Transcript
  • Elastomers and Composites Vol. 46, No. 1, pp. 29~36 (March 2011)

    * ** , * , **

    (2011 1 12), (2011 1 20), (2011 1 26)

    Introduction to Thermal Insulating Materials and Silica Aerogels

    Jinho Hong, Il Kim*, Ju Ho Yun**, and Sang Eun ShimDepartment of Chemical Engineering, Inha University

    253 Yonghyundong, Namgu, Incheon, S. Korea 402-751*The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of

    Polymer Science and Engineering, Pusan National University, Pusan 609-735 Korea**Enviromental Materials & Components R&D Center,

    Korea Automotive Technology Institute, Chungnam 330-912 Korea(Received January 12, 2011, Revised January 20, 2011, Accepted January 26, 2011)

    (thermal insulating materials)

    , , .

    , .

    .

    .

    .

    ABSTRACTThe term 'thermal insulating materials' describes a class of materials which can improve the thermal efficiencyby reducing the thermal conduction, convention and radiation between the inside and outside of the system. As a thermalinsulating material, numerous industrial applications are possible including the automobile, aerospace, aviation, and petro-chemical. Especially, the silica aerogel, with their superior thermal insulating behavior, has been widely used as thermal insulating materials. Because the mechanical properties of the silica aerogel cannot meet the industrial demand, use of the silica aerogel is limited. This article aims to review the thermal insulating materials and silica aerogel, and to introducethe silica aerogel/polymer composites.

    Keywordsthermal insulating materials, silica aerogel, thermal insulation, polymer composite.

    E-mail: [email protected]

    .

    , . 100 , 100-500 , 500- 1,100 , 1,100

    . , .

    . , , , , , 150 . , , , , , , , , . . -200 , . 1,000

    .

  • 30 Jinho Hong et al. / Elastomers and Composites Vol. 46, No. 1, pp. 29~36 (March 2011)

    . , , , , ,

    . , , , , .

    () .

    . ( 55%, 6%, 29%) 71% (, ) 29% .

    , . . ,

    .

    . , .

    . ,

    . ,

    . , .

    . ,

    .

    . ,

    . , , , , . . < , < < , < < < < < < <

    .

    . . . .

    . . . .

    . . < , , , , , < < <

    Table 1. Service Temperature Range of Commercial Insulating Materials1

  • Introduction to Thermal Insulating Materials and Silica Aerogels 31

    , < < . (kg/cm2)

    (kg/cm2) . . . . > > ,

    Table 1 .1

    1.

    , , , . ,

    .

    1.1

    .

    , , . 18 Reaumer

    , 1983 Empress Enginie

    . 1

    , 1930 Owens-Corning , , , . 1960 , . 1500 binder .

    1.2

    .

    , , , , , . 1897 , Qkfauad 1938 .

    1.3

    1,000 , .

    1.4

    , . () () ,

    . , , , .

    800 20 . , , , , .

    1.5

    .

    , 650 - 1,000 .

    Table 2. Precursors, Solvents, and Catalysts Used in Solgel Reaction3

    TMOS EtOH/water HClMTMS MeOH/water Oxalic acid, NH4OHPEDS Ethyl acetate HFPEDS EtOH/water HFPFAS/PEDS EtOH/water HFMTES CH2Cl2/water TFATMOS Ionic liquid HCO2HTMOS Aceton/water HCO2HTMOS MeOH/water CH3CO2H/NH4OHTMOS EtOH/water HNO3/H2SO4/oxalic acidTMOS MeOH/water NH4OH/HClTMOS EtOH/water NH4OH/HClTEOS EtOH/water HCl PEG

  • 32 Jinho Hong et al. / Elastomers and Composites Vol. 46, No. 1, pp. 29~36 (March 2011)

    2.

    ' , , , . . .

    2.1

    , , .

    2.2

    A() C(, , ) . , .

    2.3

    2 .

    2.4

    , , .

    3.

    (500 - 1,200 m2/cm3) (88 - 99.8%) (~0.003 g/cm3), (0.005 W/mK) .2

    1930 . - Claud Bernard Teichner . , . Cherenkov radia-tion . 20

    .

    .

    .

    . NASA .

    .

    3.1

    3 .

    3.1.1

    - ( alkoxysilane) ( ) gelation . aquagel, alcogel, aerogel .3

    3.1.2 Aging

    mother solution alkoxysilane aging . aging .

    3.1.3

    . (Figure 1). spring-back

    droplet silyl group (Figure 2). 3 .

    3.2

  • Introduction to Thermal Insulating Materials and Silica Aerogels 33

    Figure 1. Drying process of silica aerogel.4

    Figure 2. Springback phenomenon happening at the drying proc-ess of silica aerogel.4

    Table 3. General Properties of Silica Aerogel4

    0.003-0.35 g/cm3 0.1 g/cm3

    600-1000m2/g % 0.13-15% 5% (95% ) 20nm BET 2-5nm electron microscopy reflective index 1.0-1.08 2.0-4.010-6 ultrasonic dielectric constant~1.1 0.1g/cm3 100m/s 0.07g/cm3

    . Table 3 .

    3.2.1

    IUPAC 2 nm 'micropores', 2-50 nm 'mesopores', 50 nm 'macropores' . mesopores micropores .

    .

    , .

    3.2.2

    . .

    .

    3.2.3

    . micro .

    .

    3.2.4

    . 0.02 W/mK 0.01 W/mK . 1-10%

    .

    . .

    .

    3.2.5

    . Si-OH silanol . alkylorthosilicate

    CO2 .

    -OH -OH methoxy (-OCH3)x (Figure 3).

  • 34 Jinho Hong et al. / Elastomers and Composites Vol. 46, No. 1, pp. 29~36 (March 2011)

    Figure 3. Water droplet on hydrophobic silica aerogel.4

    4. /

    dielec-tric constant, , .

    .

    1998 M. Schmidt .4

    . , aerogel/epoxy . , di-electric constant . aerogel/epoxy , , dielec-tric . Clay aerogel/polymer

    areogel . / 1998 M. Schmidt .5 insulator, chemistry, kinetic energy absorber, elec-tronics, pharmacy, agriculture filler . 1998 M. Schmidt polyvinylbutyral (PVB) (0.120 W/mK) / .

    Figure 4. The effect of the amount of silica aerogel on the thermal conductivity of aerogel/PVB composites.5

    Figure 5. Heat transportation path upon the mixing method: (a) dry mixing and (b) wet mixing.6

    (Figure 4) .

    . 2003 (wet, dry, dual mixing) PVB /PVB , .5

    dry mixing . dry mixing close packing wet mixing PVB (Figure 5). 2008 2009 /epoxy . 2008 Gupta

  • Introduction to Thermal Insulating Materials and Silica Aerogels 35

    Figure 6. SEM morphology of silica aerogel/epoxy composite (a) at low magnification, and (b) at low magnification.7

    Silica aerogel volume fraction (%)

    Figure 7. The effect of the content of silica aerogel on the thermal conductivity of epoxy composites.8

    epoxy resin mixing curing . ep-oxy mixing . Figure 6 .

    .6

    Teh epoxy mixing curing . Teh aromatic amine aliphatic amine 0-40 vol% . Aromatic amine .

    . .7

    2009 Ge /epoxy . trimethyl-chlorosilane (TMCS) epoxy mix-ing . 40-80 vol% (Figure 7) .

    0.20 W/mK 0.04 W/mK

    .

    .8

    .

    / . (-OH)

    . , clay . methoxy ([-OCH3)x]) . silane coupling agent .

    . coupling agent

  • 36 Jinho Hong et al. / Elastomers and Composites Vol. 46, No. 1, pp. 29~36 (March 2011)

    .

    (10037176) .

    1. EPS [R&D of the new insulation alternating Expanded Poly-Styrene Insulation(Styrofoam)] , 09. 21 (2001).

    2. J. Fricke, Aerogels - highly tenuous solids with fascinating prop-erties, J. Non-Cryst. Solids, 100, 169 (1988).

    3. A. Soleimani Dorcheh and M. H. Abbasi, Silica aerogel; syn-

    thesis, properties and characterization, J. Mater. Process. Tech., 199, 10 (2008).

    4. M. Schmidt and F. Schwertfeger, Applications for silica aerogel products, J. Non-Cryst. Solids, 225, 364 (1998).

    5. G. S. Kim and S. H. Hyun, Effect of mixing on thermal and mechanical properties of aerogel-PVB composites, J. Mater. Sci., 38, 1961 (2003).

    6. N. Gupta and W. Ricci, Processing and compressive properties of aerogel/epoxy composites, J. Mater. Process. Tech., 198, 178 (2008).

    7. P. L. Teh, M. Mariatti, A. N. R. Wagiman, and K. S. Beh, Effect of curing agent on the properties of mineral silica filled epoxy composites, Polym. Composite., 29, 27 (2008).

    8. D. G


Top Related