Transcript
Page 1: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Instantaneously Optimized Controller Instantaneously Optimized Controller for a Multimode Hybrid Electric VehicleSAE P #2010 01 0816SAE Paper #2010-01-0816

Dominik Karbowski, Jason Kwon, Namdoo Kim, Aymeric RousseauDominik Karbowski, Jason Kwon, Namdoo Kim, Aymeric Rousseau

Argonne National Laboratory, USA

SAE World Congress 2010

Page 2: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Introduction Toyota Prius and some other hybrids use a “Power Split” system: Toyota Prius, and some other hybrids, use a  Power Split  system:

– 1 planetary gearset, 2 electric motors

– Engine speed can be controlled independently from the vehicle speed

Limited cost (simplicity) well suited for low speed driving– Limited cost (simplicity) , well suited for low‐speed driving

Combining several planetary gearsets or multiple ways of connecting the components leads to a “Multimode” system.

O i i ll d l d b G l M t l d b M d BMW Originally developed by General Motors, also used by Mercedes, BMW. 

Dozen of patents on multimode transmissions.

Increased level of complexity and degrees of freedom.

This study: an optimized and implementable way of controlling the vehicle

Using Argonne Powertrain System Analysis Toolkit (PSAT):Using Argonne Powertrain System Analysis Toolkit (PSAT): • forward‐looking powertrain simulation environment• dynamic plant models• Matlab/Simulink/Stateflow Based

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐08162

Page 3: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

A Multi-Mode Hybrid System Combines Power Split and Fixed Gear Modesand Fixed Gear Modes

Components: – 2 electric motors + battery

2 l t l l t h d b k– 2 or more planetary gears, several clutches and brakes

Combines:– Electric continuously Variable Transmission (EVT) modes

– Fixed Gear (FG) modes, comparable to a conventional car with a multi‐speed gearbox

Engine can be ON/OFF, battery SOC needs to be balanced

GM Tahoe hybrid: – 4 clutches, 3 planetary gearsets

2 EVT + 4 FG = 6 modes– 2 EVT + 4 FG = 6 modes

– 2.7 ton / 250 kW engine / 2x 60 kW motors / 6.5 Ah NiMHbattery

Tahoe Hybrid was validated in PSAT (actual vehicle tested

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐08163

Tahoe Hybrid was validated in PSAT (actual vehicle tested on Argonne’s 4WD chassis dynamometer)

Page 4: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Equations Defining a Multi-Mode Transmission

O El i l E iOne Electrical Equation

Multiple Mechanical Equations (Torques and Speeds)

EVTFixed Gear

Generic form f h EVTfor each EVT mode j

: Torque multiplication for gear i for each component

2 Degrees of Freedom (Torque Split)2 Degrees of Freedom:‐ 1 in Speed‐ 1 in Torque

4

1 in Torque

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐08164

Page 5: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Summary of States, Constraints and Degrees of FreedomFreedom Objective of controller: “To find the power split between mechanical 

components (ICE, EM1, EM2) that meets the driver request for the current speed of the vehicle, while maintaining acceptable battery state‐of‐charge

Target Driver torque demand at gearbox outputC t i t C t li it ti d i bilit SOC b l

speed of the vehicle, while maintaining acceptable battery state of charge and minimal fuel consumption”

Constraints Component limitations, drivability, SOC balance

Degrees of Freedom

Engine ON/OFFTransmission Mode

(Fixed Gear) (EVT)Degrees of Freedom (Fixed Gear)Motor 1 torque Motor 2 torque

(EVT)Engine Speed Engine Torque

Controller Output Torques mode eng ON/OFFController Output Torques, mode, eng ON/OFF

StatesSOC, Output speed, mode, eng ON/OFF, speeds

5

Controller has to decide on Engine ON/OFF, mode and 2 other degrees of freedom

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐08165

Page 6: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Possible Approaches to ControlRule Based Control ImplementedRule Based All 4 degrees of freedom  = heuristic rules e g engine is ON

Partial instantaneous optimization

Full Instantaneous Optimization

Control Implemented 

e.g. engine is ON above a certain threshold

Dynamic Programming find the combination of

p high‐level hybrid operations (Engine On/Off, battery power) = rules

Optimization All 4 degrees of freedom =  optimization  Cost function: combination of 

commands that minimizes fuel consumptionRequires the prior

2 remaining degrees of freedom = optimization Cost function = fuel 

Cost function: combination of fuel and battery power

Requires the prior knowledge of the trip speed trace

power

Easily Implementable Computationally Challenging

6

Easily Implementable,Heuristically tuned

Computationally Challenging,Optimal Control  

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐08166

Page 7: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Partial Instantaneous Optimization Combines Rules and Optimizationand Optimizationhigh level hybridization decisions (engine ON/OFF, battery use)

Rule‐Based

1

Optimized  Remaining 2 degrees of freedom 

2

1

In1

In2

Out1

2

INSTANTANEOUS OPTIMIZATION 

MODULEENGINE ON/OFF

Rule‐BasedOptimized

2

In1 Out13SOC 

CONTROL

Cost function = fuel power (battery power is set before optimization)

Rule‐Based

p ( y p f p )

For each mode, the optimal (lowest fuel consumption) operation point (torques, speeds) is found, and is used to compute the cost associated to that mode. 

7

Selected mode is the one with the lowest cost

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐08167

Page 8: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Mode Change Is Based on Fuel Power Comparison For Each ModeFor Each Mode

Threshold depends on: • current and prospective mode• vehicle speed• time since last mode change

100

120

time since last mode change

Vveh(mph)

60

80

Mode 5 results in lower fuel power (or rate) than any

Mode change occurs when difference is higher than a threshold

Mode (x10)

(mode 1) (kW)(mode 2) (kW)(mode 3) (kW)

Fuel Power:

40

power (or rate) than any other mode

(mode 3) (kW)(mode 4) (kW)(mode 5) (kW)(mode 6) (kW)

0

20

667.6 667.7 667.8 667.9 668 668.1 668.2 668.3 668.4 668.5 668.6

Current mode is Optimal!

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐08168

Time (s)Current mode = Mode 1 

Page 9: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

General Organization of the Supervisory ControlA D i d H. Braking Torque B. Constraints I Final Torque Split

eng trq dmd2

mc_trq_dmd_brake

mc2_trq_dmd_brake

eng_trq_dmd

DRV_BUS

CSTR_BUS

SENS_BUS

mc_trq_dmd_brake

mc2_trq_dmd_brakeA_Driver _dmd

wh_trq_dmd

veh_spd

LOC_DRV_BUS

info_gb_pwr_out_dmd

ess_pwr_max_pro6

wh_trq_dmd1

eng on dmd

CSTR_BUS

DRV_BUSDRV_BUS

<veh_spd> SENS_BUS

wh_trq_dmd

ess pwr max reg

ess_pwr_max_pro

A. Driver command g q& Speed Control

I. Final Torque Split

mc trq dmd4

wh_trq_brake

eng_trq_prop_dmd

mc_trq_prop_dmd

mc_trq_dmdH_Torque_Calc_Brake

eng_on_dmd

Mode_dmdwh_trq_brake_dmd

gb_pwr_ou

DRV_BUS

CSTR_BUS

SENS_BUS

OPT BUS

eng_trq_dmd

mc_trq_dmdB_Constraint

IN_COMPO_CSTR_BUS

IN_SENS_BUS

LOC_CSTR_BUS

ess_pwr_max_reg7

5

mc2 trq max pro4

mc trq max reg3

mc trq max pro2

SPD_TRQ_TARGET_BUS

eng_on_dmd

gb_mode_dmd

CSTR_BUSCSTR_BUS

DRV_BUS

SENS_BUS

mc2_trq_max_reg

mc2_trq_max_pro

mc_trq_max_reg

mc_trq_max_pro

ess_pwr_max_reg

brake trq dmd6

mc2 trq dmd3

mc2_trq_prop_dmd

DRV_BUS

SENS BUS

mc2_trq_dmd

wh_trq_brake_dmd[INFO_SOC

G_Torque_Calc_Prop

OPT_BUS

eng_on_dmd

Mode_dmdmc2_trq_dmd

DRV_BUS

CSTR_BUSeng_on_dmd

C_SOC_Control

ess_soc

veh_spd

LOC_SOC_CTRL_BUS

INFO_SOC_CTRL_BUS

mc trq16

mc _spd10

eng_trq_max8

mc2 trq max regen5

eng_on_dmd

eng_on_dmd

<veh_spd>

gb_mode_dmdSOC_BUS

DRV_BUS

<ess_soc>

SENS_BUS

eng_trq_max

mc trq

mc_spd

D. Eng ON/OFF

ptc_brake_regen_state_info12

J_Torque_Split_Logic

SENS_BUS

eng_on_dmd

SOC_CTRL_BUS

prop_state_info

ess.init.soc_init

FO_ENG_O

DRV_BUSSPD_TRQ_TARGET_BUS

D_Engine_ON_Control

SOC_BUS

SENS_BUSINFO_ENG_ON_BUS

eng_ on17

mc_trq

eng_spd15

mc2_trq13

veh spd12

abs soc11

mc2_ spd9

eng_on_dmd

SOC_BUS

DRV_BUS

SENS_BUS

ess_soc

veh_spd

eng_on

eng_spd

mc2_trq

mc2 _spd_ q

mode5

eng on/off dmd1

F mode control

DRV_BUS

SENS_BUS

THRESH_BUS

eng_on_dmd

gb_mode_dmd

E_optim_module

SENS_BUS

ESS_BUS THRESH_OPTIM_BUS

gb_sip19

gb_mode18

accelec pwr14

abs soc

gb_sft_in_progress

gb_mode_dmd

SENS_BUS

gb_modeaccelec_pwr

C. SOC Regulation

G. Propelling Torque, Speed Control

F_mode_control

9

E.Optimization Module F. Mode SelectionArgonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

9

Page 10: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Inside the Optimization Module (Online Mode Comparison)Comparison)

Target component speeds and torques

Optimal operating conditions are computed for each mode based on demands and state

Operating conditions; the ones corresponding to current gear are selected and used as targets

Comparison between current mode fuel power and candidate fuel power

Comparison with M d

=1 if current mode is possible and “better”

Optimal Operating Point Computation p

Current ModeMode 

change OK?

Comparison with

Current Mode

Point Computation

Optimal Operating  Comparison with Current Mode Mode 

change OK?

p p gPoint Computation

Optimal Operating

for current gear

Comparison with Current Mode

Mode change OK?

Fuel Power for the The fuel power corresponding to current i l d d d f i

Optimal Operating Point Computation

current geargear is selected and used for comparison

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081610

Page 11: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

In the Optimization Module The Optimal Operating Point Is Computed For Each Mode Point Is Computed For Each Mode

Gi Givens:

Fixed Gear EVT

Givens:– Engine, Motors speed 

(proportional to vehicle speed)

– Target battery power 

Givens:

– battery power

– transmission output speed

An offline optimization code finds the optimal engine g y p

One motor torque is known => other motor torque known too (electric power equation)

To avoid partial load:

speed and torque 

Off‐line optimization takes into account engine losses and motor losses

Resulting look‐up tables are used in each EVT mode To avoid partial load: 

– one motor = all battery power demand

– other one = no torque 

Resulting look up tables are used in each EVT modem

)

1500

2000Teng (Nm)

300

350

400

450

m)

1500

2000eng (rpm)

3000

3500

4000

T gbout (

Nm

500

1000

50

100

150

200

250

T gbout (

Nm

500

1000

1500

2000

2500

Example of Targets for Battery power = 0

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081611

gbout (rpm)

0 1000 2000

0

gbout (rpm)

0 1000 2000

0

Page 12: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Mode and Engine Operations

600Vveh [ICE OFF] (mph x10) Mode (x100)weng (rpm x 0.1)

400

500

600

400

500

600( )eng ( p )

Teng (Nm)Vveh [ICE ON] (mph x10)

UDDS

200

300

200

300HWFET

0 50 100 150

0

100

0

100

0 50 100 150 50 100Time (s)Time (s)

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081612

Page 13: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Vehicle Operations on Standard Cycles80 V [ICE Off] (mph x10) M d ( 100)

20

40

60

Vveh [ICE Off] (mph x10) Mode (x100)Delta-SOC (% x10)Vveh [ICE On] (mph x10)

40

-20

0

20

UDDS

0 200 400 600 800 1000 1200 1400-60

-40

Time (s)60 Urban = mostly mode 1 (EV), mode 4

20

40

HWFET

Urban   mostly mode 1 (EV), mode 4 when engine is ON 

Highway = mode 5 & 6

-40

-20

0 HWFET

In both cases, SOC is well balanced

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081613

100 200 300 400 500 600 700 800

Time (s)

Page 14: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Comparative Analysis60nt

)

40

50

60

nerg

y Sp

ePr

opel

ling

mode 1mode 2mode 3

20

30

al W

heel

E(IC

E O

N +

mode 3mode 4mode 5mode 6

UDDS LA92 NEDC HWFET US060

10

hare

of T

ota

ach

Mod

e (

Mode 1 : lower speeds in urban driving (UDDS, LA92, NEDC, US06)

Mode 2 : aggressive driving (LA92, US06)

%Sh

in E

a

Mode 4 : intermediate speeds in urban driving (UDDS, LA92)

Mode 5 : high speeds (NEDC, HWFET, US06)

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081614

Mode 6 : very high speeds (NEDC, HWFET, US06)

Page 15: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Conclusion: Optimized Controller Takes Full Advantage of the Multimode Hybrid SystemAdvantage of the Multimode Hybrid System

Instantaneously optimized controller for a multimode hybrid powertrain:– Implementable in an actual vehicle 

Easily adaptable to any multimode hybrid system– Easily adaptable to any multimode hybrid system

“Partial” instantaneous optimization finds the optimal mode and operating points:– Optimal operation within each mode

– Optimal mode selectionwith minimal tuningOptimal mode selection with minimal tuning

“Partial” instantaneous optimization uses rule‐based controls for hybrid controls:– Battery SOC balance and drivability through strict control over engine ON/OFF

– Easy and intuitive to tune (very high‐level energy management)

Also very suitable and flexible for design optimization studies: – No tuning for most changes in powertrain (different component/ratios/mass) 

– Controller can be quickly adapted to different mode pattern 

Future work will focus on:– Implementing “full” instantaneous optimization

– Quantifying the benefits of optimized controllers over rule‐based controllers

Will b d i A t i A ’ t ti d l b d d i t l– Will be done in Autonomie, Argonne’s next generation model‐based design tool 

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081615

Page 16: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Instantaneously Optimized Controller for M lti d H b id El t i V hi la Multimode Hybrid Electric Vehicle

SAE Paper #2010‐01‐0816

Acknowledgements

Activity sponsored by Lee Slezak from the U.S. Department of Energy

Contact / Website

Dominik Karbowski, [email protected]

A i R @ lAymeric Rousseau, [email protected]

www.transportation.anl.gov/modeling_simulation/PSAT/

Argonne National Laboratory, 9700 South Cass, Argonne IL 60439 

Page 17: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Additionnal Slides

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081617

Page 18: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Fuel Consumption

Cycle mpg km/L L/100 kmUDDS  29.1 12.3 8.1HWFET  27.8 11.8 8.5NEDC  28.1 11.9 8.4LA92  23.3 9.9 10.1US06 19 5 8 3 12 1US06  19.5 8.3 12.1

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081618

Page 19: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Resolution of the Optimization Takes Two Stages

Mode 1 Find Optimal Operating Point

Compute Associated Cost

Compare cost

Fi d O ti l C t A i t d

Compare cost for each mode

Find Optimal Operating Point

Compute Associated CostMode 6

1. Solve the problem for each mode 2. Select the mode

19

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 20: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Once the Mode Is Chosen, Two Degrees of Freedom

Givens: vehicle speed, gearbox output torque (proportional to driver torque demand)

In the case of a fixed gear: 2 degrees of freedom– Speed: given by the vehicle speed

– Torque: 2 degrees of freedom, e.g. both electric machines 

– Equivalent to battery power Pess and xEM1 :• xEM1 : the fraction of total electric machines electrical input due to EM1

• The function                                       is invertible (idem for EM2), giving both electric machines torques and therefore engine torquemachines torques, and therefore engine torque

EVT: 2 degrees of freedom

– Speed: 2 linear equations, 3 unknowns = 1 degree of freedom (e.g. ICE speed)

– Torque: 2 linear equations, 3 unknowns = 1 degree of freedom (e.g. ICE torque)q q , g ( g q )

engine speed and torque is enough to define the system

Known

20

system 

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 21: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Full Instantaneous Optimization Relies on Finding a Fuel Equivalence to Battery Power a Fuel Equivalence to Battery Power

All degrees of freedom are resolved by an optimization algorithm

At each time t we are looking for the command that will minimize the At each time t, we are looking for the command that will minimize the cost function.

The cost function cannot be fuel power only, because it would lead to the use of “free” battery energythe use of  free  battery energy

An equivalence factor can be used to compare fuel and battery energy: 

Challenges: – the equivalence factor is likely to be cycle‐dependant, so it would have to 

be a function of SOC and probably other variables; 

– the engine ON/OFF can be hard to manage

21

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 22: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Fixed Gear : Finding the Optimum Operating Point

For a given gear and battery power, the only degree of freedom left is the electric machine split xEM1.

Simplifying assumptions:– using one motor instead of both ones at the same time is more efficient, 

hence xEM1 can only be zero or one– the motor with the highest speed is more efficient (EM1 in mode 6, EM2 in 

mode 4 and 5)

The cost for that given gear is the fuel power:

22

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 23: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

EVT : Finding the Optimum Operating Point

For a given mode, if the battery power is given, there is only one degree of freedom left for example engine speeddegree of freedom left, for example engine speed

Since components speeds are not fixed, there is no simple relationship between battery power and the control variables (engine speed and torque)torque)

Of all the engine speeds and torques that verifies all equations and constraints, the one that results in the lowest fuel consumption will be the one used to compute the costthe one used to compute the cost

The resulting engine speed will also be used as a target later on.

23

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 24: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

D. Engine ON/OFF (Logic) Engine turns ON if Engine turns ON if:

– (Engine has been OFF for a minimum time) AND (Power demand above threshold) AND (Power demand is increasing)

– OR (Electric System can not meet driver’s demand)

– OR (“Performance Mode”, i.e. pedal position close to 1)

– OR (Battery SOC is low)

Engine shuts down if:

– (Engine has been ON for a minimum time)

( d bl h h ld)– AND (Power Demand is blow threshold)

– AND (Electric System can meet driver’s demand on its own)

– AND (Transmission mode is 1, 2 or 3)

– AND (Battery SOC is not low)

24

AND (Battery SOC is not low)

– AND (Power demand is decreasing)Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 25: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

E. Optimization Module (outline) Obj ti t th ti l ti i t f h d

gb mode1 <gb_mode>

The fuel power for the current mode is fed back for comparison

Objective: compute the optimal operating point for each mode, compare each mode with the current mode and define targets for the current mode

2 Current Mode selector

1<x<6gb_mode

Main Block: online and offline computation 

THRESH_OPTIM_BUS2

_ _ _

gb_spd_outTHRESH _BUS_MODE1

THRESH _BUS_MODE2

THRESH _BUS_MODE3

THRESH _BUS_MODE4

gb_spd_out2 Thresh_bus_mode1

Thresh_bus_mode2

Thresh_bus_mode3

Thresh bus mode4gb_trq_out

ess _pwr_dmd

THRESH _BUS_MODE5

THRESH _BUS_MODE6

SPD_TRQ_TRGT_BUS_MODE1

SPD_TRQ_TRGT_BUS_MODE2

ess p r dmd4

gb_trq_out3

_ _

Thresh_bus_mode5

Thresh_bus_mode6

SPD_TRQ_TARGET_MODE1_BUS

SPD_TRQ_TARGET_MODE2_BUS “Threshold” bus: fuel power and “change

SPD_TRQ_TARGET_BUS1

THRESH _CURR _BUS

SPD_TRQ_TRGT_BUS_MODE3

SPD_TRQ_TRGT_BUS_MODE4

SPD_TRQ_TRGT_BUS_MODE5

SPD_TRQ_TRGT_BUS_MODE6

ess_pwr_dmdSPD_TRQ_TARGET_MODE3_BUS

SPD_TRQ_TARGET_MODE4_BUS

SPD_TRQ_TARGET_MODE5_BUS

SPD_TRQ_TARGET_MODE6_BUS“Target” bus: target speeds and torques for 

power and “change allowed” for EACH mode

25

1_ENG_PWR_IN_TARGET_EACH_MODE EACH mode

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 26: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Fixed Gear Operating Points

Speed calculation and constraints check Torque max for each 

component Fuel power

compo_spd_possible6

eng_pwr_in4

6_Fuel_Power

eng _spd

eng _trqeng _pwr_in

3 Trq max

mc_spd

mc2_spd

eng _spd

EM_selection

eng _trq _max

EM _trq _max_prop

EM_trq_max_chg1_Spd_Calc

gb_spd _out

gear #

compo_spd _OK

mc_spd

mc2_spd

eng _spd

gb_spd_out1

mc2_spd_target

mc_spd_target

eng_spd_target

eng _trq _max

EM_trq max prop

EM_trq_max_regen

eng _trq

mc_spd

mc2_spd

pwr_elec _dmd

EM_selection

elec _mach_trq _dmd

3_Trq_max

pwr_elec_dmd3

eng_trq_targeteng_trq_targeteng_spd_target

MODE3_TRQ_TRGT_BUS1

EM_trq

EM selection

mc_trq _dmd5_Trq_calc

_ q_ _ g

EM_trq_dmd

EM_selection

gb_trq _out_dmd

gear #

EM_trq

percent _trq_max

4_Ess_pwr_dmd

2_ElecMachineSelection

gear EM_selectiongear#

4

gb_trq_out_dmd2 mc_trq_target

mc2_trq_target

mc2_spd_target

mc_spd_target

Selects the working 

possible_cmd5

ess_pwr_error3

percent trq max2

AND

7_MC_MC2_Trq_and_Pwr_dmd_Conformity

EM_selection

mc_spd

mc2_spd

Elec pwr dmd

mc2_trq _dmd

ess_pwr_dmd_OK

ess _pwr_error

Torque necessary to provide battery power

Torque calculation

Ch k if b tt

gEM (makes the whole block generic)

26

percent_trq_maxprovide battery power Checks if battery power demand will be met

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 27: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

EVT Operating Point Optimizationpossible idx=0 if there is no solution Fuel Power used for later comparison

4

eng _pwr_in3gb_spd_out eng_pwr_in

possible_idxgb _spd_out

1 eng_pwr_in_target

possible cmd

possible_idx 0 if there is no solution Fuel Power used for later comparison

possible _cmd

eng_spd mc_spd

1_Engine _Optimal _Point

gb_trq_out_dmd

ess_pwr_dmd

eng_spd

eng_trq

ess_pwr_dmd3

gb_trq_out _dmd2

eng_spd_target

possible_cmd

eng_trq_target

mc_spd_target

MODE 1_SPD_TRQ _TRGT _BUS1

eng_trq mc_trq

2_MC_MC2_SPD_CALC

gb_spd_out mc2_spd

mc_trq_target

mc2_spd_target

Using 3‐D look‐up tables, optimal ICE speed and torque is  found; 

ess_pwr_error2Mc_spd

Mc2 spd

3_MC_MC2_trq

gb_trq mc2_trqmc2_trq_target

q ;

_ p

Mc_trq

Mc2_trq

ess_pwr

ess_pwr_erroress_pwr_error

Compute the difference between the target battery

27

6_ESS_PWR_CHECK

between the target battery power and the actual one

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 28: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Optimal Operating Points (EVT1 – Input / Pess=0) 2000 450

2000(Nm

)

1000

1500

Teng (Nm)

250

300

350

400

Nm

)

1500

2000EVT efficiency

0.9

0.95T gbout (

500

1000

50

100

150

200

T gbout (

N

500

1000

0.75

0.8

0.85

gbout (rad/s)

0 50 100 150 200 250 300

0

2000

eng (rad/s)400

450

gbout (rad/s)

0 50 100 150 200 250 300

0 0.7

T gbout (

Nm

)

1000

1500

eng

300

350

400

T go

0 50 100 150 200 250 300

0

500

150

200

250

• Includes electric path losses• Does not include gearbox mechanical losses

28

gbout (rad/s)

0 50 100 150 200 250 300 • Does not include gearbox mechanical losses

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 29: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

Optimal Operating Points (EVT2 – Compound / P = 0)1000 450Pess= 0)

m) 600

800

1000Teng (Nm)

250

300

350

400

450

1000EVTefficiency

T gbout (

Nm

200

400

50

100

150

200

250

t (N

m) 600

800

EVT efficiency

0.85

0.9

0.95

gbout (rad/s)

0 100 200 300 400 500

0

50

1000

eng (rad/s)400

450

T gbout

0

200

400

0 7

0.75

0.8

T gbout (

Nm

)

400

600

800g

300

350

400

gbout (rad/s)

0 100 200 300 400 5000 0.7

T go

0 100 200 300 400 500

0

200

400

150

200

250

• Includes electric path losses• Does not include gearbox mechanical losses

29

gbout (rad/s)

0 100 200 300 400 500

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 30: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

UDDS100

UDDS - Wheel Energy spent in each mode (HEV and propelling)

80

UDDS - FE = 29.1 mpg ; SOC (init/final) = 56.5/56.38; Num Eng On = 37

Vveh (m/s)

Pdmd (kW)

60

80

100

%

40

60

Pdrv (kW)

Eng ONModeDelta SOCx10

1 2 3 4 5 60

20

40

0

20mode

500UDDS - Operating points (HEV and propelling)

0 200 400 600 800 1000 1200 1400

-40

-20

200

300

400

ng (r

ad/s

)

EVT1EVT2

0 200 400 600 800 1000 1200 1400

0 10 20 30 400

100

200

V (m/s)

en

FG1FG2FG3FG4

30

Vveh (m/s)

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 31: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

UDDS – Engine Speed and TorqueUDDS - Part 1 - Engine speed and torque UDDS - Part 2 - Engine speed and torque

200

400

600

200

400

600

0 50 100 1500

150 200 250 300 3500

600UDDS - Part 3 - Engine speed and torque

600UDDS - Part 4 - Engine speed and torque

0

200

400

0

200

400

300 350 400 450 500 550 600 6500

600 650 700 750 800 850 900 950 10000

400

600UDDS - Part 5 - Engine speed and torque

Vvehx10 (m/s)

Eng ON 400

600UDDS - Part 6 - Engine speed and torque

950 1000 1050 1100 1150 12000

200

Mode x100

eng (rad/s)

Teng (Nm)

1150 1200 1250 1300 1350 14000

200

31

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 32: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

HWY100

HWFET - Wheel Energy spent in each mode (HEV and propelling)

60

HWFET - FE = 27.5 mpg ; SOC (init/final) = 56.5/58.95; Num Eng On = 4

40

60

80

%

20

40

1 2 3 4 5 60

20

40

mode

-20

0

mode

400

500HWFET - Operating points (HEV and propelling)

100 200 300 400 500 600 700 800-60

-40

Vveh (m/s)

Pdrvdmd (kW)

Eng ONMode

200

300

400

en

g (ra

d/s)

EVT1EVT2FG2

Delta SOCx10

0 10 20 30 400

100

Vveh (m/s)

FG3FG4

32

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 33: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

HWY – Engine Speed and Torque600

HWFET - Part 1 - Engine speed and torque600

HWFET - Part 2 - Engine speed and torque

300

400

500

600

300

400

500

600

0

100

200

300

0

100

200

300

0 50 100 150

140 160 180 200 220 240 260 280 300

600HWFET - Part 3 - Engine speed and torque

600HWFET - Part 4 - Engine speed and torque

Vvehx10 (m/s)

Eng ONMode x100

(rad/s)

200

300

400

500

200

300

400

500eng ( )

Teng (Nm)

250 300 350 400 450 500 5500

100

200

500 550 600 650 700 750 8000

100

200

33

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 34: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

NEDC80

100NEDC - Wheel Energy spent in each mode (HEV and propelling)

60

80NEDC - FE = 27.1 mpg ; SOC (init/final) = 56.5/61.76; Num Eng On = 13

40

60

80

%

20

40

1 2 3 4 5 60

20

mode

-20

0

V (m/s)

400

500NEDC - Operating points (HEV and propelling)

0 200 400 600 800 1000 1200-60

-40

Vveh (m/s)

Pdrvdmd (kW)

Eng ONModeDelta SOCx10 100

200

300

en

g (ra

d/s)

EVT1EVT2FG2FG3

0 10 20 30 400

Vveh (m/s)

FG4

34

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 35: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

NEDC – Engine Speed and TorqueNEDC - Part 1 - Engine speed and torque NEDC - Part 2 - Engine speed and torque

200

400

600

200

400

600

0 50 100 150 2000

150 200 250 300 350 4000

600NEDC - Part 3 - Engine speed and torque

Vvehx10 (m/s)

Eng ON600

NEDC - Part 4 - Engine speed and torque

0

200

400

gMode x100

eng (rad/s)

Teng (Nm)

0

200

400

350 400 450 500 550 6000

550 600 650 700 750 8000

400

600NEDC - Part 5 - Engine speed and torque

400

600NEDC - Part 6 - Engine speed and torque

750 800 850 900 950 10000

200

1000 1050 1100 1150 12000

200

35

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 36: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

LA9280

100LA92 - Wheel Energy spent in each mode (HEV and propelling)

100

LA92 - FE = 23 mpg ; SOC (init/final) = 56.5/60.09; Num Eng On = 33

20

40

60

%

0

50

1 2 3 4 5 60

mode

-50Vveh (m/s)

Pdrvdmd (kW) 300

400

500

d/s)

LA92 - Operating points (HEV and propelling)

200 400 600 800 1000 1200 1400

-100

drv

Eng ONModeDelta SOCx10

100

200

300

en

g (ra

d EVT1EVT2FG1FG2FG3FG4

0 10 20 30 400

Vveh (m/s)

FG4

36

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 37: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

LA92 – Engine Speed and TorqueLA92 - Part 1 - Engine speed and torque LA92 - Part 2 - Engine speed and torque

200

400

600

200

400

600

0 50 100 150 200 2500

200 250 300 350 400 450 500 550 6000

600LA92 - Part 3 - Engine speed and torque

600LA92 - Part 4 - Engine speed and torque

0

200

400

0

200

400

550 600 650 700 7500

750 800 850 900 950 1000 10500

400

600LA92 - Part 5 - Engine speed and torque

Vvehx10 (m/s)

Eng ONMode x100

eng (rad/s) 400

600LA92 - Part 6 - Engine speed and torque

1000 1050 1100 1150 1200 12500

200

eng ( )

Teng (Nm)

1200 1250 1300 1350 1400 14500

200

37

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 38: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

US06 – Engine Speed and Torque100

US06 - Wheel Energy spent in each mode (HEV and propelling)

200US06 - FE = 18.9 mpg ; SOC (init/final) = 56.5/65.89; Num Eng On = 9

Vveh (m/s)

Pdmd (kW)40

60

80

%

100

150Pdrv (kW)

Eng ONModeDelta SOCx10

1 2 3 4 5 60

20

mode

0

50

500US06 - Operating points (HEV and propelling)

0 100 200 300 400 500 600-100

-50

200

300

400

en

g (ra

d/s)

EVT1EVT2FG1

0 10 20 30 400

100

Vveh (m/s)

FG2FG3FG4

38

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

Page 39: Instantaneously Optimized Controller for a Multimode ... - Presentations/HEVs and PHEVs/Control Strategy...Controller Output Torques, mode, eng ON/OFF States SOC, Output speed, mode,

US06600

US06 - Part 1 - Engine speed and torque600

US06 - Part 2 - Engine speed and torque

300

400

500

600

300

400

500

600

0

100

200

300

0

100

200

300

0 50 100 150

140 160 180 200 220 240 260 280 300

600US06 - Part 3 - Engine speed and torque

Vvehx10 (m/s)

Eng ONMode x100

( d/ )

600US06 - Part 4 - Engine speed and torque

200

300

400

500 eng (rad/s)

Teng (Nm)

200

300

400

500

250 300 350 400 450 500 5500

100

200

540 550 560 570 580 590 6000

100

200

39

Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816


Top Related