drastic: dynamically reconfigurable architecture systems ... · filter peripheral fir filter ip...

30
DRASTIC: Dynamically Reconfigurable Architecture Systems for Time-varying Image Constraints Marios S. Pattichis image and video Processing and Communications Laboratory (ivPCL) Department of Electrical and Computer Engineering University of New Mexico Albuquerque, New Mexico ivpcl.org Based on collaborative research with Dr. Y. Jiang, Dr. D. Llamocca, Dr. A. Panayides, and Mr. C. Carranza. Acknowledgment This material is based upon work supported by the National Science Foundation under NSF AWD CNS1422031.

Upload: others

Post on 12-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

DRASTIC: Dynamically Reconfigurable Architecture Systems for Time-varying

Image Constraints

Marios S. Pattichis image and video Processing and Communications Laboratory (ivPCL)

Department of Electrical and Computer Engineering University of New Mexico Albuquerque, New Mexico

ivpcl.org Based on collaborative research with Dr. Y. Jiang, Dr. D. Llamocca, Dr. A. Panayides, and

Mr. C. Carranza.

Acknowledgment This material is based upon work supported by the National Science Foundation under NSF AWD

CNS1422031.

Page 2: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Talk Outline

•  Motivation

•  Related work

•  Video communication examples

•  Video analysis examples

•  Discrete Periodic Radon Transform (DPRT)

•  Conclusion

Page 3: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Motivation: Video Compression

HDTV video bandwidth requirements: • Has interlaced and progressive modes. • 720p: progressive, 1280x720 pixels, 60 frames per second.

Raw BW (24 bits/pixel): 1.3Gbps • 1080i: interlaced encoding, 1920x1080 pixels, 25 frames per second.

Raw BW (24 bits/pixel): 1.2Gbps • 1080p: progressive, 1920x1080 pixels, 59.94 frames per second.

Raw BW (24 bits/pixel): 2.98Gbps Ultra High Definition (hypothetical framerates): •  4K UHD: 3840x2160 (2160p 16:9): 24 bits/pixel@30 fps: 5.56Gbps,

4096x2048 (4K x 2K), 4096x2160 (1.9:1), 4096x2304 (16:9), 4096x3072: 24 bits/pixel @120 fps: 33.75Gbps.

•  8K UHD: 7680x4320 (4320p): 24 bits/pixel@30 fps: 22.24Gbps 8192x4096, 8192x4320: 24 bits/pixel@120 fps: 94.92Gbps

Page 4: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Mobile Comm. Networks Data Transfer Rates

Type Theoretical Transfer Rates Typical Transfer Rates

2G- GSM (early 1990s) 9.6 – 115 kbps About 10 kbps

2.5G-GPRS (2001) 9.6 - 171.2 kbps Between 30-50 kbps

2.5G- EDGE (2003) 9.6 -384 kbps Between 75-135 kbps

3G- UMTS (2001) 144 kbps - 2 Mbps Between 220-384 kbps

3.5G-HSPA (Rel. 7) (HSDPA , Rel. 5, 2005) (HSUPA, Rel. 6, 2008)

DL: 14Mbps UL: 5.8 Mbps

DL : 1-4 Mbps UL : 500Kbps -2Mbps

3.5G- Mobile WiMAX (IEEE 802.16e, 2005)

DL: 46 Mbps UL: 5.6 Mbps As for 3.5-HSPA

4G-LTE-Advanced (Rel. 10, Oct. 2010)

DL: 1Gbps UL: 100 Mbps N/A: See below

4G- WirelessMAN-Advanced

(IEEE 802.16m, Oct. 2010)

DL: 1Gbps UL: 100 Mbps N/A: See below

Refer to slides 159-188 from “4G …” from http://www.4gamericas.org/

Page 5: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Mobile Communication Networks Evolution

Page 6: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Video Compression Rates

3G UMTS (2001) max typical = 384 kbps •  HDTV 720p: 1.3Gbps / 384 kbps = 3,549 •  UHD 8192x4320 (hyp): 94.92Gbps / 384 kbps = 251,058

4G-LTE-Advanced @ max theoretical upload = 100 Mbps

•  HDTV 720p: 1.3Gbps / 100 Mbps = 13.3

•  UHD 8192x4320 (hyp): 94.92Gbps / 100 Mbps = 972

CR for HEVC Studies using ultrasound videos: 720x576(4CIF) (8 bits/pixel-yuv420@25fps) = 81.1 Mbps HEVC encoding using QP 36 and x265 ultra-fast profile:

PSNR: 32dB, 364 kbps, compression ratio = 223

Page 7: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Still Image Criteria for Medical Video

Plaque Motion Stenosis Plaque Morphology 5 plaque(s) motion(s) in transmitted video

identifiable as in original degree of stenosis in transmitted video

determined as in original plaque morphology in

transmitted video is the same as in original

4 plaque(s) motion(s) in transmitted video has artefacts that do not compromise diagnosis

enough clinical data to determine degree of

stenosis Some artefacts are seen that do not compromise

morphology visualization 3 plaque(s) motion(s) artefacts that can

compromise diagnosis clinical data only allow

approximation of degree of stenosis

Artefacts may compromise morphology

visualization 2 plaque(s) motion(s) artefacts that

significantly limit diagnosis very limited ability to

estimate degree of stenosis Significantly limit

diagnosis 1 Not visible

not determinable Not visible.

Assessed by humans for atherosclerotic plaque ultrasound.

Page 8: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Motivation: Multi-objective Opt

Provide Constraints for better control on Image and Video Compression

         

             

           

Power

Bitrate

Quality

Page 9: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Motivation: Multi-obj (more)

•  Adaptive accuracy based on changes in the video

•  Real-time video communications performance

•  Fast image processing with limited computational resources (e.g., scalable DPRT)

•  Large datasets with limited resources

Page 10: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Video Processing System

Multi-objectivehistory

hardwarerealizations

Objectives1 Module 1

Module 2

Module 3

Module 4

Module n

......

Objectives2

Objectives3

Objectives4

Objectivesn

Estimatedobjectives

n sets of:bitstreams+frequency

Pareto-optimal HW realizationsand estimated objectives

MEM

OR

Y

EXTERNALCONSTRAINTS

STATIC HWcomponents

DYNAMIC HWcomponents

DYNAMIC DIGITAL SYSTEM

VIDEOINPUT

VIDEOOUTPUT

OutputsMeasurements

MODELBUILDING

Realization Selector

Parameterhistory

Parameters

InputsMeasurements

Pareto FrontPrediction

Model

CONSTRAINTS

CONTROL BLOCK

Page 11: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Modes for Video Comm.

Mode Constraint Optimization Formulation

Max Im. Qual.: max Q subj. to: (BPS Bmax

)& (DP DPmax

)

Min Bitrate: min BPS subj. to: (Q � Qmin

)& (DP DPmax

)

Min Dyn. Power: min DP subj. to: (BPS Bmax

)& (Q � Qmin

)

Typical Mode: max ↵ · Q� � · BPS� � · DPsubj. to: (Q � Q

min

)& (DP DPmax

)& (BPS BPSmax

)

We have the following objectives and bounds:

DP Dynamic Power, max avail.=DPmax

Q Image Quality, min. acceptable=Qmin

BPS Bits Per Sample, max avail.=BPSmax

Page 12: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

DRASTIC DCT: System

We have software/hardware control implementing DRASTIC modes using: •  SW: Adjustable Quantization Table (QF only) •  HW: Variable Zonal Coding •  HW: Adjustable Bitwidth of the DCT coefficients

Page 13: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

DRASTIC DCT: DCT HW

Variable Zonal Coding:

•  Fine control providing 8 configurations

•  Output will be extended to 16 bits

•  Full implementation shown here: Removal of red-highlighted regions for implementing zonal=7 hardware mode.

p0

p1

p2

p3

8ext

ext

ext

ext

signed[-128,127]

p4

p5

p6

p7

ext

ext

ext

ext

8

8

8

8

+

_

+

++

_

__

189

9x4

18

18

18

18

18

18

18

trim

trim

trim

trim

trim

trim

trim

trim

11ext

ext

ext

ext

ext

ext

ext

ext

+

_

+

++

_

__

2112

21

21

21

21

21

21

21

trim

trim

trim

trim

trim

trim

trim

trim

14

14

14

14

1414

14

14

11

11

11

11

11

11

11

ping-pongtranspose memory

8

8

8

8

8

8

8

8

8

8

8

11

11

11

11

11

11

11

11

9

912x4

12

12

1D Filter (Y1)

Page 14: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

DRASTIC DCT: Pareto Front

•  QF: 5:5:100 • Zonal: 1:1:8 • Bitwidth: 2:1:9 Configurations = 1280 Pareto Optimal = 841

Pareto-optimal Configuration shown in red. (based on median results over LIVE image database)

Page 15: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

DRASTIC DCT: Image Database

Page 16: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

DRASTIC DCT: Mode Transition

Page 17: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Ongoing Work: HEVC

The video coding standard H.264/AVC is the project HEVC started from. H.264/AVC is initially developed during 1999-2003, and was further extended in scalable video coding (SVC) and multi-view video coding (MVC) during 2003-2009.

Formal joint Call for Proposals (CfP) on HEVC started by VCEG mand MPEG was issued in January 2010.

Motivation:

8K-UHD (8192 × 4320)

4K (4096 x 3072)

Page 18: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

4. Ongoing Work: Intra-Prediction

Page 19: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

HEVC Intra-Pred (Config)

Page 20: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

HEVC Intra-Pred (Space)

Page 21: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Adaptive Real-time HEVC

This is an emergency video example.

•  Adaptation for the maximum video quality mode subject to real-time encoding that translates to frame-rate ≥ 25 fps and 3G available bandwidths.

•  (1) BW ≤ 250 kbps to (2) BW ≤ 384 kbps (max 3G upload speed). •  Lower bandwidth: PSNR of 29.7 dB (33.88 fps @ 226 kbps) •  Second bandwidth: PSNR: 31.9 dB (29.29 fps@ 363.53 kbps). •  Encoding delay was 0.426 seconds with 6 core [email protected] GHz (WPP streams / pool / frames: 18 / 6 / 2 for x.265 encoding).

Page 22: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

4. Video Image Analysis

PPC/µBlaze

PLB

System ACE memoryEthernet

MAC

Filter peripheral

FIR Filter IP

core

PRR

ICA

Ppo

rt

EPA

cons

traint

s

'n' filters:

DPRDMAcore

M S

ICAPcore

frequency& PR ctrl iFIFO

inte

rface

CFcard

oFIFO

clkfxPR_done

Fram

e 1

ROW 1

COL 3

PRR

ROW 2

COL 1

ROW 3

COL 2

ROW 1

COL 1

t1

t2

t3

t4

t5

t6

t7

t8...

FPGA

Fram

e 1

ROW 1

COL 1

PRR

ROW 1

COL 1

ROW 1

COL 1

ROW 1

COL 1

t1

t2

t3

t4

t5

t6

t7

t8

...

FPGA

Fram

e 2

Fram

e 3

Fram

e 4

Fram

e 2

Row 1Col 1

Row 2Col 2

Row nCol n

...

Filt

er 1

Filt

er 2

Filt

er n

Row 1Col 1

Row 2Col 2

Row nCol n

...

Row 1Col 1

Row 2Col 2

Row nCol n

...

Row 1Col 1

Row 2Col 2

Row nCol n

...

Filt

er 1

Filt

er 2

Filte

r n

Filterbank 1 Filterbank 2 Filterbank m

'm' Filterbanks

'2n*m' bitstreams in memory'2n' bitstreams in memory(a) (c)(b)

...

Page 23: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Video Analysis: Filterbanks

Rowfilter

Colfilter

Row i

Col iDPR

DPR

DYNAMIC MANAGERGenerates Pareto Optimal point POi and

loads it into the 2D FIR filter

Row i Col iPO i, 1 ≤ i ≤ n

B: User constraints

Consider new constraints based on image type, user input, or output

EPA constraintgenerated?

Look for PO point that satifies theEPA constraints

PO point exists?

Load <row  i,col  i> bitstreams into the 2D FIR filter via DPR, and/or

modify the frequency  i

no

no

yes

yes

Energy

Performance

Accuracy

Pointer  tobitstream  row  i

Pointer  tobitstream  col  i

(c)

Pareto Optimal PointPOi in memory:

2D FIR Filter

A: in

put i

mag

e

C: o

utpu

t fra

mes

ParametersN,NH,OB,NXr,NXc

Frequency

DPRand/or

frequencycontrol

freq.

(b)(a)

Page 24: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Autom. Analysis: Adaptive Acc.

0 50 100 150 200 250 3000

0.01

0.02

0.03

0.04

0.05

0.06

Diff

eren

ce o

f sum

of a

bsol

ute

valu

es

Frame #0 50 100 150 200 250 300

40

50

60

70

PSN

R(d

B)

0 50 100 150 200 250 30020

30

40

50

60

70

80

90

Frame #

PSN

R (d

B)

2030405060708090

0.2

0.25

0.3

0.35

0.4

psnr(dB)

Ener

gy p

er fr

ame(

mJ)

�N=20, NH=10, OB=8

N=32, NH=16, OB=16

�N=24, NH=16, OB=16

N=8, NH=12, OB=8

�N=24, NH=10OB=16

�Energy per frameAccuracy (psnr)

0.3 mJ45dB

0.3mJmax

min--

min65dB

� � � �--

max

(a) (b)

avg=49.65

std=0.0977

avg=61.14

std=0.1425

avg=23.56std=0.18

avg=66.18std=0.5568

avg=88.45std=0.0475

frame # 30

frame # 90

frame # 150

frame # 215

frame # 270

��

frame # 31

frame # 191

frame # 260

frame # 245

Threshold

(c) (d)

fram

e #

185

fram

e #

191

30 framesbelow T=0.01

10 framesabove T=0.01

15 framesbelow T=0.01

MEDIUMACCURACY

62.33 dB0.281 mJ

LOWACCURACY

49.58 dB0.214 mJ

HIGH ACCURACY

65.82 dB0.346 mJ

START 15 framesabove T=0.01

�­ ­

­­ If the conditions do not hold,

stay in the current state

Page 25: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

DPRT: Prime Directions

i

j

(1,0) (1,1)

(1,2)

(1,3)(1,4)(1,5)(1,6)

(0,1)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

j

i

(1,2)

Page 26: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

DPRT: New Architecture

f0,0

j

i f1,0

f2,0

f3,0

f4,0

f5,0

f6,0

f0,1

f1,1

f2,1

f3,1

f4,1

f5,1

f6,1

f0,2

f1,2

f2,2

f3,2

f4,2

f5,2

f6,2

f0,3

f1,3

f2,3

f3,3

f4,3

f5,3

f6,3

f0,4

f1,4

f2,4

f3,4

f4,4

f5,4

f6,4

f0,5

f1,5

f2,5

f3,5

f4,5

f5,5

f6,5

f0,6

f1,6

f2,6

f3,6

f4,6

f5,6

f6,6

åR0(0)R0(1)R0(2)R0(3)R0(4)R0(5)R0(6)

7-operand adder tree_0

7-operand adder tree_1

7-operand adder tree_2

7-operand adder tree_3

7-operand adder tree_4

7-operand adder tree_5

7-operand adder tree_6

R0(0)R0(1)R0(2)R0(3)R0(4)R0(5)R0(6)

f0,0

f1,0

f2,0

f3,0

f4,0

f5,0

f6,0

f0,1

f1,1

f2,1

f3,1

f4,1

f5,1

f6,1

f0,2

f1,2

f2,2

f3,2

f4,2

f5,2

f6,2

f0,3

f1,3

f2,3

f3,3

f4,3

f5,3

f6,3

f0,4

f1,4

f2,4

f3,4

f4,4

f5,4

f6,4

f0,5

f1,5

f2,5

f3,5

f4,5

f5,5

f6,5

f0,6

f1,6

f2,6

f3,6

f4,6

f5,6

f6,6 CLS(6)

CLS(5)

CLS(4)

CLS(3)

CLS(2)

CLS(1)

f0,0

f1,1

f2,2

f3,3

f4,4

f5,5

f6,6

f0,1

f1,2

f2,3

f3,4

f4,5

f5,6

f6,0

f0,2

f1,3

f2,4

f3,5

f4,6

f5,0

f6,1

f0,3

f1,4

f2,5

f3,6

f4,0

f5,1

f6,2

f0,4

f1,5

f2,6

f3,0

f4,1

f5,2

f6,3

f0,5

f1,6

f2,0

f3,1

f4,2

f5,3

f6,4

f0,6

f1,0

f2,1

f3,2

f4,3

f5,4

f6,5

CLS

R1(0)R1(1)R1(2)R1(3)R1(4)R1(5)R1(6)

Dá0-iñ7

D0

Dá1-iñ7

D1

Dá2-iñ7

D2

Dá3-iñ7

D3

Dá4-iñ7

D4

Dá5-iñ7

D5

Dá6-iñ7

D6

å

j

i

f(0,q)

f(1,á q-pñ7)

f(2,á q-2pñ7)

f(3,á q-3pñ7)

f(4,á q-4pñ7)

f(5,á q-5pñ7)

f(6,á q-6pñ7)

+

+

+

+

+

+R(p,q)

(a) (b) (c)

(d) (e) (f)

(g)

Page 27: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Recent Work: Scalable FDPRT

N

H

...

Block 0

Block K-1

...

Sequential processing

Hardware

Image

N

N

H

It allows effective implementations based on different constraints on the hardware resources and image sizes (powers of 2 + prime).

Spilt by 2: 2N cycles to load + N for transpose.

Page 28: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Recent Work: Fast 2D Circular Convolution

Cyclic convolution using: Computational Complexity

Definition O(N4) Discrete Fourier Transform O(N2*log2N + N2) FDPRT O(N+ceil(log2N) + N2) Scalable FDPRT O(ceil(N/2h)*N+2N+h +

N2)

Page 29: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

DPRT: Pareto-Optimal HW

(4056, 15939504)

(516096, 63253)

(1135022, 511) 500

5000

50000

500000

5000000

4000 40000 400000

Clo

ck c

ycle

s

Resource usage (1-bit D-flip flops)

SerialSystolicSFDPRT: H=2, …, 251 FDPRT

Pareto front (optimal)

Image size: 251 x 251

H=2

H=251

(6275, 32638)

(1135022, 1266)

H=113 (517813, 1897)

H=ª251/2º (567762, 1396)

H=84 (385285, 1607)

(pareto optimal)

(pareto optimal)

Page 30: DRASTIC: Dynamically Reconfigurable Architecture Systems ... · Filter peripheral FIR Filter IP core PRR ICAP port EPA constraints 'n' filters: DMA DPR core M S ICAP core frequency

Conclusion

•  Example Applications Demonstrate Promise

•  Approach can handle joint software-hardware optimization as well as software-only optimization

•  Current research focused on automatic constraint generation and real-time Pareto-front estimation without the need to pre-compute over a training set