Transcript
  • Thermodiynamic Principles

    !"#$%&!

    '()*+,-./$012H = U + PV

    !H = !U +P!V, 3!U = !Q - !W 333333456%&(

    !H = !Q - !W +P!V = !Q - !W’

    7(*+89./2:3dS = dQ/T (;(!

    U2*?-@/ P2A" V2BC Q2! W2DE

    F$GH$!Hvap=40.7 kJmol-1I

    T=373 °KIJKLM! !Svap= 109.1 JK -1

    GNOPKQR$ *+,-./ST!

    U()@VW$XY*?-@/2G = H - TS

    333!G = !H - T!S4Z[\](!

    1N = 1 Kg^m^s-2

    [N^m] = [J]

    0.24 cal = 1J = 1 Kg^m2^s-2

    1/2^mv2 = 1/2^(2 kg)^(1 m^s-1)2 = 1 Kg^m2^s-2 = 1Nm

    _`2 kga1 m^s-1$bcIdefeKg$$hd*?-@/O1Jaij!

    T#kl+mn-!

    !"# in

    Ao Ai

    $%&'()*+

    ,-./+0123+456

    !µ = µ7"µ!898:;?@!A@7B

    µ!898µCD8:;@!

    µ7898µCD8:;@7

    T: Kelvin EF

    :G8HIJK?LMN=

    >>>>>>>>>>>>>>>>>>>>>>>>>>>>>E\]^UU_M`%Z[9Y>)T " F!

    @!G>!*O!

    opqgrst_$uvw$xy*?-@/!

    !!µ" = !µ # !G "!#$%&'()*+),-!.!/0(1*!2!1,!-+z

    Vo= 0 mV"#$"!

    !!µ" "!!#$%&'(!)!*+&,-./01/(2+z

    %%&'()*+,$"! !!µ" "!!#+z

    !"#$%&'&()#*+,-./-%0

    !"#$#%&'()*+,-./'."0 -------./0123!

    Vo= 0 mV"45"62'()2789:;.!

    ?

    !"#$z{Q0|!

  • }~o{qK!

    !"#$%&

    '()*

    (z)'()*

    +*,-mol

    mol-././

    &00+*,

    !"#$%&'()*+,-./012345-467

    )89:;?8

    1 x 96500=*>9:@:015A345-467

    ) @9@B?015A345-467CCCD51E

    }~o{$!

    !"# in

    1mM Na

    -59 mV

    + +10 mM Na

    0 mV

    $%+

    &'

    ()*+,-./01&'2

    !"#$%&'()*+,+-./012345467

    ) 8-.*9: 8888;

  • Nernst¦!

    n=KOS$7!

    F=l!

    !Ee7Lor97^&O7*4#L*#!

    §¨¤To{!

    18b25"bpH0K$97^!E0=0.00V!

    &epH7*K#$!E0=l0.421V!

    T#I©ªP §¨¤To{!

    pH7*K#$!

    pqbrscptu!

    vbrwcxyu"

    «¬8«-®¯$XY*?-@/ST!

    %2*AB23K$%"$!

    297^_e!

     ¡¢-.£l"97^"2¤¥3*¦P"!

    I2§¨i.©ª45"62!

     ¡¢-.£l|9«U¬5!

    «¬8«-®¯$XY*?-@/ST!

    Acetaldehyde"NADH1M&Ehanol"NAD+0.1M2"6Ke!

    97^_* ¡¢-.£l|9K|!

    )17. o°±²Q¤T³´+¤T!

  • Figure 22-1 The sites of electron transfer that form

    NADH and FADH2 in glycolysis and the citric acid cycle.

    Pa

    ge

    79

    8!

    NAD+ as an

    electron

    shuttle (fig9-4)

    !

    Oxidation

    Reduction

    2[H]

    (from food)

    NADH

    H+

    NAD+

    (nichotinamide adenine dinucleotide)

    !

    Dehydrogenase

    E0'=-0.320 V

    coenzyme

    "!

    iron-sulfur protein (Fe!S)

    ubiquinone (Q)

    cytochromes (cyt)

    electron transport

    chain

    Chemiosmosis: How the mitochondrial membrane couples

    electron transport to oxidative phosphorylation (fig9-15)

    Chemiosmosis PMF

    Figure 22-2a Mitochondria. (a) An electron

    micrograph of an animal mitochondrion.

    Pa

    ge

    79

    9!

    Figure 22-2b Mitochondria. (b) Cutaway diagram

    of a mitochondrion.

    Pa

    ge

    79

    9!

  • Figure 22-3 Freeze-fracture and freeze-etch electron

    micrographs of the inner and outer mitochondrial membranes.

    Pa

    ge

    79

    9!

    Figure 22-4 Electron microscopy–based three-dimensional

    image reconstruction of a rat liver mitochondrion.

    Pa

    ge

    79

    9!

    The glycerophosphate shuttle. The mitochondrial electron-transport chain.!

    Voet Biochemistry 3e

    © 2004 John Wiley &

    Sons, Inc.

    The oxygen electrode.

    Pa

    ge

    80

    4

    Effect of inhibitors on electron transport.

  • Electron micrographs of mouse liver mitochondria.

    Pa

    ge

    80

    6

    (a) In the actively respiring state.! (b) In the resting state.!

    The mitochondrial electron-transport chain.


Top Related