instantaneously optimized controller for a multimode ... - presentations/hevs and phevs/control...

Click here to load reader

Post on 19-Mar-2020

0 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • Instantaneously Optimized Controller Instantaneously Optimized Controller for a Multimode Hybrid Electric VehicleSAE P #2010 01 0816SAE Paper #2010-01-0816

    Dominik Karbowski, Jason Kwon, Namdoo Kim, Aymeric RousseauDominik Karbowski, Jason Kwon, Namdoo Kim, Aymeric Rousseau

    Argonne National Laboratory, USA

    SAE World Congress 2010

  • Introduction Toyota Prius and some other hybrids use a “Power Split” system: Toyota Prius, and some other hybrids, use a  Power Split  system:

    – 1 planetary gearset, 2 electric motors

    – Engine speed can be controlled independently from the vehicle speed

    Limited cost (simplicity) well suited for low speed driving– Limited cost (simplicity) , well suited for low‐speed driving

    Combining several planetary gearsets or multiple ways of connecting the components leads to a “Multimode” system.

    O i i ll d l d b G l M t l d b M d BMW Originally developed by General Motors, also used by Mercedes, BMW. 

    Dozen of patents on multimode transmissions.

    Increased level of complexity and degrees of freedom.

    This study: an optimized and implementable way of controlling the vehicle

    Using Argonne Powertrain System Analysis Toolkit (PSAT):Using Argonne Powertrain System Analysis Toolkit (PSAT): • forward‐looking powertrain simulation environment• dynamic plant models• Matlab/Simulink/Stateflow Based

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐08162

  • A Multi-Mode Hybrid System Combines Power Split and Fixed Gear Modesand Fixed Gear Modes

    Components: – 2 electric motors + battery

    2 l t l l t h d b k– 2 or more planetary gears, several clutches and brakes

    Combines:– Electric continuously Variable Transmission (EVT) modes

    – Fixed Gear (FG) modes, comparable to a conventional car with a multi‐speed gearbox

    Engine can be ON/OFF, battery SOC needs to be balanced

    GM Tahoe hybrid: – 4 clutches, 3 planetary gearsets

    2 EVT + 4 FG = 6 modes– 2 EVT + 4 FG = 6 modes

    – 2.7 ton / 250 kW engine / 2x 60 kW motors / 6.5 Ah NiMHbattery

    Tahoe Hybrid was validated in PSAT (actual vehicle tested

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐08163

    Tahoe Hybrid was validated in PSAT (actual vehicle tested on Argonne’s 4WD chassis dynamometer)

  • Equations Defining a Multi-Mode Transmission

    O El i l E iOne Electrical Equation

    Multiple Mechanical Equations (Torques and Speeds)

    EVTFixed Gear

    Generic form f h EVTfor each EVT mode j

    : Torque multiplication for gear i for each component

    2 Degrees of Freedom (Torque Split)2 Degrees of Freedom:‐ 1 in Speed‐ 1 in Torque

    4

    1 in Torque

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐08164

  • Summary of States, Constraints and Degrees of FreedomFreedom Objective of controller: “To find the power split between mechanical 

    components (ICE, EM1, EM2) that meets the driver request for the current speed of the vehicle, while maintaining acceptable battery state‐of‐charge

    Target Driver torque demand at gearbox outputC t i t C t li it ti d i bilit SOC b l

    speed of the vehicle, while maintaining acceptable battery state of charge and minimal fuel consumption”

    Constraints Component limitations, drivability, SOC balance

    Degrees of Freedom

    Engine ON/OFFTransmission Mode

    (Fixed Gear) (EVT)Degrees of Freedom (Fixed Gear)Motor 1 torque Motor 2 torque

    (EVT)Engine Speed Engine Torque

    Controller Output Torques mode eng ON/OFFController Output Torques, mode, eng ON/OFF

    StatesSOC, Output speed, mode, eng ON/OFF, speeds

    5

    Controller has to decide on Engine ON/OFF, mode and 2 other degrees of freedom

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐08165

  • Possible Approaches to ControlRule Based Control ImplementedRule Based All 4 degrees of freedom  = heuristic rules e g engine is ON

    Partial instantaneous optimization

    Full Instantaneous Optimization

    Control Implemented 

    e.g. engine is ON above a certain threshold

    Dynamic Programming find the combination of

    p high‐level hybrid operations (Engine On/Off, battery power) = rules

    Optimization All 4 degrees of freedom =  optimization  Cost function: combination of 

    commands that minimizes fuel consumptionRequires the prior

    2 remaining degrees of freedom = optimization Cost function = fuel 

    Cost function: combination of fuel and battery power

    Requires the prior knowledge of the trip speed trace

    power

    Easily Implementable Computationally Challenging

    6

    Easily Implementable,Heuristically tuned

    Computationally Challenging,Optimal Control  

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐08166

  • Partial Instantaneous Optimization Combines Rules and Optimizationand Optimizationhigh level hybridization decisions (engine ON/OFF, battery use)

    Rule‐Based

    1

    Optimized  Remaining 2 degrees of freedom 

    2

    1

    In1

    In2

    Out1

    2

    INSTANTANEOUS OPTIMIZATION 

    MODULEENGINE ON/OFF

    Rule‐BasedOptimized

    2

    In1 Out13SOC 

    CONTROL

    Cost function = fuel power (battery power is set before optimization)

    Rule‐Based

    p ( y p f p )

    For each mode, the optimal (lowest fuel consumption) operation point (torques, speeds) is found, and is used to compute the cost associated to that mode. 

    7

    Selected mode is the one with the lowest cost

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐08167

  • Mode Change Is Based on Fuel Power Comparison For Each ModeFor Each Mode

    Threshold depends on: • current and prospective mode• vehicle speed• time since last mode change

    100

    120

    time since last mode change

    Vveh(mph)

    60

    80

    Mode 5 results in lower fuel power (or rate) than any

    Mode change occurs when difference is higher than a threshold

    Mode (x10)

    (mode 1) (kW)(mode 2) (kW)(mode 3) (kW)

    Fuel Power:

    40

    power (or rate) than any other mode

    (mode 3) (kW)(mode 4) (kW)(mode 5) (kW)(mode 6) (kW)

    0

    20

    667.6 667.7 667.8 667.9 668 668.1 668.2 668.3 668.4 668.5 668.6

    Current mode is Optimal!

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐08168

    Time (s)Current mode = Mode 1 

  • General Organization of the Supervisory ControlA D i d H. Braking Torque B. Constraints I Final Torque Split

    eng trq dmd2

    mc_trq_dmd_brake

    mc2_trq_dmd_brake

    eng_trq_dmd

    DRV_BUS

    CSTR_BUS

    SENS_BUS

    mc_trq_dmd_brake

    mc2_trq_dmd_brakeA_Driver _dmd

    wh_trq_dmd

    veh_spd

    LOC_DRV_BUS

    info_gb_pwr_out_dmd

    ess_pwr_max_pro6

    wh_trq_dmd1

    eng on dmd

    CSTR_BUS

    DRV_BUSDRV_BUS

    SENS_BUS

    wh_trq_dmd

    ess pwr max reg

    ess_pwr_max_pro

    A. Driver command g q& Speed Control

    I. Final Torque Split

    mc trq dmd4

    wh_trq_brake

    eng_trq_prop_dmd

    mc_trq_prop_dmd

    mc_trq_dmdH_Torque_Calc_Brake

    eng_on_dmd

    Mode_dmdwh_trq_brake_dmd

    gb_pwr_ou

    DRV_BUS

    CSTR_BUS

    SENS_BUS

    OPT BUS

    eng_trq_dmd

    mc_trq_dmdB_Constraint

    IN_COMPO_CSTR_BUS

    IN_SENS_BUS

    LOC_CSTR_BUS

    ess_pwr_max_reg7

    5

    mc2 trq max pro4

    mc trq max reg3

    mc trq max pro2

    SPD_TRQ_TARGET_BUS

    eng_on_dmd

    gb_mode_dmd

    CSTR_BUSCSTR_BUS

    DRV_BUS

    SENS_BUS

    mc2_trq_max_reg

    mc2_trq_max_pro

    mc_trq_max_reg

    mc_trq_max_pro

    ess_pwr_max_reg

    brake trq dmd6

    mc2 trq dmd3

    mc2_trq_prop_dmd

    DRV_BUS

    SENS BUS

    mc2_trq_dmd

    wh_trq_brake_dmd[INFO_SOC

    G_Torque_Calc_Prop

    OPT_BUS

    eng_on_dmd

    Mode_dmdmc2_trq_dmd

    DRV_BUS

    CSTR_BUSeng_on_dmd

    C_SOC_Control

    ess_soc

    veh_spd

    LOC_SOC_CTRL_BUS

    INFO_SOC_CTRL_BUS

    mc trq16

    mc _spd10

    eng_trq_max8

    mc2 trq max regen5

    eng_on_dmd

    eng_on_dmd

    gb_mode_dmdSOC_BUS

    DRV_BUS

    SENS_BUS

    eng_trq_max

    mc trq

    mc_spd

    D. Eng ON/OFF

    ptc_brake_regen_state_info12

    J_Torque_Split_Logic

    SENS_BUS

    eng_on_dmd

    SOC_CTRL_BUS

    prop_state_info

    ess.init.soc_init

    FO_ENG_O

    DRV_BUSSPD_TRQ_TARGET_BUS

    D_Engine_ON_Control

    SOC_BUS

    SENS_BUSINFO_ENG_ON_BUS

    eng_ on17

    mc_trq

    eng_spd15

    mc2_trq13

    veh spd12

    abs soc11

    mc2_ spd9

    eng_on_dmd

    SOC_BUS

    DRV_BUS

    SENS_BUS

    ess_soc

    veh_spd

    eng_on

    eng_spd

    mc2_trq

    mc2 _spd_ q

    mode5

    eng on/off dmd1

    F mode control

    DRV_BUS

    SENS_BUS

    THRESH_BUS

    eng_on_dmd

    gb_mode_dmd

    E_optim_module

    SENS_BUS

    ESS_BUS THRESH_OPTIM_BUS

    gb_sip19

    gb_mode18

    accelec pwr14

    abs soc

    gb_sft_in_progress

    gb_mode_dmd

    SENS_BUS

    gb_modeaccelec_pwr

    C. SOC Regulation

    G. Propelling Torque, Speed Control

    F_mode_control

    9

    E.Optimization Module F. Mode SelectionArgonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

    9

  • Inside the Optimization Module (Online Mode Comparison)Comparison)

    Target component speeds and torques

    Optimal operating conditions are computed for each mode based on demands and state

    Operating conditions; the ones corresponding to current gear are selected and used as targets

    Comparison between current mode fuel power and candidate fuel power

    Comparison with M d

    =1 if current mode is possible and “better”

    Optimal Operating Point Computation p

    Current ModeMode 

    change OK?

    Comparison with

    Current Mode

    Point Computation

    Optimal Operating  Comparison with Current Mode Mode change OK?

    p p gPoint Computation

    Optimal Operating

    for current gear

    Comparison with Current Mode

    Mode change OK?

    Fuel Power for the The fuel power corresponding to current i l d d d f i

    Optimal Operating Point Computation

    current geargear is selected and used for comparison

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081610

  • In the Optimization Module The Optimal Operating Point Is Computed For Each Mode Point Is Computed For Each Mode

    Gi Givens:

    Fixed Gear EVT

    Givens:– Engine, Motors speed 

    (proportional to vehicle speed)

    – Target battery power 

    Givens:

    – battery power

    – transmission output speed

    An offline optimization code finds the optimal engine g y p

    One motor torque is known => other motor torque known too (electric power equation)

    To avoid partial load:

    speed and torque 

    Off‐line optimization takes into account engine losses and motor losses

    Resulting look‐up tables are used in each EVT mode To avoid partial load: 

    – one motor = all battery power demand

    – other one = no torque 

    Resulting look up tables are used in each EVT modem

    )

    1500

    2000Teng (Nm)

    300

    350

    400

    450

    m)

    1500

    2000eng (rpm)

    3000

    3500

    4000

    T gbout (

    Nm

    500

    1000

    50

    100

    150

    200

    250

    T gbout (

    Nm

    500

    1000

    1500

    2000

    2500

    Example of Targets for Battery power = 0

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081611

    gbout (rpm)

    0 1000 2000

    0

    gbout (rpm)

    0 1000 2000

    0

  • Mode and Engine Operations

    600Vveh [ICE OFF] (mph x10) Mode (x100)weng (rpm x 0.1)

    400

    500

    600

    400

    500

    600( )eng ( p )

    Teng (Nm)Vveh [ICE ON] (mph x10)

    UDDS

    200

    300

    200

    300HWFET

    0 50 100 150

    0

    100

    0

    100

    0 50 100 150 50 100Time (s)Time (s)

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081612

  • Vehicle Operations on Standard Cycles80 V [ICE Off] (mph x10) M d ( 100)

    20

    40

    60

    Vveh [ICE Off] (mph x10) Mode (x100)Delta-SOC (% x10)Vveh [ICE On] (mph x10)

    40

    -20

    0

    20

    UDDS

    0 200 400 600 800 1000 1200 1400-60

    -40

    Time (s)60 Urban = mostly mode 1 (EV), mode 4

    20

    40

    HWFET

    Urban   mostly mode 1 (EV), mode 4 when engine is ON 

    Highway = mode 5 & 6

    -40

    -20

    0 HWFET

    In both cases, SOC is well balanced

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081613

    100 200 300 400 500 600 700 800

    Time (s)

  • Comparative Analysis60n

    t )

    40

    50

    60

    nerg

    y Sp

    ePr

    opel

    ling

    mode 1mode 2mode 3

    20

    30

    al W

    heel

    E(IC

    E O

    N +

    mode 3mode 4mode 5mode 6

    UDDS LA92 NEDC HWFET US060

    10

    hare

    of T

    ota

    ach

    Mod

    e (

    Mode 1 : lower speeds in urban driving (UDDS, LA92, NEDC, US06)

    Mode 2 : aggressive driving (LA92, US06)

    %Sh

    in E

    a

    Mode 4 : intermediate speeds in urban driving (UDDS, LA92)

    Mode 5 : high speeds (NEDC, HWFET, US06)

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081614

    Mode 6 : very high speeds (NEDC, HWFET, US06)

  • Conclusion: Optimized Controller Takes Full Advantage of the Multimode Hybrid SystemAdvantage of the Multimode Hybrid System

    Instantaneously optimized controller for a multimode hybrid powertrain:– Implementable in an actual vehicle 

    Easily adaptable to any multimode hybrid system– Easily adaptable to any multimode hybrid system

    “Partial” instantaneous optimization finds the optimal mode and operating points:– Optimal operation within each mode

    – Optimal mode selectionwith minimal tuningOptimal mode selection with minimal tuning

    “Partial” instantaneous optimization uses rule‐based controls for hybrid controls:– Battery SOC balance and drivability through strict control over engine ON/OFF

    – Easy and intuitive to tune (very high‐level energy management)

    Also very suitable and flexible for design optimization studies: – No tuning for most changes in powertrain (different component/ratios/mass) 

    – Controller can be quickly adapted to different mode pattern 

    Future work will focus on:– Implementing “full” instantaneous optimization

    – Quantifying the benefits of optimized controllers over rule‐based controllers

    Will b d i A t i A ’ t ti d l b d d i t l– Will be done in Autonomie, Argonne’s next generation model‐based design tool 

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081615

  • Instantaneously Optimized Controller for M lti d H b id El t i V hi la Multimode Hybrid Electric Vehicle

    SAE Paper #2010‐01‐0816

    Acknowledgements

    Activity sponsored by Lee Slezak from the U.S. Department of Energy

    Contact / Website

    Dominik Karbowski, [email protected]

    A i R @ lAymeric Rousseau, [email protected]

    www.transportation.anl.gov/modeling_simulation/PSAT/

    Argonne National Laboratory, 9700 South Cass, Argonne IL 60439 

  • Additionnal Slides

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081617

  • Fuel Consumption

    Cycle mpg km/L L/100 kmUDDS  29.1 12.3 8.1HWFET  27.8 11.8 8.5NEDC  28.1 11.9 8.4LA92  23.3 9.9 10.1US06 19 5 8 3 12 1US06  19.5 8.3 12.1

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐081618

  • Resolution of the Optimization Takes Two Stages

    Mode 1 Find Optimal Operating Point

    Compute Associated Cost

    Compare cost

    Fi d O ti l C t A i t d

    Compare cost for each mode

    Find Optimal Operating Point

    Compute Associated CostMode 6

    1. Solve the problem for each mode 2. Select the mode

    19

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • Once the Mode Is Chosen, Two Degrees of Freedom

    Givens: vehicle speed, gearbox output torque (proportional to driver torque demand)

    In the case of a fixed gear: 2 degrees of freedom– Speed: given by the vehicle speed

    – Torque: 2 degrees of freedom, e.g. both electric machines 

    – Equivalent to battery power Pess and xEM1 :• xEM1 : the fraction of total electric machines electrical input due to EM1

    • The function                                       is invertible (idem for EM2), giving both electric machines torques and therefore engine torquemachines torques, and therefore engine torque

    EVT: 2 degrees of freedom

    – Speed: 2 linear equations, 3 unknowns = 1 degree of freedom (e.g. ICE speed)

    – Torque: 2 linear equations, 3 unknowns = 1 degree of freedom (e.g. ICE torque)q q , g ( g q )

    engine speed and torque is enough to define the system

    Known

    20

    system 

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • Full Instantaneous Optimization Relies on Finding a Fuel Equivalence to Battery Power a Fuel Equivalence to Battery Power

    All degrees of freedom are resolved by an optimization algorithm

    At each time t we are looking for the command that will minimize the At each time t, we are looking for the command that will minimize the cost function.

    The cost function cannot be fuel power only, because it would lead to the use of “free” battery energythe use of  free  battery energy

    An equivalence factor can be used to compare fuel and battery energy: 

    Challenges: – the equivalence factor is likely to be cycle‐dependant, so it would have to 

    be a function of SOC and probably other variables; 

    – the engine ON/OFF can be hard to manage

    21

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • Fixed Gear : Finding the Optimum Operating Point

    For a given gear and battery power, the only degree of freedom left is the electric machine split xEM1.

    Simplifying assumptions:– using one motor instead of both ones at the same time is more efficient, 

    hence xEM1 can only be zero or one– the motor with the highest speed is more efficient (EM1 in mode 6, EM2 in 

    mode 4 and 5)

    The cost for that given gear is the fuel power:

    22

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • EVT : Finding the Optimum Operating Point

    For a given mode, if the battery power is given, there is only one degree of freedom left for example engine speeddegree of freedom left, for example engine speed

    Since components speeds are not fixed, there is no simple relationship between battery power and the control variables (engine speed and torque)torque)

    Of all the engine speeds and torques that verifies all equations and constraints, the one that results in the lowest fuel consumption will be the one used to compute the costthe one used to compute the cost

    The resulting engine speed will also be used as a target later on.

    23

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • D. Engine ON/OFF (Logic) Engine turns ON if Engine turns ON if:

    – (Engine has been OFF for a minimum time) AND (Power demand above threshold) AND (Power demand is increasing)

    – OR (Electric System can not meet driver’s demand)

    – OR (“Performance Mode”, i.e. pedal position close to 1)

    – OR (Battery SOC is low)

    Engine shuts down if:

    – (Engine has been ON for a minimum time)

    ( d bl h h ld)– AND (Power Demand is blow threshold)

    – AND (Electric System can meet driver’s demand on its own)

    – AND (Transmission mode is 1, 2 or 3)

    – AND (Battery SOC is not low)

    24

    AND (Battery SOC is not low)

    – AND (Power demand is decreasing)Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • E. Optimization Module (outline) Obj ti t th ti l ti i t f h d

    gb mode1

    The fuel power for the current mode is fed back for comparison

    Objective: compute the optimal operating point for each mode, compare each mode with the current mode and define targets for the current mode

    2 Current Mode selector

    1

  • Fixed Gear Operating Points

    Speed calculation and constraints check Torque max for each 

    component Fuel power

    compo_spd_possible6

    eng_pwr_in4

    6_Fuel_Power

    eng _spd

    eng _trqeng _pwr_in

    3 Trq max

    mc_spd

    mc2_spd

    eng _spd

    EM_selection

    eng _trq _max

    EM _trq _max_prop

    EM_trq_max_chg1_Spd_Calc

    gb_spd _out

    gear #

    compo_spd _OK

    mc_spd

    mc2_spd

    eng _spd

    gb_spd_out1

    mc2_spd_target

    mc_spd_target

    eng_spd_target

    eng _trq _max

    EM_trq max prop

    EM_trq_max_regen

    eng _trq

    mc_spd

    mc2_spd

    pwr_elec _dmd

    EM_selection

    elec _mach_trq _dmd

    3_Trq_max

    pwr_elec_dmd3

    eng_trq_targeteng_trq_targeteng_spd_target

    MODE3_TRQ_TRGT_BUS1

    EM_trq

    EM selection

    mc_trq _dmd5_Trq_calc

    _ q_ _ g

    EM_trq_dmd

    EM_selection

    gb_trq _out_dmd

    gear #

    EM_trq

    percent _trq_max

    4_Ess_pwr_dmd

    2_ElecMachineSelection

    gear EM_selectiongear#

    4

    gb_trq_out_dmd2 mc_trq_target

    mc2_trq_target

    mc2_spd_target

    mc_spd_target

    Selects the working 

    possible_cmd5

    ess_pwr_error3

    percent trq max2

    AND

    7_MC_MC2_Trq_and_Pwr_dmd_Conformity

    EM_selection

    mc_spd

    mc2_spd

    Elec pwr dmd

    mc2_trq _dmd

    ess_pwr_dmd_OK

    ess _pwr_error

    Torque necessary to provide battery power

    Torque calculation

    Ch k if b tt

    gEM (makes the whole block generic)

    26

    percent_trq_maxprovide battery power Checks if battery power demand will be met

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • EVT Operating Point Optimizationpossible idx=0 if there is no solution Fuel Power used for later comparison

    4

    eng _pwr_in3gb_spd_out eng_pwr_in

    possible_idxgb _spd_out

    1 eng_pwr_in_target

    possible cmd

    possible_idx 0 if there is no solution Fuel Power used for later comparison

    possible _cmd

    eng_spd mc_spd

    1_Engine _Optimal _Point

    gb_trq_out_dmd

    ess_pwr_dmd

    eng_spd

    eng_trq

    ess_pwr_dmd3

    gb_trq_out _dmd2

    eng_spd_target

    possible_cmd

    eng_trq_target

    mc_spd_target

    MODE 1_SPD_TRQ _TRGT _BUS1

    eng_trq mc_trq

    2_MC_MC2_SPD_CALC

    gb_spd_out mc2_spd

    mc_trq_target

    mc2_spd_target

    Using 3‐D look‐up tables, optimal ICE speed and torque is  found; 

    ess_pwr_error2Mc_spd

    Mc2 spd

    3_MC_MC2_trq

    gb_trq mc2_trqmc2_trq_target

    q ;

    _ p

    Mc_trq

    Mc2_trq

    ess_pwr

    ess_pwr_erroress_pwr_error

    Compute the difference between the target battery

    27

    6_ESS_PWR_CHECK

    between the target battery power and the actual one

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • Optimal Operating Points (EVT1 – Input / Pess=0) 2000 450

    2000(Nm

    )

    1000

    1500

    Teng (Nm)

    250

    300

    350

    400

    Nm

    )

    1500

    2000EVT efficiency

    0.9

    0.95Tgbou

    t (

    500

    1000

    50

    100

    150

    200

    T gbout (

    N

    500

    1000

    0.75

    0.8

    0.85

    gbout (rad/s)

    0 50 100 150 200 250 300

    0

    2000

    eng (rad/s) 400

    450

    gbout (rad/s)

    0 50 100 150 200 250 300

    0 0.7

    T gbout (

    Nm

    )

    1000

    1500

    eng

    300

    350

    400

    T go

    0 50 100 150 200 250 300

    0

    500

    150

    200

    250

    • Includes electric path losses• Does not include gearbox mechanical losses

    28

    gbout (rad/s)

    0 50 100 150 200 250 300 • Does not include gearbox mechanical losses

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • Optimal Operating Points (EVT2 – Compound / P = 0)1000 450Pess= 0)

    m) 600

    800

    1000Teng (Nm)

    250

    300

    350

    400

    450

    1000EVTefficiency

    T gbout (

    Nm

    200

    400

    50

    100

    150

    200

    250

    t (N

    m) 600

    800

    EVT efficiency

    0.85

    0.9

    0.95

    gbout (rad/s)

    0 100 200 300 400 500

    0

    50

    1000

    eng (rad/s) 400

    450

    T gbout

    0

    200

    400

    0 7

    0.75

    0.8

    T gbout (

    Nm

    )

    400

    600

    800g

    300

    350

    400

    gbout (rad/s)

    0 100 200 300 400 5000 0.7

    T go

    0 100 200 300 400 500

    0

    200

    400

    150

    200

    250

    • Includes electric path losses• Does not include gearbox mechanical losses

    29

    gbout (rad/s)

    0 100 200 300 400 500

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • UDDS100

    UDDS - Wheel Energy spent in each mode (HEV and propelling)

    80

    UDDS - FE = 29.1 mpg ; SOC (init/final) = 56.5/56.38; Num Eng On = 37

    Vveh (m/s)

    Pdmd (kW)

    60

    80

    100

    %

    40

    60

    Pdrv (kW)

    Eng ONModeDelta SOCx10

    1 2 3 4 5 60

    20

    40

    0

    20mode

    500UDDS - Operating points (HEV and propelling)

    0 200 400 600 800 1000 1200 1400

    -40

    -20

    200

    300

    400

    ng (r

    ad/s

    )

    EVT1EVT2

    0 200 400 600 800 1000 1200 1400

    0 10 20 30 400

    100

    200

    V (m/s)

    en

    FG1FG2FG3FG4

    30

    Vveh (m/s)

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • UDDS – Engine Speed and TorqueUDDS - Part 1 - Engine speed and torque UDDS - Part 2 - Engine speed and torque

    200

    400

    600

    200

    400

    600

    0 50 100 1500

    150 200 250 300 3500

    600UDDS - Part 3 - Engine speed and torque

    600UDDS - Part 4 - Engine speed and torque

    0

    200

    400

    0

    200

    400

    300 350 400 450 500 550 600 6500

    600 650 700 750 800 850 900 950 10000

    400

    600UDDS - Part 5 - Engine speed and torque

    Vvehx10 (m/s)

    Eng ON 400

    600UDDS - Part 6 - Engine speed and torque

    950 1000 1050 1100 1150 12000

    200

    Mode x100

    eng (rad/s)

    Teng (Nm)

    1150 1200 1250 1300 1350 14000

    200

    31

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • HWY100

    HWFET - Wheel Energy spent in each mode (HEV and propelling)

    60

    HWFET - FE = 27.5 mpg ; SOC (init/final) = 56.5/58.95; Num Eng On = 4

    40

    60

    80

    %

    20

    40

    1 2 3 4 5 60

    20

    40

    mode

    -20

    0

    mode

    400

    500HWFET - Operating points (HEV and propelling)

    100 200 300 400 500 600 700 800-60

    -40

    Vveh (m/s)

    Pdrvdmd (kW)

    Eng ONMode

    200

    300

    400

    en

    g (ra

    d/s)

    EVT1EVT2FG2

    Delta SOCx10

    0 10 20 30 400

    100

    Vveh (m/s)

    FG3FG4

    32

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • HWY – Engine Speed and Torque600

    HWFET - Part 1 - Engine speed and torque600

    HWFET - Part 2 - Engine speed and torque

    300

    400

    500

    600

    300

    400

    500

    600

    0

    100

    200

    300

    0

    100

    200

    300

    0 50 100 150

    140 160 180 200 220 240 260 280 300

    600HWFET - Part 3 - Engine speed and torque

    600HWFET - Part 4 - Engine speed and torque

    Vvehx10 (m/s)

    Eng ONMode x100

    (rad/s)

    200

    300

    400

    500

    200

    300

    400

    500eng ( )

    Teng (Nm)

    250 300 350 400 450 500 5500

    100

    200

    500 550 600 650 700 750 8000

    100

    200

    33

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • NEDC80

    100NEDC - Wheel Energy spent in each mode (HEV and propelling)

    60

    80NEDC - FE = 27.1 mpg ; SOC (init/final) = 56.5/61.76; Num Eng On = 13

    40

    60

    80

    %

    20

    40

    1 2 3 4 5 60

    20

    mode

    -20

    0

    V (m/s)

    400

    500NEDC - Operating points (HEV and propelling)

    0 200 400 600 800 1000 1200-60

    -40

    Vveh (m/s)

    Pdrvdmd (kW)

    Eng ONModeDelta SOCx10 100

    200

    300

    en

    g (ra

    d/s)

    EVT1EVT2FG2FG3

    0 10 20 30 400

    Vveh (m/s)

    FG4

    34

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • NEDC – Engine Speed and TorqueNEDC - Part 1 - Engine speed and torque NEDC - Part 2 - Engine speed and torque

    200

    400

    600

    200

    400

    600

    0 50 100 150 2000

    150 200 250 300 350 4000

    600NEDC - Part 3 - Engine speed and torque

    Vvehx10 (m/s)

    Eng ON600

    NEDC - Part 4 - Engine speed and torque

    0

    200

    400

    gMode x100

    eng (rad/s)

    Teng (Nm)

    0

    200

    400

    350 400 450 500 550 6000

    550 600 650 700 750 8000

    400

    600NEDC - Part 5 - Engine speed and torque

    400

    600NEDC - Part 6 - Engine speed and torque

    750 800 850 900 950 10000

    200

    1000 1050 1100 1150 12000

    200

    35

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • LA9280

    100LA92 - Wheel Energy spent in each mode (HEV and propelling)

    100

    LA92 - FE = 23 mpg ; SOC (init/final) = 56.5/60.09; Num Eng On = 33

    20

    40

    60

    %

    0

    50

    1 2 3 4 5 60

    mode

    -50Vveh (m/s)

    Pdrvdmd (kW) 300

    400

    500

    d/s)

    LA92 - Operating points (HEV and propelling)

    200 400 600 800 1000 1200 1400

    -100

    drv

    Eng ONModeDelta SOCx10

    100

    200

    300

    en

    g (ra

    d EVT1EVT2FG1FG2FG3FG4

    0 10 20 30 400

    Vveh (m/s)

    FG4

    36

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • LA92 – Engine Speed and TorqueLA92 - Part 1 - Engine speed and torque LA92 - Part 2 - Engine speed and torque

    200

    400

    600

    200

    400

    600

    0 50 100 150 200 2500

    200 250 300 350 400 450 500 550 6000

    600LA92 - Part 3 - Engine speed and torque

    600LA92 - Part 4 - Engine speed and torque

    0

    200

    400

    0

    200

    400

    550 600 650 700 7500

    750 800 850 900 950 1000 10500

    400

    600LA92 - Part 5 - Engine speed and torque

    Vvehx10 (m/s)

    Eng ONMode x100

    eng (rad/s) 400

    600LA92 - Part 6 - Engine speed and torque

    1000 1050 1100 1150 1200 12500

    200

    eng ( )

    Teng (Nm)

    1200 1250 1300 1350 1400 14500

    200

    37

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • US06 – Engine Speed and Torque100

    US06 - Wheel Energy spent in each mode (HEV and propelling)

    200US06 - FE = 18.9 mpg ; SOC (init/final) = 56.5/65.89; Num Eng On = 9

    Vveh (m/s)

    Pdmd (kW)40

    60

    80

    %

    100

    150Pdrv (kW)

    Eng ONModeDelta SOCx10

    1 2 3 4 5 60

    20

    mode

    0

    50

    500US06 - Operating points (HEV and propelling)

    0 100 200 300 400 500 600-100

    -50

    200

    300

    400

    en

    g (ra

    d/s)

    EVT1EVT2FG1

    0 10 20 30 400

    100

    Vveh (m/s)

    FG2FG3FG4

    38

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816

  • US06600

    US06 - Part 1 - Engine speed and torque600

    US06 - Part 2 - Engine speed and torque

    300

    400

    500

    600

    300

    400

    500

    600

    0

    100

    200

    300

    0

    100

    200

    300

    0 50 100 150

    140 160 180 200 220 240 260 280 300

    600US06 - Part 3 - Engine speed and torque

    Vvehx10 (m/s)

    Eng ONMode x100

    ( d/ )

    600US06 - Part 4 - Engine speed and torque

    200

    300

    400

    500 eng (rad/s)

    Teng (Nm)

    200

    300

    400

    500

    250 300 350 400 450 500 5500

    100

    200

    540 550 560 570 580 590 6000

    100

    200

    39

    Argonne National Laboratory  ‐ Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle ‐ 2010‐01‐0816