OV

    P)

    Sou

    rce

    Cur

    rent

    TJ − Junction Temperature − °C

    VCC = 7 V,VCC = 28 V

    Figure 25

    TRIP SINK CURRENTvs

    TRIP INPUT VOLTAGE

    12.0

    12.2

    12.4

    12.6

    12.8

    13.0

    13.2

    13.4

    13.6

    13.8

    14.0

    0 4 8 12 16 20 24 28 32

    VI − TRIP Input Voltage − V

    I (SIN

    K)−

    TR

    IP S

    ink

    Cur

    rent

    A

    TJ = −40 °C

    TJ = −20 °C

    TJ = 25 °C

    TJ = 85 °CTJ = 125 °C

    µ

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    17POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    TYPICAL CHARACTERISTICS

    Figure 26

    OSCILLATOR FREQUENCYvs

    CAPACITANCE

    10

    100

    1000

    0 50 100 150 200 250CT − Capacitance − pF

    f OS

    C −

    Osc

    illat

    or F

    requ

    ency

    − k

    Hz

    VCC = 7 V,

    TJ = 25 °C

    Figure 27

    OUTPUT MAXIMUM DUTY CYCLEvs

    JUNCTION TEMPERATURE

    81.0

    81.5

    82.0

    82.5

    83.0

    83.5

    84.0

    84.5

    85.0

    −50 0 50 100 150O

    utpu

    t Max

    imum

    Dut

    y C

    ycle

    − %

    VCC = 7 V,

    VCC = 28 V

    VCC = 4.5 V

    TJ − Junction Temperature − °C

    fosc = 300 kHz

    Figure 28

    SCP DELAY TIMEvs

    CAPACITANCE

    1

    10

    100

    1 k

    10 k

    100 k

    10 100 1 k 10 k 100 kSCP − Capacitance − pF

    − S

    CP

    Del

    ay T

    ime

    (O

    VP

    ) −

    st d

    (SC

    P)

    µ

    Figure 29

    SOFTSTART TIMEvs

    SOFTSTART CAPACITANCE

    10

    100

    1 k

    10 k

    100 k

    100 1 k 10 k 100 kSoftstart Capacitance − pF

    t −

    Sof

    tsta

    rt T

    ime

    − sµ

  • ���������

    �� ������� ��������� ����������� ���� ��� ������

    ��

    SGLS225B − JANUARY 2004 − REVISED APRIL 2008

    18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

    TYPICAL CHARACTERISTICS

    Figure 30

    DRIVER DEAD TIME (OUT_u FALL)vs

    JUNCTION TEMPERATURE

    162.5

    165.0

    167.5

    170.0

    172.5

    175.0

    −50 0 50 100 150

    Driv

    er D

    ead

    Tim

    e −

    ns

    VCC = 4.5 V

    TJ − Junction Temperature − °C

    VCC = 7 V,VCC = 28 V

    Figure 31

    DRIVER DEAD RISE TIME (OUT_u RISE)vs

    JUNCTION TEMPERATURE

    70

    75

    80

    85

    90

    95

    100

    −50 0 50 100

    Driv

    er a

    nd D

    ead

    Ris

    e Ti

    me

    (OU

    T_u

    RIS

    E)

    VCC = 4.5 V

    TJ − Junction Temperature − °C

    VCC = 7 V,VCC = 28 V

  • PACKAGE OPTION ADDENDUM

    www.ti.com 10-Dec-2020

    Addendum-Page 1

    PACKAGING INFORMATION

    Orderable Device Status(1)

    Package Type PackageDrawing

    Pins PackageQty

    Eco Plan(2)

    Lead finish/Ball material

    (6)

    MSL Peak Temp(3)

    Op Temp (°C) Device Marking(4/5)

    Samples

    TPS5120QDBTRQ1 ACTIVE TSSOP DBT 30 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 TPS5120Q1

    TPS5120QDBTRQ1G4 ACTIVE TSSOP DBT 30 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 TPS5120Q1

    (1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.

    (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substancedo not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI mayreference these types of products as "Pb-Free".RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of

  • PACKAGE OPTION ADDENDUM

    www.ti.com 10-Dec-2020

    Addendum-Page 2

    OTHER QUALIFIED VERSIONS OF TPS5120-Q1 :

    • Catalog: TPS5120

    • Enhanced Product: TPS5120-EP

    NOTE: Qualified Version Definitions:

    • Catalog - TI's standard catalog product

    • Enhanced Product - Supports Defense, Aerospace and Medical Applications

    http://focus.ti.com/docs/prod/folders/print/tps5120.htmlhttp://focus.ti.com/docs/prod/folders/print/tps5120-ep.html

  • TAPE AND REEL INFORMATION

    *All dimensions are nominal

    Device PackageType

    PackageDrawing

    Pins SPQ ReelDiameter

    (mm)

    ReelWidth

    W1 (mm)

    A0(mm)

    B0(mm)

    K0(mm)

    P1(mm)

    W(mm)

    Pin1Quadrant

    TPS5120QDBTRQ1 TSSOP DBT 30 2000 330.0 16.4 6.95 8.3 1.6 8.0 16.0 Q1

    TPS5120QDBTRQ1G4 TSSOP DBT 30 2000 330.0 16.4 6.95 8.3 1.6 8.0 16.0 Q1

    PACKAGE MATERIALS INFORMATION

    www.ti.com 5-Jul-2019

    Pack Materials-Page 1

  • *All dimensions are nominal

    Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

    TPS5120QDBTRQ1 TSSOP DBT 30 2000 350.0 350.0 43.0

    TPS5120QDBTRQ1G4 TSSOP DBT 30 2000 350.0 350.0 43.0

    PACKAGE MATERIALS INFORMATION

    www.ti.com 5-Jul-2019

    Pack Materials-Page 2

  • www.ti.com

    PACKAGE OUTLINE

    C

    28X 0.5

    2X

    7.15

    30X

    0.23

    0.17

    6.55

    6.25

    TYP

    1.2 MAX

    0.15

    0.05

    0.25

    GAGE PLANE

    -80

    B

    4.5

    4.3

    NOTE 4

    A

    7.85

    7.75

    NOTE 3

    0.75

    0.50

    (0.15) TYP

    TSSOP - 1.2 mm max heightDBT0030A

    SMALL OUTLINE PACKAGE

    1

    15

    16

    30

    0.1 C A B

    PIN 1 INDEX AREA

    SEE DETAIL A

    0.1 C

    NOTES:

    1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing

    per ASME Y14.5M.

    2. This drawing is subject to change without notice.

    3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

    exceed 0.15 mm per side.

    4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.

    5. Reference JEDEC registration MO-153.

    SEATING

    PLANE

    A 20

    DETAIL A

    TYPICAL

    SCALE 2.000

    4220214/A 05/2020

  • www.ti.com

    EXAMPLE BOARD LAYOUT

    0.05 MAX

    ALL AROUND

    0.05 MIN

    ALL AROUND

    30X (1.5)

    30X (0.3)

    30X (0.5)

    (5.8)

    (R0.05) TYP

    TSSOP - 1.2 mm max heightDBT0030A

    SMALL OUTLINE PACKAGE

    NOTES: (continued)

    6. Publication IPC-7351 may have alternate designs.

    7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

    LAND PATTERN EXAMPLE

    EXPOSED METAL SHOWN

    SCALE: 10X

    SYMM

    SYMM

    1

    15 16

    30

    15.000

    METAL

    SOLDER MASK

    OPENING

    METAL UNDER

    SOLDER MASK

    SOLDER MASK

    OPENING

    EXPOSED METALEXPOSED METAL

    SOLDER MASK DETAILS

    NON-SOLDER MASK

    DEFINED

    (PREFERRED)

    SOLDER MASK

    DEFINED

    4220214/A 05/2020

  • www.ti.com

    EXAMPLE STENCIL DESIGN

    30X (1.5)

    30X (0.3)

    30X (0.5)

    (5.8)

    (R0.05) TYP

    TSSOP - 1.2 mm max heightDBT0030A

    SMALL OUTLINE PACKAGE

    NOTES: (continued)

    8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate

    design recommendations.

    9. Board assembly site may have different recommendations for stencil design.

    SOLDER PASTE EXAMPLE

    BASED ON 0.125 mm THICK STENCIL

    SCALE: 10X

    SYMM

    SYMM

    1

    15 16

    30

    4220214/A 05/2020

  • IMPORTANT NOTICE AND DISCLAIMER

    TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

    Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2020, Texas Instruments Incorporated

    http://www.ti.com/legal/termsofsale.htmlhttp://www.ti.com

    Sheets and Views4220214-4220214_1_24220214-4220214_1_34220214-4220214_1_4