Transcript
  • Energy Geotechnology

    J. Carlos Santamarina Georgia Institute of Technology

    Hellenic Society For Soil Mechanics And Geotechnical Engineering

    Athens September 16, 2013

    Thessaloniki September 17, 2013

  • Distribution Copy:

    References added for further reading

    Click on links to see pdf files

    Note: Academic use only

  • Today Energy

    Geotech Geo-

    Chemistry

    Frozen

    Ground

    Future Unsat. Soil

    Mechanics

    Ground

    Thaw

    Use

    &

    Sources

    Bio-Geo Fractures

    Soils

    (revisited)

    Repetitive

    Loading

  • Explosion: 4/20/10 (@10 pm) Deepwater Horizon

    Sinks: 4/22/10 (~10 am) Oil slick: 5/6/10

    Energy: News Deepwater Horizon (April 20, 2010)

  • Energy: News

    abcnews.go.com

    www.dailykos.com

    Fukushima I Nuclear Power Plant (March 11, 2011)

  • Energy: Civic Journalism

  • Energy: Civic Journalism

  • Energy: Civic Journalism

  • Energy: Civic Journalism

  • Energy: Civic Journalism

  • Energy: Civic Journalism

  • Energy: Civic Journalism

  • Energy: Civic Journalism

  • Energy: Civic Journalism

  • Energy: Civic Journalism

  • Energy: Civic Journalism

  • Time & The Economist (one week)

    Energy: Advertisement

    Carbon capture & storage Efficiency and conservation Alternative sources

    Renewable sources C-free energy & the grid Smart grid

  • Energy

    Geotech Geo-

    Chemistry

    Frozen

    Ground

    Future Unsat. Soil

    Mechanics

    Ground

    Thaw

    Use

    &

    Sources

    Bio-Geo Fractures

    Soils

    (revisited)

    Repetitive

    Loading

  • 0

    50

    100

    0 0 1 10

    WA

    [%

    ]

    PC [kW/person]

    40

    60

    80

    0 0 1 10

    LE

    [yrs

    ]

    PC [kW/person]

    1

    10

    100

    0 0 1 10

    IM

    [d

    ea

    ths/1

    00

    0 b

    orn

    ]

    PC [kW/person]

    0

    5

    10

    15

    0 0 1 10

    MY

    S [yrs

    ]

    PC [kW/person]

    0

    50

    100

    0 0 1 10

    EL [%

    ]

    PC [kW/person]

    100

    1000

    10000

    100000

    0 0 1 10

    GN

    I

    [$/p

    ers

    on]

    PC [kW/pers]

    LE

    [y

    ea

    rs]

    WA

    [%]

    EL

    [%]

    105

    104

    103

    102

    GN

    I

    [US

    $/p

    ers

    on]

    0.01 0.1 1 10

    MY

    S

    [years

    ]

    IM

    [de

    ath

    s/1

    03 b

    orn

    ]

    water

    life expectancy

    infant mortality

    schooling

    electrification

    income

    Energy

    and

    Life

    Greece: 100%

    Greece: 79 yr

    Greece: 3.8/1000 born

    Greece: 9.8

    Greece: 97%

    Greece: 26130 U$A

    4.5

    4.5

  • 0

    50

    100

    0 0 1 10

    WA

    [%

    ]

    PC [kW/person]

    40

    60

    80

    0 0 1 10

    LE

    [yrs

    ]

    PC [kW/person]

    1

    10

    100

    0 0 1 10

    IM

    [d

    ea

    ths/1

    00

    0 b

    orn

    ]

    PC [kW/person]

    0

    5

    10

    15

    0 0 1 10

    MY

    S [yrs

    ]

    PC [kW/person]

    0

    50

    100

    0 0 1 10

    EL [%

    ]

    PC [kW/person]

    100

    1000

    10000

    100000

    0 0 1 10

    GN

    I

    [$/p

    ers

    on]

    PC [kW/pers]

    LE

    [y

    ea

    rs]

    WA

    [%]

    EL

    [%]

    105

    104

    103

    102

    GN

    I

    [US

    $/p

    ers

    on]

    0.01 0.1 1 10

    MY

    S

    [years

    ]

    IM

    [de

    ath

    s/1

    03 b

    orn

    ]

    5

    5

    0.1

    0.1

    water

    life expectancy

    infant mortality

    schooling

    electrification

    income

    Energy

    and

    Life

  • 5

    15

    25

    1980 2010 2040

    PT

    [T

    W]

    Historical

    This Study (Status Quo)

    EIA (2010)

    IEA (2009)

    0

    2

    4

    6

    8

    10

    1980 2010 2040

    QL

    glo

    ba

    l

    4

    6

    8

    10

    1980 2010 2040

    Pop. [B

    illio

    n] UN (2010)U.S.C.B. (2011)

    PT2040= 25.5 TW

    QL2040= 6.3

    P2040= 8.9 b

    17 TW

    5.0

    7 b

    Status Quo

  • Today

    Future

    Geo-

    Chemistry

    Frozen

    Ground

    Unsat. Soil

    Mechanics

    Ground

    Thaw

    Bio-Geo Fractures Repetitive

    Loading

    Energy

    Geotech

    Use

    &

    Sources

    Soils

    (revisited)

  • Sources

    37% petroleum transport

    24% natural gas heat&power

    23% coal power

    4 % biomass (renewable) industrial

    8% nuclear power power

    2% hydroelectric power

    < 2% renewable non-hydro power

    ~88% fossil fuels

  • 1 By

    4.5 B

    2 By 3 By 4 By 0

  • 1 By

    4.5 B

    2 By 3 By 4 By 0

  • 0 My 2 My 4 My 6 My 8 My 10 My

    1 By

    4.5 B

    2 By 3 By 4 By 0

  • 0 My 2 My 4 My 6 My 8 My 10 My

    1 By

    4.5 B

    2 By 3 By 4 By 0

    0 2000 yr -2000 yr -4000 yr -6000 yr

  • C

    CO2

    Fossil Fuel: 88%

  • Summary: Energy and Life

    Quality of life: current development patterns: HDI Energy

    By 2040: Δ-energy ~50%

    most of the growth: developing countries

    Resources: adequate …. C-dependency → global warming

    Sustainable energy system:

    quality of life > 1 kW/person

    developing technological leapfrogging

    QL population growth

    developed technological breakthroughs

    efficiency and conservation < 4 kW/person

    world energy-for-life efficient governments

    http://pmrl.ce.gatech.edu/papers/Santamarina_2006www.pdf

    http://pmrl.ce.gatech.edu/papers/Pasten_2012a.pdf

  • FOSSIL FUELS (C-BASED) RENEWABLE Nuclear

    Petroleum Gas Coal Wind Solar

    • fines & clogging

    •sand production

    • shale instability

    • EOR

    • heavy oil & tar sand

    • gas hydrates

    • gas storage

    • low-T LNG found. • characterization

    • optimal extraction

    • subsurface conv.

    • off/onshore

    • periodic load

    • ratcheting

    ??

    • engineered soils

    • decommission

    • leak detect

    • leak repair • mixed fluid flow, percolation

    • contact angle & surface tension = f(ua)

    GEOLOGICAL STORAGE (energy and waste)

    CO2 sequestration (Fly Ash) • mineral dissolution shear faults

    • long-term containment

    • upscaling geological properties

    Energy Storage • for peak demand

    (e.g., compressed air)

    • pile-exchangers

    • phase-change mixtures

    Waste storage

    105 yr BTHCM

    GEO-ENVIRONMENTAL REMEDIATION • Bio-chemo-geo phenomena and methods

    CONSERVATION • Energy efficient construction technology: "Embodied Energy" in infrastructure projects

    • Bio-mimetization: ant excavation: tunneling and new infrastructure; tree roots: smart/adaptable foundations

    Hydro-electric: capacity almost saturated

    Biofuels: strongly geo-related, BUT: water? land? food? energy efficiency?

    Geothermal: viable in "hot-spots“ (high T rock performance, tools, monitoring, processes)

    Tidal: foundation engineering

    Electric grid: critical for renewable sources, CO2 capture and storage

    http://pmrl.ce.gatech.edu/papers/Santamarina_2011a.pdf

    http://pmrl.ce.gatech.edu/papers/Santamarina_2012b.pdf

  • Today

    Future

    Energy

    Geotech Geo-

    Chemistry

    Frozen

    Ground

    Unsat. Soil

    Mechanics

    Ground

    Thaw

    Bio-Geo Fractures

    Soils

    (revisited)

    -pores-

    Repetitive

    Loading

  • TVA – US EPA

    Kingston Fossil Plant (12/22/2008)

  • oil

    water

    0

    2

    4

    6

    8

    10

    12

    1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2

    Fre

    qu

    en

    cy

    Gs

    1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2

    SE -USA

    Specific Gravity

  • Critical fines

    Content FC*

    finecoarse

    coarse

    total

    fine*

    ee1

    e

    M

    MFC

    Grain Size Distribution: The Role of Fines

  • Critical Fines Content

    Critical fines

    Content FC*

    1 103

    0.01 0.1 1 10 100 1 103

    0

    0.1

    0.2

    0.3

    0.4

    Specific Surface m2/g

    Cri

    tic

    al fi

    ne

    s C

    on

    ten

    t F

    C*

    USCS

    eC=emax eF=e100 kPa

    eC=emin eF=e1 kPa

    K I B

  • Fines Migration and Clogging

    fines migration

    & clogging

    Critical fines

    Content FC*

  • Bridges at Pore Throats

    Particles

    Container

    Orifice

    Mica

    Sand

    Glass Beads

    2 3 4 5 6 7 8 9 10

    Pore throat -to- particle diameter O/d

    min

    max

    min

    min

    max

    max

    5

  • Clogging in radial flow

    ?

    http://pmrl.ce.gatech.edu/papers/Valdes_2008c.pdf

    http://pmrl.ce.gatech.edu/papers/Valdes_2008c.pdf

    http://pmrl.ce.gatech.edu/papers/Valdes_2006b.pdf

    http://pmrl.ce.gatech.edu/papers/Valdes_2006b.pdf

  • Clogging in radial flow

  • Clogging in radial flow

  • Clogging in radial flow

  • Clogging in radial flow

  • 0.01

    0.10

    1.00

    10.00

    100.00

    0.10 1.00 10.00 100.00 1000.00

    Sta

    nd

    ard

    de

    via

    tio

    n o

    f d

    [m

    icro

    n]

    Mean of d [micron]

    μln=ln(μd)-0.5(σd/μd)2

    σln2=ln[1+(σd/μd)

    2]

    d

    d

    0.4

    2

    dln(b)

    2.5 dP(d b) exp ln 0.05 dd

    4

    Bioactivity - Probabilistic ~1 μm

    1μm

  • P(dpore>b)

    sed fl fl

    ec c n P(d b) c P(d b)

    1 e

    0.01

    0.10

    1.00

    10.00

    100.00

    1000.00

    0 2 4 6 8 10 12D

    ep

    th (

    m)

    Log10 of cell count per ml of sediment

    0.0451070Ss [m2/gr]: 300

    http://pmrl.ce.gatech.edu/papers/Rebata-Landa_2006b.pdf

    http://pmrl.ce.gatech.edu/papers/Phadnis_2011a.pdf

    Parkes et al. (1994, 2000)

  • COARSE

    > 50%

    retained

    sieve #200

    Gravel:

    > 50% retained

    sieve #4

    < 5% fines

    Cu>4, 1Cc3

    GW

    else …

    GP

    > 12% fines

    Below 'A' line

    GM

    Above 'A' line

    GC

    Sand:

    < 50% retained

    sieve #4

    < 5% fines

    Cu>6, 1Cc3

    SW

    else …

    SP

    > 12% fines

    Below 'A' line SM

    Above 'A' line

    SC

    FINE

    < 50%

    retained

    sieve #200

    LL50

    MH

    CH

    OH

    60

    50

    40

    30

    20

    10

    0

    pla

    sti

    cit

    y in

    de

    x

    liquid limit

    CL-ML CL

    ML

    CL

    OL or

    ML

    CH

    OH or

    MH

    A line

    0 10 20 30 40 50 60 70 80 90 100

    ?

  • Today

    Future Fines

    Bacteria

    Energy

    Geotech Geo-

    Chemistry

    Frozen

    Ground

    Unsat. Soil

    Mechanics

    Ground

    Thaw

    Fractures Repetitive

    Loading

  • CO2 Storage

    Caprock

    Two phase flow: CO2 & brine

    Single phase reactive flow

    CO2 dissolved brine

    Q

    CO2(aq)

    H+

    CO2 Brine

    buoyancy

    capillarity

    M

    CO2

    M

    B

    http://pmrl.ce.gatech.edu/papers/Espinoza_2011a.pdf

    http://pmrl.ce.gatech.edu/papers/Espinoza_2012a.pdf

    Kim and JCS – Several publications – Contact authors

  • CO2 Dissolution and H2O Acidification

    10 mm

    ES Bang (KIGAM)

  • 1mm

    1mm1mm

    100m

    1m

    Droplet

    zone

    Calcite substrate

    Water in CO2

    acidification dissolution drying precipitation

  • wind

    Volcanic Ash Soils: Formation

    e= 0.8-1.5

    Ss~0.1-1 m2/g

    volcanic glass

    time

    e= 2.0-7.0

    Ss=50-to-200 m2/g

    hallosite

    imogolite

    alophane

    ko= ?? ko=1-sinφ

  • 0.3

    0.4

    0.5

    0.6

    0.7

    0 1000 2000

    Time (sec)

    La

    tera

    l s

    tre

    ss

    co

    eff

    icie

    nt,

    k

    0.00

    0.02

    0.04 Ve

    rtic

    al s

    tra

    in 90% glass bead + 10% NaCl

    Experimental Results

    http://pmrl.ce.gatech.edu/papers/Shin_2009b.pdf

    http://pmrl.ce.gatech.edu/papers/Shin_2008d.pdf

  • Emergent: Shear Localization

    Cha and JCS – contact authors

  • 1km

    250m

    seabed

    Polygonal Fault Systems

    Cartwright (2005)

  • diffusion

    Q

    capillarity

    pH

    dissolution

    contraction

    ko shear CO2 Brine

    buoyancy

    advection convection

    capillarity

    HR

    tensile fracture

    -fingering

    HCO2

    Caprock

    CO2 Storage ?

    C

    CO2

  • Today Fluids

    Future Fines

    Bacteria

    Energy

    Geotech

    Frozen

    Ground

    Unsat. Soil

    Mechanics

    Ground

    Thaw

    Fractures Repetitive

    Loading

  • Mixed Fluids

    BBC News In pictures Visions of Science.jpg

    http://pmrl.ce.gatech.edu/papers/Santamarina_2010a.pdf

  • Surface Tension & Contact Angle: H2O-CO2

    atm 20 MPa gas liquid

    water droplet in CO2

    http://pmrl.ce.gatech.edu/papers/Espinoza_2010c.pdf

  • Time

    Suction

    wate

    r co

    nte

    nt

    a b c d e

    a

    b

    c

    d

    e

    Crack initiation

  • 1 mm http://pmrl.ce.gatech.edu/papers/Shin_2011b.pdf

    http://pmrl.ce.gatech.edu/papers/Shin_2011a.pdf

    http://pmrl.ce.gatech.edu/papers/Shin_2010e.pdf

  • Shale: structured rock

    Don Duggan-Haas

    Marcellus shale outcrop

    Thermogenic

    zhistory > 5000 m

    ztoday 1000-3000 m

  • L/D= 1 10 100 1,000 10,000 100,000

    Directional

    Drilling

    unconstrained

    terra incognita

    Laparoscopy

    Catheter

    Angioplast

    y

    known body

    within artery rigid tool

    Step 1: Drill

  • Step 2: HF "fracking"

    But shales…

    structured rock

    Kirsch (1898)

    Griffith (1921)

    Irwin (1957) ???

    Roshankhah et al – Contact JCS.

  • East Texas (2009)

    1 km

    Pads (several wells per pad)

  • Energy

    Geotech

    Frozen

    Ground

    Ground

    Thaw

    Repetitive

    Loading

  • Multiple articles. Please, visit http://pmrl.ce.gatech.edu go to publications then, search for "hydrate"

  • 0

    5

    10

    15

    20

    0 5 10

    axial strain [%]

    d

    ev [

    MP

    a]

    Sands

    50%

    0%

    100%

    2

    h

    u o h

    SS a bq

    n

  • Clayey Sediments

  • J Karl Johnson – NETL

    Gas replacement in hydrates

  • 30

    min

    Hydrate-bearing sand in liquid CO2

    CO2

    injection

    [4.2MPa,275.4K]

    [4.3MPa,274.1K]

    Hydrate-bearing sand in CH4

    0s 190s

    Initial Sw=0.045

    0.0h

    0.5h

    1.0h

    -0.5h

    1.5h

    Gas replacement in hydrates

  • Today Frozen

    Ground

    Future Fines Capillarity

    Bacteria

    Energy

    Geotech

    Repetitive

    Loading

  • Repetitive Loading - Coupling

    Wind

    Weight

    Waves

    Motor Compressor HP

    Turbine

    LP

    Turbine

    Generator

    Salt Dome

    Compressed

    Air

    Wind Turbine Compressed Air Energy Storage

    Repetitive Loads:

    •Mechanical

    •Thermal

    •Wet-Dry

    •Chemical

  • Bakun-Mazor et al. (2011) http://www.jibe-edu.org

    Masada - Israel

  • Delphi – Greece

  • Delphi – Greece

  • Thermo-Mechanical Ratcheting

    Positive

    displacement

    η

    INSULATED BOX

  • Thermo-Mechanical Ratcheting

    24 C

    49 C

    Block T

    Air T

    Displacement

    Articles in progress . Please, visit http://pmrl.ce.gatech.edu go to publications then, search for "Pasten"

  • HF

    Energy

    Geotech

  • Energy: critical for development

    high increase in demand in next decades

    resources: sufficient – but inadequate spatial distribution

    C-economy → global warming

    efficiency and conservation (primarily: top consumers)

    Further developments in geotechnology: Rich & Complex

    enhanced understanding of soil behavior

    coupled processes

    spatial variability and emergent phenomena

    discontinuities

    long time many repetitions ratcheting & terminal density

    Geotechnology: central role

    urgency …. fascinating !

  • Team

  • Thank you !

    Hellenic Society For Soil Mechanics And Geotechnical Engineering

    National Technical University of Athens

    Aristotle University of Thessaloniki


Top Related